
Meliora!

SVA Tutorial John Criswell
University of Rochester

!1



Introduction

!2



LLVM is Great!

!3

Security Hardening Tools!

Compilers!
JITs!

Formal Verification!

Bug Finding Tools! Profiling Tools!



What if your program is an 
operating system kernel?

!4



Operating Systems are Just Programs
❖ Code has global, stack, and heap like other programs

❖ Code manipulates data structures like other programs

!5



Operating System is a Special Program
❖ Privileged hardware configuration

❖ Page tables

❖ Interrupt Vector Table

❖ State manipulation

❖ Context switching

❖ Signal handler dispatch

!6



Challenge 1: Assembly Code
❖ Assembly code is hand-written

❖ Very difficult to analyze

❖ The value of LLVM is that you avoid binary analysis

!7



Challenge 2: Memory with Side Effects
❖ Loads and stores access the following

❖ Memory objects (global, stack, heap)

❖ Page tables

❖ Interrupt vector tables

❖ Interrupted Program State

❖ State saved on context switch

!8



Stores to Memory
❖ Does store to memory modify 

control flow?

!9

%rax

%rbx

%rip

%rcx

…

pt_regs or trapframe



Applications

Secure Virtual Architecture

❖ OS compiled to virtual instruction set

❖ Designed to be easy to analyze and instrument

❖ Low-level instructions (SVA-OS) replace assembly code

❖ Translate ahead-of-time, boot-time, or run-time

!10

Processor
OS Kernel



Applications

SVA VM

Secure Virtual Architecture

❖ OS compiled to virtual instruction set

❖ Designed to be easy to analyze and instrument

❖ Low-level instructions (SVA-OS) replace assembly code

❖ Translate ahead-of-time, boot-time, or run-time

!10

Processor

OS Kernel

Native Instruction Set

Virtual Instruction Set



SVA Virtual Instruction Set
❖ SVA-Core: Compiler Instrumentation

❖ Based on LLVM IR: Typed, Explicit SSA form

❖ SVA-OS: SVA Runtime

❖ OS-neutral instructions to support a commodity OS

❖ Encapsulates & controls hardware and state 
manipulation

!11



SVA Virtual Address Space Layout
❖ Store opaque state in SVA 

VM memory

❖ Protect SVA VM memory 
from corruption

❖ Memory safety

❖ SFI

SVA VM Memory

User-Space Memory

Kernel Memory

!12



State Saved in SVA VM Memory
❖ Privileged hardware state

❖ Interrupt vector table

❖ System call table

❖ Page table pages

❖ Program state

❖ State saved on context switch

❖ State saved on interrupt, trap, system call

!13



Opaque Native State

!14

State Purpose
Integer State Represents the native state on the CPU

Interrupt Context Represents native state saved on an interrupt, trap, or 
system call



SVA-OS Instructions

!15



Handler Registration

!16

Function Description

sva.register.interrupt() Register interrupt handler

sva.register.trap() Register trap handler

sva.register.syscall() Register system call handler



MMU Configuration

!17

Function Description
sva.declare.ptp() Mark memory as page table page

sva.update.mapping() Modify entry in a page table page
sva.release.ptp() Remove page from page table page

sva.mm.load.pagetable() Load page table pointer on to CPU
sva.mm.save.pagetable() Save copy of page table pointer on CPU



State Manipulation Instructions

!18

Function Description
sva.swap.integer() Context switch to a new thread
sva.new.thread() Create new thread

sva.icontext.save() Save interrupt context on to thread interrupt context 
stack

sva.icontext.load() Load interrupt context on thread interrupt stack



Further Reading
❖ SVA (SOSP 2007, Usenix Security 2009)

❖ KCoFI (IEEE S&P 2014)

❖ Virtual Ghost (ASPLOS 2014)

❖ Apparition (Usenix Security 2018)

❖ Shade (VEE 2019) (that’s today!)

❖ Criswell Ph.D. Disseration

❖ Appendix A describes SVA-OS instructions

!19


