
The Wolfe Dual

CS 246/446 Notes

1 Constrained Optimization

Consider a constrained optimization problem:

min
x

f(x)

s.t. g(x) = 0

At the solution, the gradient of the objective functionf must be perpendicular to the
constraint surface (feasible set) defined byg(x) = 0, so there exists a scalar Lagrange
multiplier λ such that

∂f

∂x
− λ

∂d

∂x
= 0

at the solution.

2 Inequalities

Consider an optimization problem with constraints specified as inequalities:

min
x

f(x)

s.t. g(x) ≥ 0

If, at the solution,g(x) = 0, then as before there exists aλ such that

∂f

∂x
− λ

∂d

∂x
= 0 (1)

and furthermoreλ > 0, otherwise we would be able to decreasef(x) by moving in the
direction−∂f

∂x
without leaving the feasible set defined byg(x) ≥ 0.

If, on the other hand, at the solutiong(x) > 0, then we must be at a maximum of
f(x), so ∂f

∂x
= 0 and

∂f

∂x
− λ

∂d

∂x
= 0

with λ = 0. In either case, the following system of equations (known asthe KKT
conditions) holds:

λg(x) = 0

λ ≥ 0

g(x) ≥ 0
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3 Convex Optimization

Suppose now thatf(x) is convex, andg(x) is concave, and both are continuously
differentiable. Define

L(x, λ) = f(x) − λg(x)

and Equation 1 is equivalent to
∂L

∂x
= 0

For any fixedλ ≥ 0, L is convex inx, and has a unique minimum. For any fixedx, L
is linear inλ.

Define
h(λ) = min

x
L(x, λ)

The minimum of a set of linear functions is concave, and has a maximum corresponding
to the linear function with derivative of 0. Thush(λ) also has a unique maximum over
λ ≥ 0. Either the maximum ofh occurs atλ = 0, in which case

h(0) = min
x

L(x, 0) = min
x

f(x)

and we are at the global minimum off , or the maximum ofh occurs at

∂L

∂λ
= g(x) = 0

and we are on the boundary of the feasible set. In either case,the problem

max
λ

h(λ)

s.t. λ ≥ 0

is equivalent to

max
λ,x

L(x, λ)

s.t. λ ≥ 0

∂L

∂x
= 0

This is known as the dual problem, and its solution is also thesolution to the original
(primal) problem

min
x

f(x)

s.t. g(x) = 0
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4 An Example

Minimize x2 subject tox ≥ 2.

L(x, λ) = f(x) − λg(x)

= x2
− λ(x − 2)

The Lagrangian functionL has a saddle shape:
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Projecting onto theλ dimension, we see the concave functionh formed from the
minimum of linear functionsL(c, λ)
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To findh, set

∂L

∂x
= 0

2x − λ = 0

and solve forx: x = λ/2. Substitutingx = λ/2 into L givesh(λ) = −
1

4
λ2 − 2λ.

Setting ∂h
∂λ

= 0 yieldsλ = 4, which we see is the maximum of the concave shape in
the figure. Substituting back into the original problem yieldsx = 2, a solution on the
boundary of the constraint surface.
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