The Convex Dual

CS 246/446 Notes

Constrained Optimization

Consider a constrained optimization problem:

$$\min_{x} f(x)$$

s.t. $g(x) = 0$

At the solution, the gradient of the objective function f must be perpendicular to the constraint surface (feasible set) defined by g(x) = 0, so there exists a scalar Lagrange multiplier λ such that

$$\frac{\partial f}{\partial x} + \lambda \frac{\partial d}{\partial x} = 0$$

at the solution.

Inequalities

Consider an optimization problem with constraints specified as inequalities:

$$\min_{x} f(x)$$

s.t. $g(x) \ge 0$

If, at the solution, g(x) = 0, then as before there exists a λ such that

$$\frac{\partial f}{\partial x} + \lambda \frac{\partial d}{\partial x} = 0 \tag{1}$$

and furthermore $\lambda>0$, otherwise we would be able to decrease f(x) by moving in the direction $+\frac{\partial f}{\partial x}$ without leaving the feasible set defined by $g(x)\geq 0$.

If, on the other hand, at the solution g(x)>0, then we must be at a maximum of

f(x), so $\frac{\partial f}{\partial x} = 0$ and

$$\frac{\partial f}{\partial x} + \lambda \frac{\partial d}{\partial x} = 0$$

with $\lambda = 0$. In either case, the following system of equations (known as the KKT conditions) holds:

$$\lambda g(x) = 0$$
$$\lambda \ge 0$$
$$g(x) \ge 0$$

3 Convex Optimization

Suppose now that f(x) is convex, and g(x) is concave, and both are continuously differentiable. Define

$$L(x,\lambda) = f(x) + \lambda g(x)$$

and Equation 1 is equivalent to

$$\frac{\partial L}{\partial x} = 0$$

For any fixed $\lambda \geq 0$, L is convex in x, and has a unique minimum. For any fixed x, L is linear in λ .

Define

$$h(\lambda) = \min_{x} L(x, \lambda)$$

The minimum of a set of linear functions is concave, and has a maximum corresponding to the linear function with derivative of 0. Thus $h(\lambda)$ also has a unique maximum over $\lambda \geq 0$. Either the maximum of h occurs at $\lambda = 0$, in which case

$$h(0) = \min_{x} L(x,0) = \min_{x} f(x)$$

and we are at the global minimum of f, or the maximum of h occurs at

$$\frac{\partial L}{\partial \lambda} = g(x) = 0$$

and we are on the boundary of the feasible set. In either case, the problem

$$\max_{\lambda} h(\lambda)$$

s.t. $\lambda \ge 0$

is equivalent to

$$\max_{\lambda,x} L(x,\lambda)$$
 s.t. $\lambda \ge 0$
$$\frac{\partial L}{\partial x} = 0$$

This is known as the dual problem, and its solution is also the solution to the original (primal) problem

$$\min_{x} f(x)$$

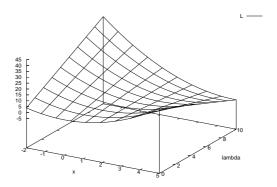
s.t. $g(x) = 0$

4 An Example

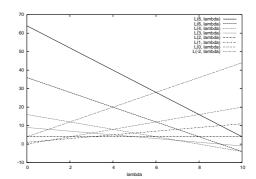
Minimize x^2 subject to $x \ge 2$.

$$L(x,\lambda) = f(x) + \lambda g(x)$$
$$= x^{2} + \lambda(2 - x)$$

The Lagrangian function L has a saddle shape:



Projecting onto the λ dimension, we see the concave function h formed from the minimum of linear functions $L(c,\lambda)$



To find h, set

$$\frac{\partial L}{\partial x} = 0$$
$$2x - \lambda = 0$$

and solve for x: $x=\lambda/2$. Substituting $x=\lambda/2$ into L gives $h(\lambda)=-\frac{1}{4}\lambda^2-2\lambda$. Setting $\frac{\partial h}{\partial \lambda}=0$ yields $\lambda=4$, which we see is the maximum of the concave shape in the figure. Substituting back into the original problem yields x=2, a solution on the boundary of the constraint surface.