# The Wolfe Dual 

## CS 246/446 Notes

## 1 Constrained Optimization

Consider a constrained optimization problem:

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { s.t. } g(x)=0
\end{aligned}
$$

At the solution, the gradient of the objective function $f$ must be perpendicular to the constraint surface (feasible set) defined by $g(x)=0$, so there exists a scalar Lagrange multiplier $\lambda$ such that

$$
\frac{\partial f}{\partial x}-\lambda \frac{\partial d}{\partial x}=0
$$

at the solution.

## 2 Inequalities

Consider an optimization problem with constraints specified as inequalities:

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { s.t. } g(x) \geq 0
\end{aligned}
$$

If, at the solution, $g(x)=0$, then as before there exists a $\lambda$ such that

$$
\begin{equation*}
\frac{\partial f}{\partial x}-\lambda \frac{\partial d}{\partial x}=0 \tag{1}
\end{equation*}
$$

and furthermore $\lambda>0$, otherwise we would be able to decrease $f(x)$ by moving in the direction $-\frac{\partial f}{\partial x}$ without leaving the feasible set defined by $g(x) \geq 0$.

If, on the other hand, at the solution $g(x)>0$, then we must be at a maximum of $f(x)$, so $\frac{\partial f}{\partial x}=0$ and

$$
\frac{\partial f}{\partial x}-\lambda \frac{\partial d}{\partial x}=0
$$

with $\lambda=0$. In either case, the following system of equations (known as the KKT conditions) holds:

$$
\begin{aligned}
\lambda g(x) & =0 \\
\lambda & \geq 0 \\
g(x) & \geq 0
\end{aligned}
$$

## 3 Convex Optimization

Suppose now that $f(x)$ is convex, and $g(x)$ is concave, and both are continuously differentiable. Define

$$
L(x, \lambda)=f(x)-\lambda g(x)
$$

and Equation 1 is equivalent to

$$
\frac{\partial L}{\partial x}=0
$$

For any fixed $\lambda \geq 0, L$ is convex in $x$, and has a unique minimum. For any fixed $x, L$ is linear in $\lambda$.

Define

$$
h(\lambda)=\min _{x} L(x, \lambda)
$$

The minimum of a set of linear functions is concave, and has a maximum corresponding to the linear function with derivative of 0 . Thus $h(\lambda)$ also has a unique maximum over $\lambda \geq 0$. Either the maximum of $h$ occurs at $\lambda=0$, in which case

$$
h(0)=\min _{x} L(x, 0)=\min _{x} f(x)
$$

and we are at the global minimum of $f$, or the maximum of $h$ occurs at

$$
\frac{\partial L}{\partial \lambda}=g(x)=0
$$

and we are on the boundary of the feasible set. In either case, the problem

$$
\begin{aligned}
& \max _{\lambda} h(\lambda) \\
& \text { s.t. } \lambda \geq 0
\end{aligned}
$$

is equivalent to

$$
\begin{array}{rl}
\max _{\lambda, x} & L(x, \lambda) \\
\text { s.t. } & \lambda \geq 0 \\
& \frac{\partial L}{\partial x}=0
\end{array}
$$

This is known as the dual problem, and its solution is also the solution to the original (primal) problem

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { s.t. } g(x)=0
\end{aligned}
$$

## 4 An Example

Minimize $x^{2}$ subject to $x \geq 2$.

$$
\begin{aligned}
L(x, \lambda) & =f(x)-\lambda g(x) \\
& =x^{2}-\lambda(x-2)
\end{aligned}
$$

The Lagrangian function $L$ has a saddle shape:


Projecting onto the $\lambda$ dimension, we see the concave function $h$ formed from the minimum of linear functions $L(c, \lambda)$


To find $h$, set

$$
\begin{aligned}
\frac{\partial L}{\partial x} & =0 \\
2 x-\lambda & =0
\end{aligned}
$$

and solve for $x: x=\lambda / 2$. Substituting $x=\lambda / 2$ into $L$ gives $h(\lambda)=-\frac{1}{4} \lambda^{2}-2 \lambda$. Setting $\frac{\partial h}{\partial \lambda}=0$ yields $\lambda=4$, which we see is the maximum of the concave shape in the figure. Substituting back into the original problem yields $x=2$, a solution on the boundary of the constraint surface.

