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In this survey the concept of hyperedge replacement is presented as an elementary
approach to graph and hypergraph generation. In particular, hyperedge replace-
ment graph grammars are discussed as a (hyper)graph-grammatical counterpart to
context-free string grammars. To cover a large part of the theory of hyperedge re-
placement, structural properties and decision problems, including the membership
problem, are addressed.
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2.1 Introduction

Graph grammars have been developed as an extension of the concept of for-
mal grammars on strings to grammars on graphs. Among string grammars,
context-free grammars have proved extremely useful in practical applications
and powerful enough to generate a wide spectrum of interesting formal lan-
guages. It is therefore not surprising that analogous notions have been devel-
oped also for graph grammars. Corresponding to the different graph-grammar
formalisms in the literature, and to the differing opinions about what the term
“context-free” means, a number of different types of graph grammars have
been given this attribute (cf. Feder [1], Pavlidis [2], Della Vigna and Ghezzi
[3], Janssens and Rozenberg [4], Slisenko [5], Bauderon and Courcelle [6], Ha-
bel and Kreowski [7,8], Montanari and Rossi [9], Lautemann [10], Engelfriet
[11,12], and Lengauer and Wanke [13]). Among the most general, there are
the C-edNCE graph grammars surveyed in Chapter 1 and the hyperedge re-
placement grammars dealt with in this chapter.

Hyperedge replacement is an elementary approach of graph and hyper-
graph rewriting. It was introduced in the early seventies by Feder [1] and
Pavlidis [2] (under other names) and has been intensively studied since the
late seventies (starting with the special case of edge replacement) by Bauderon,
Courcelle, and Engelfriet [6,14,15,16,17], Engelfriet, Heyker, Leih, and Rozen-
berg [18,19,20,21,22,23], Drewes, Habel, Kreowski, Lautemann, and Vogler
[24,25,7,26,10,27,28,29,30,31,32,33,34], Lengauer and Wanke [35,36,13], and
others.

A hyperedge is an atomic item with a fixed number of tentacles, called the
type of the hyperedge. It can be attached to any kind of structure coming with
a set of nodes by attaching each of its tentacles to a node. The hyperedge
controls the sequence of these attachment nodes and can play the role of a
place holder, which may be replaced with some other structure eventually. In
such a hyperedge replacement , the hyperedge is removed, and the replacing
structure R is embedded into the original structure. For this purpose, the
considered structures are equipped with sequences of external nodes . R is then
glued to the remainder of the original structure by fusing each external node
with the corresponding attachment node. For this, the number of external
nodes in R is required to equal the type of the replaced hyperedge. Thus,
referring to the distinction between gluing and connecting approaches discussed
in the introduction of Chapter 1, hyperedge replacement belongs to the gluing
approaches.
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The replacement of a hyperedge by some structure can be iterated if the
original structure or the replacing one is equipped with further hyperedges. If
the hyperedges are labelled we may define productions . They consist of a label
as left-hand side and a replacing structure as right-hand side. Hyperedge re-
placement grammars mainly consist of a start structure and a finite set of such
productions. If a hyperedge labelled with the left-hand side of a production
is replaced with the right-hand side this is called a direct derivation. If such
a grammar, besides the set of productions and the start structure, provides
a specification of terminal structures, it can generate a language: the set of
terminal structures derivable from the start structure.

The aim of this survey is to present the theory of hyperedge replacement
graph grammars. To keep the technicalities as simple as possible, we deal with
hypergraphs that consist of sets of nodes and sets of hyperedges as described
above, rather than with hybrid objects where some underlying structures are
equipped with hyperedges in addition. Hypergraphs are general and flexible
enough to cover many interesting cases. In particular, the ordinary directed
graphs are special hypergraphs because hyperedges of type 2 are just directed
edges. Clearly, undirected graphs can also be handled as a special case.

If a hyperedge is replaced its context is not affected. Therefore, hyperedge
replacement provides a context-free type of rewriting (as long as no additional
application conditions are employed). This is the main reason for the fact that
several structural results for hyperedge replacement grammars and languages
are quite similar to the properties of context-free string grammars and lan-
guages and that many interesting problems turn out to be decidable. In this
survey we try to cover some typical parts of the theory of hyperedge replace-
ment. In particular, we consider structural properties and decision problems.
It turns out that the generative power is increasing with the type of hyperedges
involved in the derivation process even if one wants to generate only graphs
or even string graphs. The generative power of hyperedge replacement gram-
mars generating string graphs can be characterized in terms of tree-walking
transducers.

Concerning decision problems we discuss two types of questions. First,
one can ask whether the hypergraphs generated by a given hyperedge replace-
ment grammar satisfy a property π of interest. This question—and related
ones—are of course interesting for any kind of language generating device since
the languages are usually infinite sets. In the case of hyperedge replacement
grammars one can find a large class of such properties π for which the men-
tioned question is decidable (closely related results are discussed in Section 5.6
of Chapter 5). The second decision problem we are going to address is the
classical membership problem: Does a given hypergraph belong to the con-
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sidered language? As the reader probably expects, the problem is decidable
for hyperedge replacement languages. However, there is an important differ-
ence to context-free string grammars: The membership problem turns out to
be NP-complete. Only restricted subclasses lead to polynomial membership
algorithms.

Two further, equally important parts of the theory are left out here. They
can be found in other chapters of this volume. The relation of hyperedge re-
placement and node replacement is discussed in Sections 3.3 and 3.4 of Chap-
ter 1 and in Section 5.5 of Chapter 5. Furthermore, monadic second-order
logic on graphs, its relation with hyperedge replacement, and its use in con-
nection with hyperedge replacement is presented in Chapter 5 (see in particular
Sections 5.5–5.7 of that chapter).

The introduction above should have made clear that the chapter presents
an overview of the theory of hyperedge replacement graph grammars rather
than of their practical use. However, it must be pointed out that hyperedge
replacement is not only a concept of mathematical beauty, but is useful also
from a practical point of view. This is no surprise at all. Graphs are used
successfully in all branches of computer science, and context-free generation
mechanisms of formal languages are not less important. This opens a wide area
of potential applications. Just to mention some examples, hyperedge replace-
ment can be used to model and support the design of VLSI circuits (see, for ex-
ample, [13,37] by Lengauer and Wanke), and it has been used in a generator for
diagram editors to describe the context-free part of the syntax of diagrams (see
[38,39,40] by Minas and Viehstaedt). An early application to the generation
of semi-structured control-flow diagrams was given by Farrow, Kennedy, and
Zucconi [41] (see also Example 2.2.2). In general, wherever classes of graphs or
hypergraphs are to be specified, generated, manipulated, etc. it seems a good
idea to distinguish between context-free aspects and non-context-free ones, and
to describe the former by a context-free rewriting mechanism like hyperedge
or node replacement (see also Chapter 1).

The survey is organized in the following way. Section 2.2 provides the basic
notions and notations of hyperedge replacement grammars. In Section 2.3,
the context-freeness lemma is presented stating that derivations in hyperedge
replacement grammars do not interfere with each other as long as they concern
different hyperedges. This is the key result to the major part of the theory of
hyperedge replacement as discussed in this chapter. Some structural properties
(including a fixed-point theorem, a pumping lemma and a Parikh theorem) are
presented in Section 2.4, while the generative power is considered in Section 2.5.
Sections 2.6 and 2.7 are devoted to decision problems. While in Section 2.7
the membership problem is discussed, Section 2.6 concerns the decidability
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of properties of hypergraphs and hypergraph languages. Each of the main
sections ends with bibliographic notes and hints to further results.

2.2 Hyperedge replacement grammars

In this section, we introduce hyperedge replacement grammars as hypergraph
manipulating and hypergraph-language generating devices. A simple example
may perhaps be useful to illustrate the idea. Let us consider directed graphs
with multiple edges having two distinguished nodes begin and end . We can
replace an edge e of a graph G with another graph G′ by removing e from
G, adding G′ disjointly, and fusing the begin-node of G′ with the source of e
and the end -node of G′ with the target of e. The resulting graph is denoted
by G[e/G′]. An example is given in Figure 2.1. Note that G[e/G′] keeps the

begin ende begin

end

begin end

G G′ G[e/G′]

Figure 2.1: The replacement of an edge.

begin- and end -nodes of G.
Now, let us allow in addition to label edges with arbitrary symbols. Then

we can build productions whose left-hand sides are labels and whose right-hand
sides are graphs. A production S ::=G′ is applied to a graph G by choosing an
edge e labelled with S and replacing it with G′, which yields a direct derivation
G=⇒G[e/G′]. The productions shown in Figure 2.2, for instance, generate
the set of series-parallel graphs (which describe a simple type of concurrent
processes) if we start with a single, S-labelled edge and apply productions
until no S-labelled edge is left. A sample derivation beginning with a slightly
larger graph is shown in Figure 2.3. Here, =⇒∗ denotes the transitive and
reflexive closure of =⇒, as usual.

The notion of replacement discussed so far is commonly called edge re-
placement , for obvious reasons. It is a special case of the notion of hyperedge
replacement presented in this chapter. In the remainder of this section the

S ::=
begin end

S ::=
begin end

S S S ::= begin end

S

S

Figure 2.2: Productions to generate series-parallel graphs.
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begin end
S S =⇒

begin end
S S

S

=⇒

begin end
S S S

S

=⇒∗

begin end
S

=⇒

begin end
S S

=⇒∗

begin end

Figure 2.3: A derivation using the productions of Figure 2.2.

approach will be defined formally. The first paragraph provides the basic no-
tions concerning hyperedges and hypergraphs. In the introduced approach, a
hyperedge is an atomic item with a label and an ordered set of tentacles. A
set of nodes together with a collection of such hyperedges (usually with vary-
ing numbers of tentacles) forms a hypergraph if each tentacle is attached to
a node. Directed and labelled graphs, undirected and unlabelled graphs as
well as strings can be considered as special cases of hypergraphs. For technical
reasons, we assume that the labels are typed by non-negative integers in such
a way that, for each hyperedge, the type of its label and the number of its
tentacles coincide.

Moreover, a hypergraph is equipped with a sequence of external nodes,
which is used to construct the replacement of hyperedges by hypergraphs.
The external nodes correspond to the nodes begin and end in the example
above. To make the construction simpler, we assume in addition that the
attachment nodes of each hyperedge on the one hand and the external nodes
on the other hand are pairwise distinct. It must be pointed out, however, that
this restriction is no vital one. If it is dropped one can prove normal-form
results yielding systems of the type considered here.

Similar to the example presented above, the replacement of some hyper-
edges of a hypergraph by other hypergraphs yields an expanded hypergraph by
removing the chosen hyperedges, adding the replacing hypergraphs and fusing
their external nodes with the corresponding attachment nodes of the replaced
hyperedges. This notion of hyperedge replacement yields the basic steps in
the derivation process of a hyperedge replacement grammar, where the pair
of the label of each replaced hyperedge and the replacing hypergraph form a
production of the grammar.
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2.2.1 Hypergraphs

By N we denote the set of all natural numbers, including 0. For a set A,
A∗ denotes the set of all strings over A, including the empty string λ; A+ =
A∗ − {λ} denotes the set of all strings over A, except the empty string λ.
For w ∈ A∗, |w| denotes the length of w, [w] denotes the set of all symbols
occurring in w, and w(i) denotes the i-th symbol in w, for 1 ≤ i ≤ |w|. The
free symbolwise extension f∗ : A∗ → B∗ of a mapping f : A→ B is defined by
f∗(a1 · · · ak) = f(a1) · · · f(ak) for all k ∈ N and ai ∈ A (i = 1, . . . , k).

In the following, let C be an arbitrary, but fixed set of labels and let
type : C → N be a typing function for C. A (hyperedge-labelled, multi-pointed)
hypergraph H over C is a tuple (V,E, att , lab, ext) where V is a finite set of
nodes , E is a finite set of hyperedges , att : E → V ∗ is a mapping assigning a
sequence of pairwise distinct attachment nodes att(e) to each e ∈ E, lab : E →
C is a mapping that labels each hyperedge such that type(lab(e)) = |att(e)|,
and ext ∈ V ∗ is a sequence of pairwise distinct external nodes .

The components of a hypergraph H may be denoted by VH , EH , attH ,
labH , extH , respectively. Furthermore, given a set X ⊆ C of labels we denote
by EX

H the set {e ∈ EH | labH(e) ∈ X} of hyperedges of H with labels in X.
The number of nodes plus the number of hyperedges of H is called the size of
H, denoted by |H|. The class of all hypergraphs over C is denoted by HC .

If the hypergraph in question is understood, we say that e ∈ E is an m-
edge for some m ∈ N and m is its type, denoted by type(e), if type(lab(e)) = m.
In order to avoid confusion we may also write typeH(e) if H is the hypergraph
referred to. H ∈ HC is an n-hypergraph for some n ∈ N and n its type, denoted
by type(H), if |extH | = n.

The sequence of external nodes may be empty so that ordinary hyper-
graphs (without external nodes) may be seen as 0-hypergraphs and in this way
as special cases of hypergraphs with external nodes. An n-hypergraph H over
C is considered as a (directed) n-graph if all hyperedges of H are 2-edges.
The first node of the attachment nodes of a 2-edge corresponds to the source
and the second one to the target. The two external nodes of a 2-graph G are
denoted by beginG and endG in this order.

As a convention, an unlabelled hyperedge is a hyperedge labelled with a
special label  which we do not draw in figures. Subject to this convention,
unlabelled graphs and hypergraphs turn out to be special cases of the sort of
hypergraphs defined above.

A graph G = ({v0, v1, . . . , vn}, {e1, . . . , en}, att , lab, v0vn) over C is called
a string graph if v0, v1, . . . , vn are pairwise distinct and att(ei) = vi−1vi for
i = 1, . . . , n. If w = lab(e1) · · · lab(en), then G is called the string graph
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1

f
1

2

3

g
1

2 3

h
1

2

0
1

0
1

Figure 2.4: A hypergraph denoting the expression f(g(0, 0), h(g(0, 0))).

induced by w and is denoted by w•. Such a string graph provides a unique
graph representation of the string w ∈ C+.

In drawings of hypergraphs, a dot (•) represents an external node, inter-
nal nodes are drawn as circles, and a box depicts a hyperedge with attachment
nodes, where the label is inscribed in the box, and the i-th tentacle is attached
to the i-th attachment node (i = 1, . . . ,m). In other words, the graphical rep-
resentation makes use of the one-to-one correspondence between hypergraphs
and bipartite graphs. As an example, see the 1-hypergraph in Figure 2.4, which
represents a functional expression with sharing. A 2-edge may also be drawn
as an arrow pointing from its first attached node to the second.

An m-hypergraph H with m nodes (that is, all nodes are external) and a
single hyperedge e is said to be a handlea if attH(e) = extH . If labH(e) = A,
then H is said to be the handle induced by A and is denoted by A•.

Let H,H ′ ∈ HC . Then H is a sub-hypergraph of H ′, denoted by H ⊆ H ′,
if VH ⊆ VH′ , EH ⊆ EH′ , attH(e) = attH′(e), and labH(e) = labH′(e) for all
e ∈ EH . Note that nothing is assumed about the relation of the external nodes.
H and H ′ are isomorphic if there is a pair h = (hV , hE) of bijective mappings
hV : VH → VH′ and hE : EH → EH′ with h∗V (attH(e)) = attH′(hE(e)) and
labH(e) = labH′(hE(e)) for all e ∈ EH as well as h∗V (extH) = extH′ .

aNote that this notion of handles differs from the one used in Section 1.4.3 of Chapter 1.



104 CHAPTER 2. HYPEREDGE REPLACEMENT GRAPH GRAMMARS

2.2.2 Hyperedge replacement

Let H ∈ HC be a hypergraph, B ⊆ EH be a set of hyperedges to be replaced.
Let repl : B → HC be a mapping with type(repl(e)) = type(e) for all e ∈ B.
Then the replacement of B inH by repl yields the hypergraphH[repl] obtained
by removing B from EH , adding the nodes and hyperedges of repl(e) for each
e ∈ B disjointly and fusing the i-th external node of repl(e) with the i-th
attachment node of e for each e ∈ B and i = 1, . . . , type(e). All hyperedges
keep their labels and attachment nodes; the external nodes of H[repl] are those
of H. If B = {e1, . . . , en} and repl(ei) = Ri for i = 1, . . . , n, then we also write
H[e1/R1, . . . , en/Rn] instead of H[repl].

If, for each e ∈ B, the replacing hypergraph repl(e) consists of the attach-
ment nodes as external nodes and nothing else, the replacement of B in H
removes B and adds nothing. Hence, the result may be denoted by H − B in
this case. The replacement of some hyperedges is illustrated in Figure 2.5.

1 2

3 4

e1

1
2

3
e2

e3

1

2
3 e4H −B =⇒

R1

R2

R3

R4H −B

Figure 2.5: The replacement of (unlabelled) hyperedges e1, . . . , e4 with R1, . . . , R4.

Note that the result of a hyperedge replacement is defined only up to
isomorphism. Therefore, to keep the technicalities as simple as possible, we
usually do not distinguish between isomorphic copies of a hypergraph.

Hyperedge replacement enjoys some nice properties well-known from other
rule-based formalisms. First of all, we have a sequentialization and paralleliza-
tion property. It does not matter whether we replace some hyperedges of a
hypergraph one after another, or simultaneously. The second property is con-
fluence. Hyperedges of a hypergraph can be replaced in any order, without
affecting the result. (In fact, this follows already from the sequentialization
and parallelization property. If we replace hyperedges simultaneously there is
no order among them at all.) The last and maybe most important property
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is associativity. If a hyperedge is replaced and afterwards a hyperedge of the
new part is replaced with a third hypergraph, the same is obtained by first
replacing the latter hyperedge and then replacing the first one with the result.
These properties are stated formally below.

Sequentialization and parallelization. Let H be a hypergraph with pairwise
distinct e1, . . . , en ∈ EH and let Hi be a hypergraph with type(Hi) = typeH(ei)
for i = 1, . . . , n. Then

H[e1/H1, . . . , en/Hn] = H[e1/H1] · · · [en/Hn].

Confluence. Let H be a hypergraph with distinct e1, e2 ∈ EH and let Hi be
a hypergraph with type(Hi) = typeH(ei) for i ∈ {1, 2}. Then

H[e1/H1][e2/H2] = H[e2/H2][e1/H1].

Associativity. Let H,H1, H2 be hypergraphs with e1 ∈ EH and e2 ∈ EH1
,

such that typeH(e1) = type(H1) and typeH1
(e2) = type(H2). Then

H[e1/H1][e2/H2] = H[e1/H1[e2/H2]].

2.2.3 Hyperedge replacement derivations, grammars, and languages

Let N ⊆ C be a set of nonterminals . A production over N is an ordered pair
p = (A,R) with A ∈ N , R ∈ HC and type(A) = type(R). A is called the
left-hand side of p and is denoted by lhs(p); R is called the right-hand side and
is denoted by rhs(p).

Let H ∈ HC and let P be a set of productions. Let e ∈ EH and
(labH(e), R) ∈ P . Then H directly derives H ′ = H[e/R]. In this case, we
write H =⇒P H

′, or just H =⇒H ′ if P is clear from the context, and call this
a direct derivation. Examples of direct derivations have already been discussed
in the beginning of this section (see Figure 2.3).

A sequence of direct derivations H0 =⇒· · ·=⇒Hk is called a derivation of
length k from H0 to Hk and is denoted by H =⇒∗

P H
′ or H0 =⇒

∗Hk. If the
length of the derivation matters, we write H0 =⇒

kHk. Additionally, if H ′
0 is

isomorphic to H0, we speak of a derivation from H0 to H ′
0 of length 0.

Using the concepts of productions and derivations, hyperedge replacement
grammars and languages can be introduced in a straightforward way. This is
done below.
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Definition 2.2.1 (hyperedge replacement grammar) A hyperedge
replacement grammar is a system HRG = (N,T, P, S) where N ⊆ C is a set
of nonterminals, T ⊆ C with T ∩N = ∅ is a set of terminals, P is a finite set
of productions over N and S ∈ N is the start symbol.

The hypergraph language L(HRG) generated by HRG is LS(HRG), where
for all A ∈ N , LA(HRG) consists of all hypergraphs in HT derivable from A•

by applying productions of P :

LA(HRG) = {H ∈ HT |A• ∗
=⇒
P
H}.

We denote the class of all hyperedge replacement grammars by HRG and
the class of all hyperedge replacement languages byHRL. A hyperedge replace-
ment grammar HRG = (N,T, P, S) is said to be of order r (for some r ∈ N)
if for all (A,R) ∈ P , type(R) ≤ r. A hyperedge replacement language L is of
order r (for some r ∈ N) if there is a hyperedge replacement grammar HRG of
order r with L(HRG) = L. The classes of all hyperedge replacement grammars
and languages of order r are denoted by HRGr and HRLr, respectively. A
hyperedge replacement grammar ERG = (N,T, P, S) such that all right-hand
sides of productions in P are graphs is also called an edge replacement gram-
mar . Note that, if given such an edge replacement grammar, one may always
assume without loss of generality that all nonterminal labels except perhaps
the start symbol have type 2. The class of all edge replacement grammars is
denoted by ERG.

Even if one wants to generate graph languages (or string-graph languages)
rather than hypergraph languages, one may use nonterminal hyperedges be-
cause the generative power of hyperedge replacement grammars increases with
their order (see Section 2.5). By definition of derivations the set L(HRG) is
closed under isomorphisms. Moreover, L(HRG) is homogeneous, that is, all its
hypergraphs are of the same type. Therefore, non-homogeneous languages and
languages not closed under isomorphism cannot be generated by the grammars
introduced above.

Example 2.2.2 (generation of semi-structured control-flow graphs)
Control-flow graphs of so-called semi-structured programs are useful for data
flow analysis, as shown by Farrow, Kennedy, and Zucconi [41]. These control-
flow graphs (seen as hypergraphs) are generated by the hyperedge replacement
grammar FLOW -GRAPHS = ({C,D}, {c, d}, P, C), where P contains the pro-
ductions given in Figure 2.6 in a kind of Backus-Naur-Form. (The types of
nonterminal labels are those of the corresponding right-hand sides.) A deriva-
tion deriving a multi-exit loop is given in Figure 2.7, where tentacle numbers
are omitted.



2.2. HYPEREDGE REPLACEMENT GRAMMARS 107

C ::=

1

2

C

C

1

2

D

1

2 3

1

2

D

1

2

3

1

2

c

D ::=

1

2 3

D

C

1

2 3

1

2 3

D

C

1

2

3

1

2 3

D

D

1

2

3

1

2 3

1

2 3

D

D

1

2

3

1

2

3

1

2 3

D

C

1

2

3

1

2 3

D

D

1

2

3
1

2 3

1

2 3

D

D

1

2

31

2

3

1

2 3

d

1

2 3

Figure 2.6: Productions of the hyperedge replacement grammar FLOW -GRAPHS .
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1
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C =⇒

1

2

D

=⇒

1

2

D

D =⇒

1

2

D

D

D

=⇒∗

1

2

D

D

D

...

D
. . .

=⇒∗

1

2

d

d

d

...

d

c
c

c

c

. . .

Figure 2.7: A derivation in the hyperedge replacement grammar FLOW -GRAPHS .
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S ::=
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2

a

b

c
A
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A ::=
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Figure 2.8: Productions of the hyperedge replacement grammar A
n
B
n
C

n
.

Example 2.2.3 (generation of a string-graph language) hyperedge re-
placement grammar A

n
B

n
C

n
= ({S,A}, {a, b, c}, P, S) where P consists of the

productions depicted in Figure 2.8. Beginning with S•, the application of the
second production yields the string graph (abc)•. By applying the first produc-
tion, then applying the third production n−1 times, followed by an application
of the fourth production, we obtain the derivation in Figure 2.9. Furthermore,
the only hypergraphs in L(A

n
B

n
C

n
) are string graphs of the form (anbncn)•

for n ≥ 1. Thus, L(A
n
B

n
C

n
) = {(anbncn)• |n ≥ 1}.

2.2.4 Bibliographic notes

The kind of introduction chosen here is similar to the one in [42]. It must be
noted, however, that the notion of direct derivations chosen here is a purely se-
quential one. A direct derivation replaces only one hyperedge. Instead, one can
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Figure 2.9: A derivation in A
n
B
n
C

n
.

as well use a notion of parallel direct derivations, where arbitrarily many hyper-
edges can be replaced in one step. More precisely, we could say H =⇒P H[repl ]
if repl : B → HC is a mapping with B ⊆ EH and (labH(e), repl(e)) ∈ P for all
e ∈ B. Using the sequentialization property of hyperedge replacement quoted
above, it is clear that every derivation consisting of this type of parallel direct
derivations can be transformed into a derivation using only direct derivations
as defined here. In particular, both notions of direct derivations lead to hyper-
edge replacement grammars of equal generative power.

The hyperedge replacement approach presented here is described on a
set-theoretical level. Since hyperedge replacement may be seen as a special
case of hypergraph replacement in the double-pushout approach (see [43]) and
the double-pushout approach has an algebraic description (see Chapter 3),
hyperedge replacement has an algebraic description, too. The relation between
hyperedge replacement languages, logical definability of hypergraph languages,
and recognizability has been intensively studied by Courcelle (see Chapter 5).

Courcelle, Engelfriet, and Rozenberg [44] studied the notion of separated
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handle-rewriting hypergraph grammars (see also Section 1.4.3 of Chapter 1).
These grammars combine the rewriting mechanisms of vertex- and hyperedge
replacement graph grammars. If we restrict our attention to the generation
of graphs, handle rewriting grammars are as powerful as the C-edNCE graph
grammars discussed in Chapter 1 and are thus more powerful than hyper-
edge replacement grammars. Looking at the more general situation where hy-
pergraphs are generated, hyperedge replacement and handle-rewriting graph
grammars turn out to be incomparable, though.

In [23] Engelfriet shows how regular tree grammars can be used to generate
graphs, by generating expressions that denote graphs. Top-down and bottom-
up tree transducers can then be used as a tool for proving properties of such
graph generating tree grammars.

As mentioned in the introduction, the idea of hyperedge replacement can
also be applied to structures other than hypergraphs. Considering pictures
(that is, subsets of Rd for some d ∈ N) as underlying structures Habel and
Kreowski [45] introduced the so-called collage grammars. These allow to gen-
erate and to study (approximations of) fractal images and other sorts of pic-
tures (see the work by Dassow, Drewes, Habel, Kreowski, and Taubenberger
[46,47,48,49]).

2.3 A context-freeness lemma

In this section, we present a context-freeness lemma for hyperedge replacement
grammars and languages. Furthermore, we employ the lemma in order to in-
troduce derivation trees as a helpful and intuitive representation of derivations.

2.3.1 Context freeness

Most of the results presented in this survey (as, for example, the fixed-point
theorem and the pumping lemma) are mainly based on the context-free nature
of hyperedge replacement. Suppose we are given any notion of replacement
allowing to replace primitive components of certain objects with other such
objects. In the string case the objects would be strings and the primitive com-
ponents would be the individual letters. In the case of hyperedge replacement
we have hypergraphs as objects and hyperedges as primitive components. In-
tuitively, context-freeness means that in a derivation of an object O′ from and
object O we can consider the primitive components of O separately to derive
from them the corresponding parts of O′. More precisely, O derives O′ if and
only if each nonterminal component x derives an object repl(x) such that O′

is the object obtained by replacing each nonterminal x of O with repl(x).
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In the case of type-2 string grammars we can derive a string w from
A1 · · ·An if and only if w = repl(A1) · · · repl(An), where each repl(Ai) is a
string derivable from Ai. In the case of hyperedge replacement grammars the
situation is similar, though not as completely obvious. Intuitively, during a
derivation that derives a hypergraph H from a hypergraph R the nonterminal
hyperedges of R are turned step by step into larger hypergraphs. Thus, each
nonterminal hyperedge of R gives rise to a particular sub-hypergraph of H.
The important point is that the applicability of a production depends only
on the existence of a hyperedge with the required label, and nothing but this
hyperedge is affected by the application of the production. Therefore, if we
are given a nonterminal hyperedge e ∈ EN

R we may simply forget about the
context of e in R, keeping only the handle labR(e)

•, and restrict the original
derivation accordingly. In this way we get for every e ∈ EN

R a sub-derivation
labR(e)

• =⇒∗ repl(e) such that R[repl ] = H. Clearly, the converse is also true:
If we are given the hypergraphs repl(e) with labR(e)

• =⇒∗ repl(e) (e ∈ EN
R )

then the hypergraph R[repl ] is derivable from R. This property justifies to call
hyperedge replacement grammars context-free.

Below, we state the result in a recursive version especially suitable for
inductive proofs. If a derivation starts in a handle A• it must necessarily
have the form A• =⇒R=⇒∗H, where (A,R) is a production. The remainder
R=⇒∗H can now be decomposed as described above.

For the rest of this chapter let us employ the following assumption.

General assumption. Let N , T be two disjoint subsets of the alphabet C.

Theorem 2.3.1 (context-freeness lemma) A ∈ N , and k ∈ N. Then there
is a derivation A• =⇒k+1H if and only if there is a production (A,R) ∈ P and
a mapping repl : EN

R → HC with H = R[repl ], such that labR(e)
• =⇒k(e) repl(e)

for all e ∈ EN
R and

∑

e∈EN
R
k(e) = k.

Proof
We shall prove this result in detail because of central character. By definition
of direct derivations, if a derivation A• =⇒k+1H exists it must have the form
A• =⇒R=⇒kH for some (A,R) ∈ P . Hence, the proof is finished if we can
show the following.

Let G,G′ be hypergraphs. Then we have G=⇒kG′ if and only
if there is some repl : EN

G → HC with G′ = G[repl ], such that
labG(e)

• =⇒k(e) repl(e) for all e ∈ EN
G and

∑

e∈EN
G
k(e) = k.
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We proceed by induction on k. For k = 0 both directions are triv-
ial, so let us assume k > 0. Proving first the only-if direction, we must
have G=⇒G0 =⇒

k−1G′ where G0 = G[e0/R0] for some e0 ∈ EN
G and some

(labG(e0), R0) ∈ P . The induction hypothesis yields a mapping repl0 : E
N
G0

→

HC with G′ = G0[repl0], such that labG0
(e)• =⇒k0(e) repl0(e) for all e ∈ EN

G0
,

where the sum of the k0(e) is k−1. Now, let repl(e) = repl0(e) for e ∈ EN
G \{e0}

and repl(e0) = R0[repl
′
0], where repl ′0 is the restriction of repl0 to EN

R0
. Then,

if repl ′′0 is the restriction of repl0 to EG \ {e0} we get G′ = G0[repl0] =
G[e0/R0][repl0] = G[repl ′′0 ][e0/R0][repl

′
0] = G[repl ′′0 ][e0/repl(e0)] = G[repl ], as

required.

For the if direction, let G′ = G[repl ] with labG(e)
• =⇒k(e) repl(e) for all

e ∈ EN
G and

∑

e∈EN
G
k(e) = k. We may assume without loss of generality

that k(e) > 0 for all e ∈ EN
G (otherwise, consider the restriction of repl to

those hyperedges). Suppose EN
G = {e1, . . . , en}. Then there are hypergraphs

Gi (i = 1, . . . , n) such that labG(ei)
• =⇒Gi =⇒

k(ei)−1 repl(ei) for i = 1, . . . , n.
Making use of the (already proved) only-if direction there are repl i : E

N
Gi

→ HC

for i = 1, . . . , n such that Gi[repl i] = repl(ei), labGi
(e)• =⇒ki(e) repl i(e) for all

e ∈ EN
Gi
, and

∑

e∈EN
Gi

ki(e) = k(ei)− 1.

Let G0 = G[e1/G1, . . . , en/Gn] and repl0(e) = repl i(e) for all e ∈ EN
Gi

(i =
1, . . . , n). Then we get G′ = G[repl ] = G[e1/G1[repl1], . . . , en/Gn[repln]] =
G[e1/G1, . . . , en/Gn][repl0] = G0[repl0]. By the induction hypothesis this
yields a derivation G0 =⇒

k−nG′ and by construction of G0 we have G=⇒nG0,
which completes the proof. �

The possibility of decomposing a derivation as stated in the context-
freeness lemma may be illustrated as in Figure 2.10. The context-freeness
lemma can also be formulated as a characterization of the languages generated
from handles, which yields an alternative method of deriving hypergraphs.

Corollary 2.3.2 Let HRG = (N,T, P, S) ∈ HRG. For all A ∈ N let rhs(A) =
{R ∈ HT | (A,R) ∈ P}. Then

LA(HRG)
=

⋃

R∈rhs(A)

{

R[repl : EN
R → HT ]

∣

∣ repl(e) ∈ LlabR(e)(HRG) for e ∈ EN
R

}

.

Proof
Apply the context-freeness lemma to terminal graphs which are the elements
of the languages LA(HRG) for A ∈ N . �
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Figure 2.10: Decomposition of a derivation according to the context-freeness lemma

2.3.2 Derivation trees

The context-freeness lemma allows us to introduce the concept of derivation
trees as a convenient representation of derivations. Consider some derivation
A• =⇒∗H. If k = 0 then H = A• and we may represent the derivation by a
one-node tree whose only node is the label A. Otherwise, the context-freeness
lemma states that the derivation has the form A• =⇒R=⇒∗R[repl ], where
(A,R) is a production and labR(e)

• =⇒∗ repl(e) for all e ∈ EN
R . Thus, the

derivation gives rise to a tree whose root is the production (A,R) and whose
subtrees are the trees obtained recursively from the derivations labR(e)

• =⇒∗

repl(e) for e ∈ EN
R . Thus, derivation trees represent derivations up to some

reordering of direct derivation steps (which does not affect the result of a
derivation, as we know). The resulting hypergraph of a derivation tree is then
given by R[repl ], where R is the right-hand side of the production in its root
and repl(e) is recursively obtained as the result of the subtree corresponding
to e ∈ EN

R .

Definition 2.3.3 (derivation tree) The set TREE (P ) of derivation trees
over P is recursively defined as follows.
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• N ⊆ TREE (P ) with root(A) = A and result(A) = A• for A ∈ N .

• For every production (A,R) ∈ P and every mapping branch : EN
R →

TREE (P ) such that we have type(e) = type(root(branch(e))) for all e ∈
EN

R , the triple t = (A,R, branch) is in TREE (P ).

Furthermore, we let root(t) = A and result(t) = R[repl ] where, for all
e ∈ EN

R , repl(e) = result(branch(e)).

One should notice that a derivation tree contains nonterminal labels A ∈ N
as subtrees if and only if its result is not terminal. The theorem below states
the expected correspondence between derivations and derivation trees.

Theorem 2.3.4 Let P be a set of productions over N , let A ∈ N and H ∈ HT .
Then there is a derivation A• =⇒∗H if and only if there is a derivation tree t
over P with root(t) = A and result(t) = H.

Proof
For the first direction, suppose t is a derivation tree over P with root(t) = A
and result(t) = H. The proof is by induction. If t = A then root(t)• =
A• =⇒0A• = result(t). If t = (A,R, branch), using the induction hypothesis
we get a derivation root(branch(e))• =⇒∗ result(branch(e)) for all e ∈ EN

R . By
the context-freeness lemma, this yields a derivation root(t)• = A• =⇒∗R[repl ] =
result(t) with repl(e) = result(branch(e)) for all e ∈ EN

R .
The proof for the other direction can be done in a similar way by induction

on the length of derivations using the other direction of the context-freeness
lemma. �

An interesting consequence of Theorem 2.3.4 is obtained by considering the
root and the result of a derivation tree over P as a new production. Formally,
let P ∗ = {(root(t), result(t)) | t ∈ TREE (P )}. Then, A• =⇒P∗ H if and only if
A• =⇒∗

P H, by Theorem 2.3.4. By induction on the length of derivations this
yields, for every label A and all hypergraphs H,

A=⇒∗
P H if and only if A=⇒∗

P∗ H.

This property will be used in Section 2.7 in order to obtain a cubic mem-
bership algorithm for a certain class of edge replacement languages.

2.3.3 Bibliographic notes

To emphasize their context-freeness, hyperedge replacement grammars are
sometimes called context-free hypergraph grammars (see, for example, [26,18]
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and Chapter 1 of this handbook). The context-freeness lemma was first for-
mulated and proved for edge replacement grammars (see [7]); a formulation
for hyperedge replacement grammars can be found in [26,42]. In [50] Cour-
celle presents an axiomatic definition of context-free rewriting. The definition
requires that a context-free notion of replacement be associative and conflu-
ent. As mentioned in Section 2.2 hyperedge replacement indeed satisfies these
requirements. Thus, hyperedge replacement is a context-free rewriting mech-
anism in Courcelle’s sense. In fact, though in a somewhat different way, The-
orem 2.3.1 also expresses nothing else than associativity and confluence of
hyperedge replacement. It says that the order in which productions are ap-
plied is not important (on one side of the equivalence there is no order) and
that we can first build the results of the sub-derivations and afterwards replace
the hyperedges of the initial hypergraph with these results instead of doing it
step by step (which is associativity).

In the literature, some suggestions concerning non-context-free extensions
of hyperedge replacement are encountered. The parallel mode of rewriting as
known from L-systems with tables may be employed. This was studied by
Ehrig and Tischer [51] for edge replacement and by Kreowski [52] for hyper-
edge replacement. David, Drewes, and Kreowski [53] combined this with a
rendezvous mechanism. Here, nodes of different right-hand sides added in a
parallel step can be fused in a certain way whenever the replaced hyperedges
are neighbours. This allows to overcome most of the restrictions. Besides
the parallel case and other application conditions, Kreowski [54] discusses hy-
peredge replacement as a means to specify infinite (hyper)graphs by infinite
derivations, which were first investigated by Bauderon [55,56].

Derivation trees as they are defined here are closely related to rule trees
as introduced and investigated by Kreowski [25].

2.4 Structural properties

In this section, we discuss some structural properties of hyperedge replace-
ment languages. They demonstrate that several results well-known for context-
free string languages (like the fixed-point theorem, the pumping lemma, and
Parikh’s theorem) can be generalized to hyperedge replacement languages.

2.4.1 A fixed-point theorem

We start with a fixed-point theorem for hyperedge replacement languages gen-
eralizing Ginsburg’s and Rice’s fixed-point theorem for context-free string lan-
guages [57]. It is shown that hyperedge replacement languages are the least
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fixed points of their generating productions (considered as a system of language
equations).

In the following, for every set C of labels let us denote by HLC the set of
all languages of hypergraphs over C, that is, HLC is the powerset of HC .

Definition 2.4.1 (system of equations and fixed-point) Let N,T ⊆ C
be sets of labels with N ∩ T = ∅. A system of equations over N is a mapping
EQ : N → HLN∪T . A mapping L : N → HLT is a fixed-point of EQ if, for
all A ∈ N ,

L(A) =
⋃

R∈EQ(A)

{

R[repl : EN
R → HT ]

∣

∣ repl(e) ∈ L(labR(e)) for e ∈ EN
R

}

.

L : N → HLT is a least fixed-point of EQ if L is a fixed-point of EQ and
L(A) ⊆ L′(A) for all A ∈ N and all fixed-points L′ of EQ.

Remarks:

1. A system of equations EQ : N → HLN∪T over N may be denoted by
A = EQ(A) for A ∈ N to emphasize the name. Actually, it is nothing else
than a representation of a set P of productions over N . For P , there is an
associated system of equations EQP : N → HLN∪T defined as EQP (A) =
{R | (A,R) ∈ P}. Conversely, a system of equations EQ : N → HLN∪T

over N yields a set of productions P (EQ) = {(A,R) |R ∈ EQ(A)}.

2. The language family L : N → HLT generated by a hyperedge replacement
grammar HRG is given by L(A) = LA(HRG) for A ∈ N .

According to Corollary 2.3.2, the language family generated by a hyperedge
replacement grammar is a fixed-point of the system of equations associated
with the set of productions of the grammar. Even better, the following holds.

Theorem 2.4.2 (fixed-point theorem) Let HRG = (N,T, P, S) be a hy-
peredge replacement grammar, EQP : N → HLN∪T the system of equations
associated with P , and L : N → HLT the language family generated by HRG.
Then L is the least fixed-point of EQP .

Proof
Let L′ : N → HLT be a fixed-point of EQ . We have to show L(A) ⊆ L′(A) for
all A ∈ N , that is, H ∈ L′(A) for all H ∈ HT with A• =⇒∗

P H. This can be
shown by induction on the length of derivations. A• =⇒1

P H implies (A,H) ∈ P
with H ∈ HT , so that H[empty ] = H is defined for the empty mapping
empty : ∅ → HT . Because L

′ is a fixed-point of EQ , H = H[empty ] ∈ L′(A).
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Consider now A• =⇒k+1
P H. Due to the context-freeness lemma, there are

(A,R) ∈ P , and derivations labR(e)
• =⇒k(e) repl(e) for e ∈ EN

R with k(e) ≤ k
and H = R[repl ]. By the induction hypothesis, repl(e) ∈ L′(labR(e)). There-
fore, H = R[repl ] ∈ L′(A) because L′ is a fixed-point of EQ . �

2.4.2 A pumping lemma

We now present a pumping lemma for hyperedge replacement languages. It
says that each sufficiently large hypergraph belonging to a hyperedge replace-
ment language can be decomposed into three hypergraphs FIRST , LINK ,
and LAST , so that a suitable composition of FIRST , k samples of LINK for
each natural number k, and LAST yields also a member of the language. This
theorem generalizes the well-known pumping lemma for context-free string lan-
guages (see, for instance, [58,59]). As in the string case, the pumping lemma
can be used to show that certain languages are no hyperedge replacement
languages.

A hypergraph H is substantial if VH 6= [extH ] or |EH | > 1. A hyperedge
replacement grammar each of whose productions has a substantial right-hand
side is growing . A growing hyperedge replacement grammar generates only
substantial hypergraphs. Note that all except a finite number of hypergraphs in
a hyperedge replacement language L are substantial, since {|extH | |H ∈ L} is
finite. Using a straightforward extension of the proof for the well-known result
saying that one can eliminate empty and chain productions from context-free
Chomsky grammars it is not hard to prove the following normal-form result,
which is used later on.

Lemma 2.4.3 For every hyperedge replacement grammar HRG we can effec-
tively construct a growing hyperedge replacement grammar HRG ′ of the same
order satisfying L(HRG ′) = {H ∈ L(HRG) |H substantial}.

Definition 2.4.4 (composition and iterated composition)

1. Let X ∈ C. Then H ∈ HC is said to be X-handled if there is a unique
type(X)-edge e ∈ EH with label X. In this case, e is called the X-handle
of H; the hypergraph without the X-handle, H − {e}, is denoted by H⊖.

2. Let H ∈ HC be a hypergraph with X-handle e and let H ′ ∈ HC be a
type(X)-hypergraph. Then the hypergraph H[e/H ′] is called the compo-
sition of H and H ′ with respect to e and is abbreviated by H ⊗H ′.
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3. Let H ∈ HC be an X-handled type(X)-hypergraph. Then for k ∈ N,
Hk ∈ HC is recursively defined by H0 = X• and Hi+1 = H ⊗ Hi for
i ≥ 0.

Note that, in the definition above, Hi is X-handled, thus Hi+1 is well-
defined.

Theorem 2.4.5 (pumping lemma) Let L be some hyperedge replacement
language of order r (for some r ∈ N). Then there exist constants p and q
such that the following is true: For every hypergraph H in L with |H| > p
there are an X-handled hypergraph FIRST, a substantial X-handled type(X)-
hypergraph LINK, and a type(X)-hypergraph LAST for some X ∈ C with
H = FIRST ⊗ LINK ⊗ LAST, |LINK ⊗ LAST | ≤ q, and type(LINK ) ≤ r,
such that FIRST ⊗LINK k ⊗LAST ∈ L for all k ∈ N. Furthermore, for every
hypergraph H in L with |VH | > p we can choose LINK in such a way that
VLINK \ [extLINK ] 6= ∅.

Proof
Let HRG = (N,T, P, S) ∈ HRGr with L(HRG) = L and n the number of
nonterminals. Since there are only finitely many non-substantial hypergraphs
in L(HRG) we may assume HRG is growing. Let max be the size of the
largest right-hand side of HRG . Let t ∈ TREE (P ) with root(t) = S and H =
result(t) ∈ HT . If |H| > maxn, then t contains a path from the root to a leaf
longer than n such that one of the nonterminals, say X, occurs twice. In other
words, t has a subtree t′ with rootX which has a proper subtree t′′ with rootX.
Choose LAST = result(t′′), LINK = result(t′− t′′) and FIRST = result(t− t′)
where t′ − t′′ is obtained from t′ by removing the subtree t′′ and t − t′ by
removing t′ from t. Then, FIRST and LINK are X-handled, LINK and LAST
are type(X)-hypergraphs, and H = FIRST ⊗ LINK ⊗ LAST . Since HRG is
growing, LINK must be substantial. As in the case of the pumping lemma for
context-free string languages one can now show FIRST ⊗LINK k⊗LAST ∈ L
for all k ∈ N.

If we even have |VH | > p we may choose t′−t′′ in such a way that result(t′−
t′′) has at least one internal node. This is because, in this case it suffices to
consider the nodes of the derivation tree of which the corresponding right-hand
sides have internal nodes. This yields the second statement of the theorem and
thus finishes the proof. �

The composition of H using FIRST , LINK , and LAST can be depicted
as shown in Figure 2.11. The pumped hypergraphs have the shape depicted
in Figure 2.12. Note that FIRST⊖, LINK⊖, and LAST are not necessarily
connected hypergraphs (see Example 2.4.6 below).
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FIRST⊖ LINK⊖ LAST

Figure 2.11: The result of composing FIRST , LINK , and LAST .

FIRST⊖ LINK⊖ LINK⊖

· · ·

· · ·

· · ·

LINK⊖ LAST

Figure 2.12: The hypergraph obtained by composing FIRST
⊖, k samples of LINK

⊖, and
LAST .

As in the case of context-free string grammars, the pumping lemma can
be used to show that the finiteness problem is decidable for hyperedge re-
placement languages. Another helpful consequence of the pumping lemma
is the linear growth within hyperedge replacement languages. More explic-
itly, let L be an infinite hyperedge replacement language. Then the pumping
of a large enough member of L yields an infinite sequence of hypergraphs
in L, say H0, H1, H2, . . ., and constants c, d ∈ N with c + d > 0 such that
∣

∣VHi+1

∣

∣ = |VHi
|+ c and

∣

∣EHi+1

∣

∣ = |EHi
|+ d, for all i ≥ 0.

Example 2.4.6 First, we want to illustrate the pumping property for the
string-graph language L = {(anbncn)• |n ≥ 1} that can be generated by a hy-
peredge replacement grammar of order 4, as shown in Example 2.2.3. For
n ≥ 3, the string graph (anbncn)• can be decomposed as indicated in Fig-
ure 2.13 for the case n = 4.

FIRST is a 2-hypergraph containing the two external nodes of the string
graph as external nodes. It consists of three chains of edges of length n − 2,
an a-chain, a b-chain, and a c-chain, where the a-chain is attached to the first
external node and the c-chain is attached to the end of the b-chain. Moreover,
it may be seen as 4-handled, where the first pair of tentacles is attached to
the end of the a-chain and the beginning of the b-chain and the second pair of
tentacles is attached to the end of the c-chain and the second external node.
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Figure 2.13: Decomposition of (a4b4c4)•.
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Figure 2.14: Pumping of (a4b4c4)•.

It is composed with the LINK -component with respect to this 4-handle. The
LINK -component possesses a 4-handle which is attached to the target of the a-
edge, the source of the b-edge, the target of the c-edge and the second external
node. Note that neither FIRST⊖ (FIRST without the 4-handle) nor LINK⊖

(LINK without the 4-handle) nor LAST is connected. Moreover, LINK is
non-trivial.

The pumped 2-hypergraphs have the shape shown in Figure 2.14. Obviously,
each resulting 2-hypergraph is a string graph of the form (anbncn)• for some
n ≥ 1.

One of the main uses of results like the pumping lemma is to prove that
specific hypergraph languages are no hyperedge replacement languages. There
is, for example, no hyperedge replacement language of unbounded connectivity.
To see this, assume such a language is generated by a hyperedge replacement
grammar of order r. Then, a sufficiently large graph of connectivity greater
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than r could be written as FIRST⊗LINK⊗LAST , where |LINK ⊗ LAST | ≤ q
for some fixed q, type(LINK ) ≤ r, and LINK contains at least one internal
node. But since q is fixed we may assume that FIRST contains more than r
nodes, so FIRST⊗LINK⊗LAST is of connectivity at most r because removing
the external nodes of LINK from the graph yields at least two components.

As another example, the string-graph language {(an
2

)• |n ≥ 1} cannot be
generated by a hyperedge replacement grammar because the growth of the
number of edges is not linear. The pumping lemma can also be used to show
that the string-graph language {(an1 · · · a

n
2k)

• |n ∈ N} cannot be generated by
any hyperedge replacement grammar of order less than 2k, for k ≥ 1. This
will be done in Section 2.5 (see Example 2.5.3).

2.4.3 Parikh’s theorem

As a third structural result, we present the hyperedge replacement version
of Parikh’s theorem [60] which relates hyperedge replacement languages to
semilinear sets. The proof makes use of Parikh’s theorem for context-free string
languages by mapping hyperedge replacement grammars to context-free string
grammars. In the following, for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Nn and
c ∈ N, let us define x+y = (x1+y1, . . . , xn+yn), x−y = (x1−y1, . . . , xn−yn),
and cx = (cx1, . . . , cxn).

Definition 2.4.7 (Parikh mapping and semilinear set)

1. Let T = {a1, . . . , an} be an alphabet and ψ : HT → Nn be the map-
ping given by ψ(H) = (#a1

(H), . . . ,#an
(H)), where #ai

(H) denotes
the number of ai-labelled hyperedges in H ∈ HT . Then ψ is called a
Parikh mapping. For every language L ⊆ HT , ψ(L) denotes the set
ψ(L) = {ψ(H) |H ∈ L}.

2. A set S ⊆ Nn is linear if S is of the form

S = {x0 +
k

∑

i=1

cixi | c1, . . . , ck ∈ N},

where k ≥ 1 and x1, . . . , xk ∈ Nn.

3. S ⊆ Nn is semilinear if it is the union of a finite number of linear sets.

Theorem 2.4.8 (Parikh’s theorem) For all hyperedge replacement languages
L and every Parikh mapping ψ, the set ψ(L) is semilinear.
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Proof
Let L be a hyperedge replacement language and HRG = (N,T, P, S) be a
hyperedge replacement grammar with L = L(HRG). We construct a context-
free string grammar G as follows: Let str : HN∪T → (N ∪ T )∗ be the map-
ping assigning the string str(H) = labH(e1) · · · labH(en) to a hypergraph
H with EH = {e1, . . . , en} (ordered in some arbitrary way) and let G =
(N,T, str(P ), S) with str(P ) = {(A, str(R)) | (A,R) ∈ P}. Then ψ(L(HRG)) =
ψstr (L(G)) where ψstr denotes the usual Parikh mapping for string languages.
By Parikh’s theorem for context-free string languages, the set ψstr (L(G)) is
semilinear. Consequently, the set ψ(L(HRG)) = ψ(L) is semilinear. �

It is perhaps interesting to notice that one may attach a 1-edge with a
special label to each internal node of a right-hand side of a production. Then
counting the hyperedges with the special label means counting the number of
(internal) nodes. Consequently, counting the number of nodes in hypergraphs
of a hyperedge replacement language yields a semilinear set, too. As a second
remark, it is not hard to see that there are several languages L (such as the
set of all graphs) which have the semilinearity property but are no hyperedge
replacement languages.

2.4.4 Bibliographic notes

The fixed-point theorem for hyperedge replacement languages was formulated
for edge replacement in [7] by Habel and Kreowski and for hyperedge replace-
ment by Bauderon and Courcelle in [6] (in a slightly different form). The
reader should compare the fixed-point theorem with the way in which Cour-
celle defines HR sets of hypergraphs in Section 5.5 of Chapter 5. HR sets of
hypergraphs are just the least fixed-points of systems of equations. However,
the allowed equations do not make use of hyperedge replacement. They are
built upon a more primitive set of operations, which nevertheless give rise
to the same least fixed-points. Thus, HR sets of hypergraphs are hyperedge
replacement languages and vice versa.

The pumping lemma is based on the pumping lemma for edge replacement
languages given in Kreowski [24]. A hyperedge replacement version was first
given in [26] and proved in [42]. Moreover, a number of consequences of the
pumping lemma for hyperedge replacement languages can be found in [42].
In particular, it is shown that for hyperedge replacement languages of simple
graphs the clique size and the minimum degree is bounded.
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The extension of Parikh’s theorem to hyperedge replacement languages
was first published in [42]. Extensions of Parikh’s theorem are also discussed
in Section 5.6.3 of Chapter 5.

2.5 Generative power

In this section, we discuss the generative power of hyperedge replacement gram-
mars, dependent on their order. By definition, HRL0 $ HRL1 $ HRL2 $ · · ·
since there cannot occur any hypergraph of type k in a language L ∈ HRLk′ ,
for k > k′. In the following the generative power of graph and of string-graph
generating hyperedge replacement grammars is studied.

2.5.1 Graph-generating hyperedge replacement grammars

We first show that the generative power of hyperedge replacement grammars
depends on their order, that is, on the maximum number of tentacles involved
in the replacement of hyperedges, even if only graph-generating grammars are
considered. For example the set of all (partial) k-trees can easily be shown
to be in HRLk. Using the pumping lemma it turns out that this language
is not in HRLk−1. In other words, the family (HRLk)k∈N forms an infinite
hierarchy of classes of hypergraph languages, that remains proper if restricted
to graph languages because k-trees are graphs.

Example 2.5.1 (k-tree and partial k-tree) As usual, let us call two nodes
of a graph adjacent if they are connected by an edge. A k-clique of a graph is
a subset of k pairwise adjacent nodes of this graph. For k ≥ 1, the set kTREE
of all k-trees (see Rose [61]) is recursively defined as follows:

• Every complete graph with k nodes is a k-tree on k-nodes.

• Given a k-tree H on n nodes and a k-clique G ⊆ H, a k-tree on n + 1
nodes is obtained when a new (n + 1)-th node is made adjacent to each
node of G.

A partial k-tree is an undirected graph that is obtained from a k-tree by remov-
ing an arbitrary number of edges. The set of all partial k-trees is denoted by
kTREEp. For arbitrary, but fixed positive k, one can easily find a hyperedge
replacement grammar HRGkTREE of order k generating the set of all k-trees.
The grammar simulates the recursive construction of a k-tree: There is one
production that produces a new node new and k + 1 hyperedges indicating the
old k-clique and the k newly created k-cliques. The second production allows to
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Figure 2.15: Productions to generate 3-trees.

replace a hyperedge by a k-clique. For k = 3 this yields productions as shown in
Figure 2.15. Thus, for k ≥ 1, the set kTREE can be generated by a grammar
of order k. Suppose kTREE is a language of order k−1. Then, except perhaps
a finite number, all elements in kTREE are of connectivity ≤ k− 1 due to the
pumping lemma. On the other hand, each k-tree with at least k+1 nodes is of
connectivity k, a contradiction.

Furthermore, for k ≥ 2, the addition of a production removing an ordinary
edge yields a hyperedge replacement grammar HRGkTREEp of order k generat-
ing the set of all partial k-trees. Hence, by the same arguments as above, for
k ≥ 2 the set pkTREE of all partial k-trees can be generated by a grammar of
order k, but not by a grammar of order k − 1.

Let LGRAPH be the class of all graph languages. As an immediate conse-
quence of Example 2.5.1, we get the following result, saying that the classes
GLk = HRLk ∩ LGRAPH (k ∈ N) of hyperedge replacement graph languages
of order k form a proper hierarchy.

Theorem 2.5.2 (hierarchy theorem 1)
GLk $ GLk+1 for all k ∈ N.

2.5.2 String-generating hyperedge replacement grammars

Let us now turn to the classes of string-graph languages generated by hyperedge
replacement grammars of order k. We denote by SLk the set of all hyperedge
replacement languages of order k which solely consist of string graphs. Com-
pared with the situation encountered above, these classes turn out to behave
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slightly different. We show that the family (SL2k)k≥1 forms an infinite hierar-
chy that starts with the class of context-free string languages (represented as
string-graph languages), but SL2k+1 = SL2k for all k ∈ N.

It is quite obvious that, for a given string language L, L• is in SL2 if
and only if L is context-free. If L is context-free, just choose the set of all
productions (A,w•) for which (A,w) is a production in the given context-
free grammar to build an edge replacement grammar yielding L•. For the
other direction, using standard techniques one can remove productions that
just delete an edge. Afterwards, it is not hard to see that every right-hand
side of a production applied in a derivation yielding a string graph must be
a string graph, and the productions of this kind obviously induce the needed
context-free productions for the string case.

In the following, we present an example of a string-graph language that
can be generated by a grammar of order 2k, but not by a grammar of smaller
order. As a consequence, we get a proper language hierarchy.

Example 2.5.3 The string-graph language Lk = {(an1 · · · a
n
2k)

• |n ∈ N} can
be generated by the hyperedge replacement grammar of order 2k, for every k ≥
1. The construction is a straightforward generalization of the one presented in
Example 2.2.3. Thus, Lk is a string-graph language of order 2k. Making use
of the pumping lemma, it can be shown that Lk is no string-graph language
of order 2k − 1. To see this, assume Lk is a languageof order 2k − 1. Let
FIRST , LINK , and LAST be as in the pumping lemma, for some sufficiently
large member of Lk. Then LINK has type less than 2k and is substantial. The
latter implies ELINK⊖ 6= ∅ because |VH | = |EH |+ 1 for all H ∈ Lk.

Since FIRST ⊗ LINK ⊗ LAST is a string graph the connected compo-
nents of LINK⊖ must be paths whose first and last nodes are in [extLINK ] ∪
[attLINK(e)], where e is the X-handle of LINK . Hence, the number of con-
nected components of LINK⊖ which contain at least one edge is at most k−1.
Moreover, none of these connected components can contain edges with differ-
ent labels, since otherwise pumping obviously yields graphs not in Lk. But
then LINK⊖ lacks at least one of the labels, so FIRST ⊗ LINK ⊗ LAST ∈ L
implies FIRST ⊗ LAST 6∈ L because ELINK⊖ 6= ∅.

A similar reasoning as in the previous example shows that the string-graph
language W k = {(wk)• |w ∈ T+} is of the same type. It can be generated by
a hyperedge replacement grammar of order 2k but not by any one of order
2k − 1. The example proves the second hierarchy theorem.
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Theorem 2.5.4 (hierarchy theorem 2)
For all k ∈ N, SL2k $ SL2(k+1).

The obvious question is, of course, whether one can also prove SLk $
SLk+1. More general, which string-graph languages are generated by hyper-
edge replacement grammars of order k? In the following, we want to give a
characterization by Engelfriet and Heyker [19] of these languages by means of
deterministic tree-walking transducers , a class of finite automata operating on
trees that was introduced by Aho and Ullman. These transducers act on regu-
lar sets of terms (that we may also consider as sets of ordered trees over some
ranked alphabet). A regular set of terms is generated by a regular tree grammar
(see [62]) R = (Σ,Γ,Ψ, γ0), where Σ is a ranked alphabet, Γ is a set of nonter-
minals with γ0 ∈ Γ (the start symbol), and Ψ is a finite set of productions of
the form γ→ f(γ1, . . . , γn), for γ, γ1, . . . , γn ∈ Γ and f ∈ Σ of rank n. The lan-
guage L(R) of terms generated by R is defined in the obvious way. It contains
all terms over Σ that can be derived from γ0 by considering the productions as
term rewrite rules. The set occ(t) of occurrences of a term t over Σ is defined as
usual: If t = f(t1, . . . , tn) then occ(t) = {λ} ∪ {io | 1 ≤ i ≤ n and o ∈ occ(ti)}.
We denote by o(t) the symbol at occurrence o ∈ occ(t) and by t/o the subterm
of t whose root is the occurrence o in t. The parent occurrence of oi (i ∈ N) is
o and the parent occurrence of λ is ⊥.

Definition 2.5.5 (deterministic tree walking transducer) A determin-
istic tree walking transducer (dtwt) is a tuple M = (Q,R,∆, δ, q0, F ), where
Q is a finite set of states with q0 ∈ Q (the initial state) and F ⊆ Q (the
set of final states), R = (Σ,Γ,Ψ, γ0) a regular tree grammar, ∆ the out-
put alphabet, and δ : Q × Σ → Q × D × ∆∗ the transition function with
D = {stay , up} ∪ {down(i) | i ≥ 1}.

A configuration of M is a tuple (q, t, o, w) with q ∈ Q, t ∈ L(R), o ∈
occ(t) ∪ {⊥}, and w ∈ ∆∗. A step of M turns (q, t, o, w) into (q′, t, o′, ww′) if
we have δ(q, o(t)) = (q′, d, w′) and either

• d = up and o′ is the parent occurrence of o, or

• d = stay and o′ = o, or

• o(t) is of rank ≥ i, d = down(i), and o′ = oi.

If M , starting with configuration (q0, t, λ, λ), finally reaches a configuration
(q, t,⊥, w) with q ∈ F then the computation is successful and yields the output
w. L(M) denotes the language of all outputs of M , and DT WT + denotes the
class of all dtwt’s M with λ 6∈ L(M).
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A property of dtwt’s that will turn out to be related to the order of hy-
peredge replacement grammars is the so-called crossing number. Consider a
successful run ofM on t. Every move from an occurrence o to an occurrence o′

or from o′ to o, where o′ is the parent occurrence of o, is a crossing of the edge
between o and o′. If k ∈ N is such that for no successful run on any input tree,
an edge is crossed more than 2k times then M is said to be k-crossing. Note
that every dtwt is k-crossing for some k ∈ N, for if a computation crosses an
edge more than |Q| times, a node is visited twice with the same state, so the
computation cannot end. Let us denote by DT WT +

k the set of all k-crossing
M ∈ DT WT +. Then, the following can be shown.

Lemma 2.5.6
For all k ∈ N, SL2k+1 ⊆ L(DT WT +

k ).

Proof
We roughly sketch the basic idea underlying the construction. One first proves
that a given hyperedge replacement grammar HRG = (N,T, P, S) generating
a string-graph language can be modified (without changing the order), such
that for every A ∈ N there is some outA ∈ {0, 1}type(A) such that for all
H ∈ LA(HRG) the out-degree of extH(i) is outA(i), for i = 1, . . . , type(A).
Furthermore, one can ensure by a straightforward construction that for every
right-hand side R in HRG and all distinct e, e′ ∈ EN

R we have labR(e) 6=
labR(e

′). Then one can construct a dtwt M = (Q,R, T, δ, q0, F ) ∈ DT WT +
k

with L(M) = L(HRG), as follows.
R is designed so that, roughly speaking, L(R) is the set of derivation trees

of HRG . The nonterminals of R are those of HRG , the start symbol is S,
and the alphabet is P , where every (A,H) ∈ P has rank

∣

∣EN
H

∣

∣. For every
production p = (A,H) ∈ P , choose an arbitrary (but fixed) order e1, . . . , en on
EN

H , and let R contain the production A→ p(labH(e1), . . . , labH(en)). Now,M
is constructed to walk on the trees t ∈ L(R). Every node of a right-hand side
of a production in P is a state of M . If M is at occurrence o of t ∈ L(R) and
o(t) = (A,H), then the current state is a node v of H. M works by searching
for the occurrence in t generating the terminal edge e whose first attached node
is the image of v in the generated string graph. If there is some e ∈ ET

H with
attH(e, 1) = v, the occurrence has been found. M follows e by changing its
state to attH(e, 2), outputs labH(e), and stays at the same occurrence of t. If
there is no such edge, but there is ei ∈ EN

H and j ∈ {1, . . . , type(labH(ei))} with
attH(ei, j) = v and out labH(ei)(j) = 1, then M moves to the i-th subtree by a
down(i)-move and proceeds in state extH′(j) (where H ′ is the right-hand side
of the new occurrence). If neither one of these two possibilities holds, the edge
sought is not generated within the current subtree, so v must be an external
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node extH(i) of H (since a string graph is generated). Then M performs an
up-move and—if H ′ is the right-hand side of the occurrence reached thereby—
assumes state attH′(e, i), where e is the (unique) A-labelled hyperedge of H ′.

In order to implement the down- and up-moves correctly we have to use
some auxiliary states that remember i and (A, i), respectively, since we do not
know H ′ in advance. Since M enters and leaves the occurrences of an input
tree in states which are external nodes of the right-hand sides, and none of
these external nodes is used twice it is not hard to see that M is k-crossing. �

Lemma 2.5.7 For all k ∈ N, L(DT WT +
k ) ⊆ SL2k.

Proof
The construction is based on the following ideas. First, one shows that it
suffices to consider transducers M without stay-moves that produce exactly
one output symbol in each step. (The latter is due to the fact that for L•

1 ∈ SLk

the image L2 of L1 under a string homomorphism satisfies L•
2 ∈ SLk, provided

λ 6∈ L2.) Now, ifM satisfies these requirements and is k-crossing, every subtree
t/o of an input tree t is visited at most k times, where a visit to t/o is considered
to start at occurrence o at the time it is entered from its parent occurrence o′

and ends at o′ at the time o′ is reached the next time. During each visit, a
(nonempty) substring of the output string is produced. The visit—and thus
the string produced —- is composed of the visits to the immediate subtrees,
which are connected by the steps where M is at occurrence o, leaving it down-
or upwards.

To exploit these observations, one designs a hyperedge replacement gram-
mar HRG whose derivation trees are more or less the trees in L(R), such
that the result of a derivation tree corresponding to t/o is the disjoint union
of the l ≤ k substrings generated by the l visits of M to t/o. The 2l end
nodes of the strings are the external nodes, and the substrings resulting from
the different visits are generated in parallel. Consistency can be ensured by
guessing (using the nonterminal labels) the states M is in when the i-th visit
begins and ends, respectively. The productions of HRG corresponding to a
rule γ0 → f(γ1, . . . , γn) of R are of the form (X0, H), where H has nonterminal
hyperedges e1, . . . , en labelled with X1, . . . , Xn. Every label Xi is of the form
〈γi, begini(1)end i(1) · · · begini(li)end i(li)〉, where li ≤ k and begini(j), end i(j)
are the guessed states for the start and the end of the i-th visit to the tree
generated by γi. The type of Xi is 2li and VH =

∑n
i=0{begini(1), end i(1), . . . ,

begini(li), end i(li)}, where we define attH(ei) = begini(1)end i(1) · · · begini(li)
end i(li) for i = 1, . . . , n. In addition, H contains edges labelled with the out-
put symbols M generates when leaving the node f , that is, the root of the
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Figure 2.16: A Right-hand side in the grammar constructed to simulate a dtwt. The tentacles
of hyperedges are to be numbered from left to right.

subtree generated by γ0, down- or upwards.
As an example, see the hypergraph in Figure 2.16. For this to be a consis-

tent right-hand side obtained from γ0 → f(γ1, γ2) we must have, for instance,
δ(q̄1, f) = (q3, down(2), b). �

Lemmas 2.5.6 and 2.5.7 have a number of interesting consequences, of
which we mention only two. First of all, it follows that, indeed, the string
generating power of hyperedge replacement grammars increases only every
second step.

Theorem 2.5.8 For all k ∈ N, SL2k = L(DT WT +
k ) = SL2k+1.

As mentioned above, every dtwt is k-crossing for some k ∈ N, so we get
the following characterization of the class of all hyperedge replacement string-
graph languages.

Theorem 2.5.9 SL = L(DT WT +).

2.5.3 Further results and bibliographic notes

Most of the results concerning the generative power are formulated in [26] and
proved in [42].



2.5. GENERATIVE POWER 131

The notion of tree-walking transducers was invented by Aho and Ullman
([63]; see also [64]). Lemmas 2.5.6 and 2.5.7 and their consequences are taken
from a paper by Engelfriet and Heyker [19], where the results are proved in
detail. (Figure 2.16 is also from [19], although slightly modified.) Engelfriet
and Heyker mention a number of additional consequences, including results for
linear hyperedge replacement grammars that generate string-graph languages.
Roughly speaking, one obtains the same results as presented here, by looking
at two-way deterministic generalized sequential machines instead of dtwt’s.
(The former can be seen as dtwt’s whose second component is a linear regular
tree grammar.) From results known for dtwt’s Engelfriet and Heyker also
obtain the corollary that the class SL, its linear counterpart, and SL2k are
substitution-closed full AFLs (see [65]).

Asking similar questions for term-generating rather than string-generating
hyperedge replacement grammars Engelfriet and Heyker show in [20] that hy-
peredge replacement grammars have the same term-generating power as at-
tribute grammars. In this context one should also mention the work by Engel-
friet and Vogler [66]. They define the so-called tree-to-graph-to-tree transduc-
ers, a sort of tree transducers making use of hyperedge replacement in order to
construct the computed output trees. The main result of [66] states that these
transducers—in the deterministic total case—have the same power as macro
tree transducers (for the later see [67].

Quite a lot is also known about the generative power of hyperedge replace-
ment grammars compared with other graph generating types of grammars. A
comparison of hyperedge replacement grammars and boundary edNCE graph
grammars is established by Engelfriet and Rozenberg in [18]. It is shown that
hyperedge replacement grammars and boundary graph grammars of bounded
nonterminal degree have the same power, both for generating sets of graphs
and for generating sets of hypergraphs. Arbitrary boundary graph grammars
have more generating power than hyperedge replacement grammars, but they
have the same hypergraph generating power (subject to a representation of
hypergraphs as bipartite graphs).

In [68], Engelfriet and Heyker compare the power of hyperedge replacement
grammars and separated handle hypergraph grammars (or S-HH grammars)
to generate hypergraph languages of bounded degree. It is shown that every
S-HH language of bounded degree can be generated by a (separated) hyperedge
replacement grammar. This implies that those two types of grammars generate
the same class of graph languages of bounded degree. In the general case,
incomparable classes of hypergraph languages are generated.
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In [22], Engelfriet, Heyker, and Leih show that hyperedge replacement
graph languages of bounded degree are generated by apex graph grammars.

In [16], Courcelle separates vertex replacement from hyperedge replace-
ment: A set of graphs generated by vertex replacement is a hyperedge re-
placement language if and only if its graphs do not contain arbitrarily large
complete bipartite graphs Kn,n as subgraphs if and only if its graphs have a
number of edges that is linearly bounded in terms of the number of vertices.
These properties can be shown to be decidable.

In [17], Courcelle and Engelfriet give a grammar independent characteriza-
tion of hyperedge replacement languages (see also Section 1.4.2 of Chapter 1).
These are exactly the images of the recognizable sets of finite trees under cer-
tain graph transformations definable in monadic second-order logic. Several
results follow saying that sets of graphs defined by vertex-replacement satisfy-
ing additional conditions (like bounded degree, planarity, bounded tree-width,
or closure under subgraphs or minors) are hyperedge replacement languages.

2.6 Decision problems

A hyperedge replacement grammar specifies a hypergraph language. Unfor-
tunately, the derivation process never produces more than a finite subset of
the language explicitly (and even this may consume much time before sig-
nificant members of the language occur). Hence, one may wonder what the
hyperedge replacement grammar can tell about the generated language. As a
matter of fact, the context-freeness lemma leads the way. Given a hyperedge
replacement grammar and an arbitrary terminal hypergraph H with derivation
A• =⇒R=⇒∗H, we get a decomposition of H into smaller components which
are derivable from the handles of the hyperedges in R. This can be employed
if one wants to reason about certain graph-theoretic properties or numerical
functions on (hyper)graphs. The first leads to the notion of compatible prop-
erties , the second to compatible functions .

2.6.1 Compatible properties

If a graph-theoretic property can be tested for each H generated by a hyper-
edge replacement grammar by testing the property (or related properties) for
the components and composing the results to a result for H, it is called com-
patible. It can be shown that compatibility implies decidability of the following
questions:
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• Is there a hypergraph in the generated language having the property?

• Do all hypergraphs in the generated language (except perhaps for a finite
number) have the property?

• Are there only a finite number of hypergraphs in the generated language
having the property?

These decision problems are reduced to the emptiness problem and to the
finiteness problem by a filter theorem that shows that the intersection of a
hyperedge replacement language with the set of hypergraphs that satisfy a
compatible property is a hyperedge replacement language, too.

As an illustrating example, let us consider the property that two external
nodes of a hypergraph are connected by a path. Let H ∈ HC and v, v′ ∈ VH . A
vv′-path (in H) is an alternating sequence v0e1v1 · · · envn with v0, . . . , vn ∈ VH ,
e1, . . . , en ∈ EH , v = v0, and v

′ = vn such that, for i = 1, . . . , n, vi−1 and vi
are attachment nodes of ei. If there is such a path, H is called vv′-connected .

Let HRG = (N,T, P, S) ∈ HRG, and consider A• =⇒R=⇒∗H with
(A,R) ∈ P and H ∈ HT as well as labR(e)

• =⇒∗H(e) for e ∈ EN
R given

by the context-freeness lemma. Hence we can assume H = R[repl ].
If H is vv′-connected, there is a path p = v0e1v1 · · · envn connecting v and

v′. Then either ei ∈ ET
R or ei ∈ Erepl(e) for some e ∈ EN

R (i = 1, . . . , n).
Replace now, for all e ∈ EN

R , each longest subpath vi(e)ei(e)+1 · · · ej(e)vj(e) of p
in repl(e) where i(e) < j(e) with vi(e) e vj(e). This yields a vv

′-path in R such
that repl(e) is vi(e)vj(e)-connected for each e ∈ EN

R on this path. Conversely,
if one has such paths in R and in the components repl(e), one gets obviously
a vv′-path in H.

This means that the vv′-connectedness of H can be checked by looking for
a vv′-path in R and checking corresponding connectedness properties for some
components of H. If v and v′ are external nodes of H, one obtains a terminat-
ing recursive procedure because the components have shorter derivations than
H. Moreover, connectedness needs to be considered for only a finite number
of pairs of natural numbers because the external nodes of a hypergraph are
ordered and their number is bounded by the order of the given grammar if the
involved hypergraph is derived from a handle.

Definition 2.6.1 (compatible predicate) Let C ⊆ HRG and let I be a (pos-
sibly infinite) index set, such that there is an effective procedure constructing
for every HRG = (N,T, P, S) ∈ C a finite subset IHRG of I, together with
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some distinguished index i(type(S)) ∈ IHRG . Let PROP ′ be a decidable predi-
cate defined on triples (R, ass, i), with R ∈ HC , ass : E

N
R → I a mapping, and

i ∈ I, and let PROP(H, i) = PROP ′(H, empty , i) for H ∈ HT and i ∈ I.
Then PROP is (C,PROP ′)-compatible if for every HRG = (N,T, P, S) ∈

C, all derivations A• =⇒R=⇒∗H with H ∈ HT , and all i ∈ IHRG we have
that PROP(H, i) holds if and only if there is a mapping ass : EN

R → IHRG such
that PROP ′(R, ass, i) holds and PROP(H(e), ass(e)) holds for all e ∈ EN

R .
The unary predicate PROP0 that holds on H ∈ HT with type(H) = k if

and only if PROP(H, i(k)) holds, is called C-compatible.

It is not difficult to see that compatible predicates are closed under boolean
operations. In addition to the properties of hyperedge replacement languages
discussed in Section 2.4, one can now show one more structural property in
connection with compatible properties: The set of all hypergraphs from a
hyperedge replacement language satisfying a compatible property is again a
hyperedge replacement language.

Theorem 2.6.2 (filter theorem) Let PROP0 be a C-compatible predicate
for some C ⊆ HRG. For every HRG ∈ C there is a hyperedge replacement
grammar HRGPROP0

such that L(HRGPROP0
) = {H ∈ L(HRG) |PROP0(H)}.

Proof
Let HRG = (N,T, P, S) and let IHRG , PROP ′, and i(type(S)) be as in Def-
inition 2.6.1. Then we construct a hyperedge replacement grammar HRG ′ =
(N ′, T, P ′, S′) as follows.

• N ′ = N × IHRG ;

• P ′ is the set of all pairs ((A, i), (R, ass)) such that (A,R) ∈ P , ass(e) ∈
IHRG for e ∈ EN

R , i ∈ IHRG , and PROP ′(R, ass , i) holds, where (R, ass)
denotes the hypergraph (VR, ER, attR, lab, extR) with lab(e) = labR(e) if
labR(e) ∈ T and lab(e) = (labR(e), ass(e)) if labR(e) ∈ N ;

• S′ = (S, type(S)).

It remains to show L(HRG ′) = {H ∈ L(HRG) |PROP(H, type(S))}, which
can be done by induction on the length of derivations in HRG and HRG ′

respectively, in a straightforward way. �

The Filter Theorem can be used to get several decidability results.
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Theorem 2.6.3 (decidability of compatible properties) Let PROP0 be
C-compatible with respect to some class C of hyperedge replacement grammars.
Then for all HRG ∈ C, it is decidable whether

1. PROP0 holds for some H ∈ L(HRG);

2. PROP0 holds for all H ∈ L(HRG);

3. PROP0 holds for no H ∈ L(HRG) except perhaps a finite number;

4. PROP0 holds for all H ∈ L(HRG) except perhaps a finite number.

Proof
By the Filter Theorem, for every hyperedge replacement grammar HRG ∈ C,
we can effectively construct hyperedge replacement grammars HRGPROP0

and
HRG¬PROP0

generating the sets

L(HRGPROP0
) = {H ∈ L(HRG) |PROP0(H)}

and
L(HRG¬PROP0

) = {H ∈ L(HRG) | ¬PROP0(H)},

respectively. Now PROP0 holds for some hypergraph H ∈ L(HRG) if and
only if L(HRGPROP0

) is not empty. PROP0 holds for a finite number of
hypergraphs H ∈ L(HRG) if and only if L(HRGPROP0

) is finite. PROP0

holds for all H ∈ L(HRG) if and only if L(HRG¬PROP0
) is empty. And

PROP0 holds for all H ∈ L(HRG) except perhaps a finite number if and only
if L(HRG¬PROP0

) is finite. As a consequence of the pumping lemma, it was
noted above that the finiteness problem for hyperedge replacement languages
is decidable. Furthermore, the emptiness problem is decidable using the same
proof as in the string case. Altogether, these facts yield the claimed results. �

2.6.2 Compatible functions

We now turn to the discussion of compatible functions, which generalize com-
patible predicates. A function on hypergraphs is said to be compatible with the
derivation process of hyperedge replacement grammars if it can be computed
in the way a compatible predicate can be tested. We restrict the discussion to
a certain type of compatible functions that are composed of minima, maxima,
sums, and products on natural numbers. They induce compatible predicates
of the form: the function value of a graph exceeds a given fixed integer, or
the function value does not exceed a fixed integer. Consequently, we get the
corresponding decidability results for these predicates as a corollary.
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Given a function on hypergraphs (like the size, the maximum degree, the
number of components, etc.) and considering the set of values for a hypergraph
language, one may wonder whether this set is finite or not. The question is
whether the language is bounded with respect to the given function. It can
be shown that this boundedness problem is decidable for a class of hyperedge
replacement grammars if the function is compatible and composed of sums,
products and maxima of natural numbers.

In order to discuss this result, it is appropriate to enrich N by a special
value ⋄. This additional element is useful because sometimes the functions
one would like to consider have no sensible integer value for some arguments.
For example, if we are interested in computing the shortest path between two
external nodes of a hypergraph we have to take into account that there is
perhaps no path at all between these nodes. Therefore, let N⋄ = N+ {⋄} with
the following properties for every index set I and n, ni ∈ N⋄ for i ∈ I, where
I ′ = {i ∈ I |ni 6= ⋄}:

• ⋄ ≤ n,

•
∑

i∈I ni = ⋄ and
∏

i∈I ni = ⋄ if and only if nj = ⋄ for some j ∈ I,

• mini∈I ni = mini∈I′ ni and maxi∈I ni = maxi∈I′ ni, and

• mini∈I ni = ⋄ and maxi∈I ni = ⋄ for I = ∅.

Now, the notion of a compatible function is defined as follows.

Definition 2.6.4 (compatible function)

1. Let C ⊆ HRG and let I be a (possibly infinite) index set, such that there is
an effective procedure which constructs for every HRG = (N,T, P, S) ∈ C
a finite subset IHRG of I and a distinguished index i(type(S)) ∈ IHRG .
Let VAL be a set of values, f ′ be a function on triples (R, ass, i) with R ∈
HC , ass : E

N
R × I → VAL, and i ∈ I, and let f(H, i) = f ′(H, empty , i)

for H ∈ HT and i ∈ I.

Then f is (C, f ′)-compatible if for all HRG = (N,T, P, S) ∈ C, all
derivations A• =⇒R=⇒∗H with H ∈ HT , and all i ∈ IHRG , f(H, i) =
f ′(R, ass, i), where ass : EN

R ×I → VAL is given by ass(e, j) = f(H(e), j)
for e ∈ EN

R and j ∈ IHRG .

The function f0 : HT → VAL given by f0(H) = f(H, i(k)) for all H ∈ HT

with type(H) = k is called C-compatible.
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2. A function f : HT × I → N⋄ is said to be (C,min,max,+, ·)-compatible
if there exists a function f ′ such that f is (C, f ′)-compatible and for each
right-hand side R of some production in C and each i ∈ I, f ′(R,−, i)
corresponds to an expression formed with variables ass(e, j) (e ∈ EN

R ,
j ∈ I) and constants from N by addition, multiplication, minimum, and
maximum. The function f is (C,max,+, ·)-compatible if the operation
min does not occur.

The function f0 : HT → N⋄ given by f0(H) = f(H, i(k)) for all H ∈
HT with type(H) = k is (C,min,max,+, ·)-compatible, or (C,max,+, ·)-
compatible, respectively.

Remark:
Let f0 : HT → N⋄ be a (C,min,max,+, ·)-compatible function, let n ∈ N⋄,
and let ⊲⊳ be one of the binary predicates ≤, <, =, ≥, and >. Then it is
not difficult to see that the predicate PROP (f0, ⊲⊳) given for H ∈ HT by
PROP (f0, ⊲⊳)(H) ⇐⇒ f0(H) ⊲⊳ n is C-compatible. This together with the
decidability results of the previous section yields the solution of some particular
decision problems. For all HRG ∈ C it is decidable whether

• f0(H) ⊲⊳ n holds for some H ∈ L(HRG);

• f0(H) ⊲⊳ n holds for only a finite number of hypergraphs H ∈ L(HRG).

• f0(H) ⊲⊳ n holds for all H ∈ L(HRG).

• f0(H) ⊲⊳ n holds for all H ∈ L(HRG) except a finite number.

As an example, let us have a look at the function that yields the number
of simple paths of a 2-graph connecting the two external nodes. Given a graph
G, a path is called simple if each node appears only once. Let PATHG denote
the set of all simple beginGendG-paths of G and let numpath(G) = |PATHG|
be its cardinality. Using the Context-freeness Lemma, if A• =⇒R=⇒∗G we
get PATHG =

⋃

p∈PATHR
{replace(p, path) | path : EN

R → PATHG(e)}, where

replace(p, path) denotes the path obtained from p by replacing all edges e ∈ EN
R

on p by the corresponding paths path(e). This obviously yields

numpath(G) =
∑

p∈PATHR

∏

e∈EN
R

on p

numpath(G(e)).

These observations can be reformulated in terms of compatible functions. Let
C be the class of all edge replacement grammars, I = {np}, VAL = N⋄, and
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f ′ be the function given by f ′(R, ass ,np) =
∑

p∈PATHR

∏

e∈EN
R

on p ass(e,np).

Then we have f(G,np) = f ′(G, empty ,np) =
∑

p∈PATHG
1 = numpath(G)

and f(G,np) = f ′(R, ass ,np) with ass(e,np) = f(G(e),np) (e ∈ ER), so f
turns out to be (ERG, f ′)-compatible. Consequently, the function numpath =
f(−,np) is (ERG,max,+, ·)-compatible.

Other compatible functions are the number of nodes, the size, the density
of a hypergraph, that is, the ratio of the number of edges and the number
of nodes, the minimum-path length (of paths connecting external nodes), the
maximum-simple-path length (of paths connecting external nodes), the number
of simple cycles, the minimum-cycle length, the maximum-simple-cycle length,
the minimum degree, the maximum degree and the number of components.

Theorem 2.6.5 (meta-theorem for boundedness problems) Let f0 be a
(C,max,+, ·)-compatible function for a class C of hyperedge replacement gram-
mars. Then, for all HRG ∈ C, it is decidable whether there is a natural number
n ∈ N such that f0(H) ≤ n for all H ∈ L(HRG).

Proof
Let f , f ′ be the required functions, so that f is (C, f ′)-compatible and f0(H) =
f(H, i(type(H))) for H ∈ HT . Let HRG = (N,T, P, S) ∈ C. Then one can
show that f0 is unbounded on L(HRG) if and only if there are A ∈ N , j ∈ IHRG

and A-handled hypergraphsX and Y withX0, Y0 ∈ HT such that the following
hold:

1. A• =⇒∗H for some H ∈ HT .

2. S• =⇒∗ Y such that f(H, j) ≤ f(Y ⊗H, i0) = f0(Y ⊗H) for all H ∈ HT

with A• =⇒∗H.

3. A• =⇒∗X such that f(H, j) < f(X ⊗H, j) for all H ∈ HT that satisfy
A• =⇒∗H.

To check for such A, j, X and Y , one has to inspect the finite number of deriva-
tions that start in handles and are of length up to the number of nonterminals.
The somewhat tedious technical details are omitted. �

2.6.3 Further results and bibliographic notes

Results which are closely related to those discussed in this section are surveyed
in Section 5.6 of Chapter 5 (see also the remarks on inductive predicates and
inductively computable functions below). The results about compatibility are
taken from [27,30] by Habel, Kreowski, and Vogler. It must be mentioned,
however, that a finite index set was used in these papers. For the case of
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compatible predicates an infinite index set was first used by Habel, Kreowski,
and Lautemann in [34].

The Filter Theorem is published in [28,42]. A corresponding result can
be found in [15]. The statements (1) and (2) of the decidability result are
published in [27]. In that paper, a direct proof is given which is based on the
idea of constructing the set of handles from which a hypergraph with the de-
sired property can be derived and checking whether the start handle belongs to
the constructed set. The statements (3) and (4) of the decidability result are
presented in [28,42]. In [31] Lautemann shows how these and several related
results in connection with tree decompositions and bounded tree-width can
by systematized by the use of finite tree automata and well-known character-
izations of recognizability. Some of the methods for finite tree automata are
carried over to deal with certain tree automata with infinite state sets. In this
way it is shown that graph properties defined by formulae of monadic second
order logic with arithmetic can be decided efficiently for graphs of bounded
tree-width, a result which was first shown (in somewhat more general form)
by Arnborg, Lagergren, and Seese [69].

In [13], Lengauer and Wanke consider efficient ways of analyzing graph
languages generated by so-called cellular graph grammars. Cellular graph
grammars are in fact hyperedge replacement graph grammars, defined in a
slightly different way. In particular, they generate the same class of graph
languages. A characteristic of graph properties called finiteness is defined, and
combinatorial algorithms are presented for deciding whether a graph language
generated by a given cellular graph grammar contains a graph with a given
finite graph property. Structural parameters are introduced that bound the
complexity of the decision procedure and special cases for which the decision
can be made in polynomial time are discussed. The results provide explicit
and efficient combinatorial algorithms.

In [15], Courcelle introduces the notion of a recognizable set of graphs.
Every set of graphs definable in monadic second-order logic is recognizable,
but not vice versa. It is shown that the monadic second-order theory of hyper-
edge replacement languages is decidable. The notion of F -inductive predicates
studied in [15] is closely related to the concept of compatible properties (see
also Section 5.6.2 of Chapter 5).

In [34], Habel, Kreowski, and Lautemann compare compatible, finite, and
inductive graph properties and show that the three notions are essentially
equivalent. Consequently, three lines of investigation in the theory of hyperedge
replacement—including the one discussed here—merge into one.
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In [70], Wanke and Wiegers investigate the decidability of the bandwidth
problem on linear hyperedge replacement languages. In particular, they show
the following. Let HRGlin denote the class of all linear hyperedge replacement
grammars generating graphs. Then it is undecidable whether an instance gram-
mar HRG ∈ HRGlin generates a graph G having bandwidth k, for any fixed
integer k ≥ 3. The result implies that the bandwidth-k property for k ≥ 3 is
not HRGlin-compatible.

Theorem 2.6.5 is published in [30]. Related work is done in [71] by Cour-
celle and Mosbah, who investigate monadic second-order evaluations on tree-
decomposable graphs and come up with a general method to translate these
evaluations of graph expressions over suitable semirings. Their method allows
the derivation of polynomial algorithms for a large number of problems on
families of graphs, and especially on graphs definable by hyperedge replace-
ment. The notion of inductively computable functions introduced by Courcelle
and Mosbah ([71], see also Section 5.6.3 of Chapter 5) is a generalization of
the concept of inductive predicates which corresponds closely to the notion of
compatible functions.

Boundedness problems for hyperedge replacement grammars correspond
closely to boundedness problems for finite tree automata with cost functions
over a suitable semiring, investigated by Seidl in [72]. Cost functions for tree
automata are mappings from transitions to polynomials over some semiring or,
in the so-called k-dimensional case, to k-tuples of polynomials. (The dimen-
sions correspond to the different indices used in the definition of a compatible
function.) Four semirings are considered, namely the semiring N over N with
addition and multiplication, the semiring A over N∪{∞} with maximum and
addition, the semiring T over N ∪ {−∞} with minimum and addition, and
the semiring F over the finite subsets of N with union and addition. It turns
out that for the semirings N and A, it is decidable in polynomial time (if the
dimension k is fixed) whether or not the costs of accepting computations is
bounded; for F, it is decidable in polynomial time whether or not the cardi-
nalities of occurring cost sets are bounded. In all three cases, explicit upper
bounds are derived. Moreover, for the semiring T, the decidability of bound-
edness is proved, but a polynomial-time algorithm is obtained only in the case
that the degrees of occurring polymonials are at most 1.

In [37], Wanke considers another type of decidability problems on hyper-
edge replacement grammars, called integer subgraph problems. The main idea
is to transform the decidability problem on hyperedge replacement languages
concerning function values of graph×subgraph pairs to a decidability problem
over semilinear sets.
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Finally, one should mention an approach to generalize the idea of com-
patible functions that was invented by Engelfriet and Drewes [23,73,49,74,75].
The approach is based on the observation that the definition of a compatible
function can be considered as a tree transduction. The input trees are deriva-
tion trees of the hypergraphs in question and the output trees are expressions
using maximum, addition, and multiplication (viewed as trees), that denote
the computed numbers. Both the derivation trees (denoting hypergraphs) and
the expressions (denoting natural numbers) may be viewed as terms in appro-
priate algebras (over hypergraphs and natural numbers, respectively). Thus,
the idea is to consider such computations by tree transductions in general. A
mapping f : A→ B between two algebras A and B is said to be computed by
a tree transducer if every term denoting an element a of A is transformed into
a term denoting f(a) in B.

2.7 The membership problem

In this section the possibilities for (efficient) algorithmic solutions to the mem-
bership problem for hyperedge replacement languages are discussed. We con-
sider membership with respect to a given hyperedge replacement grammar
HRG , so the membership problem is defined as follows.

Given: A hyperedge replacement grammar HRG .

Instance: A hypergraph H.

Question: Is H in the language generated by HRG?

Algorithms that solve the membership problem are called membership al-
gorithms. In many cases, one would also wish to parse hypergraphs with
respect to a given grammar, that is, to find a derivation tree for a given hyper-
graph, if possible. For technical convenience, we concentrate on the member-
ship problem here, but it is easy to see that both the presented algorithms can
be extended in a straightforward way to yield solutions to the parsing problem
as efficiently as they solve the membership problem.

2.7.1 NP-completeness

It is not hard to see that the membership problem is in NP for every hyperedge
replacement grammar HRG , because for every such grammar there is a linear
function f such that, for every hypergraph H of size n, if H ∈ L(HRG) then
H has a derivation of length at most f(n). Thus we can simply use nonde-
terminism to guess an appropriate derivation and test whether the generated
hypergraph is isomorphic to H (again using nondeterminism).
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Clearly, one would like to have more efficient algorithms than the one just
sketched, and in particular deterministic ones. It turns out, however, that the
complexity of the membership problem marks one of the few areas where the
results for hyperedge replacement grammars differ significantly from what we
know about context-free Chomsky grammars. Whereas, for the latter we have
the well-known membership algorithm by Cocke, Kasami, and Younger, which
runs in cubic time, hyperedge replacement grammars are able to generate NP-
complete graph languages. Thus, one can expect that there is no generally
applicable membership algorithm for hyperedge replacement languages. In-
tuitively, the reason for this is that, in a string, symbols that result from
one and the same nonterminal form a substring, and there are only O(n2)
many substrings of a given string of length n. In contrast, from a nonter-
minal hyperedge a somewhat disconnected subgraph may be generated in a
hyperedge replacement grammar, so that, in general, there are exponentially
many possible choices for a subgraph to be generated from a given hyperedge.
There are simply too many combinations to be tested, which leads to the two
NP-completeness results presented below. For this, let us call a hyperedge
replacement grammar linear if none of its right-hand sides has more than one
nonterminal hyperedge. The node degree of a graph is the maximal number
of edges attached to a node of this graph, and the node degree of a graph
languages is the maximum node degree of graphs in that language.

Theorem 2.7.1 (NP-completeness 1) There is a linear edge replacement
grammar that generates an NP-complete graph language of degree 2.

Proof
We reduce the NP-complete Hamiltonian path problem (see Garey, Johnson
[76], problem GT39, p. 199) to the membership problem for a particular edge
replacement language generated by a linear grammar. In fact, there is a
slightly easier way to prove Theorem 2.7.1 using the NP-complete problem
3-PARTITION (see [77]). However, we are going to use a modified version
of the proof in order to obtain another theorem below. As we do not know
how this can be done using 3-PARTITION the Hamiltonian path problem is
employed here.

Let us first define the Hamiltonian path problem. We use a slightly more
general version on undirected hypergraphs. An undirected, unlabelled hyper-
graph is a triple h = (Vh, Eh, atth), where Vh and Eh are the finite sets of
vertices and hyperedges, respectively, and atth is a mapping assigning to every
hyperedge e ∈ Eh the set atth(e) ⊆ Vh of attached nodes. Now, the Hamilto-
nian path problem can be formulated as follows.
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Instance: An undirected, unlabelled hypergraph h.
Question: Is there a Hamiltonian path in h, that is, is there an alternating
sequence v0e1v1 . . . envn of pairwise distinct nodes and hyperedges of h such
that Vh = {v0, . . . , vn} and vi−1, vi ∈ atth(ei) for all i, 1 ≤ i < n?

Clearly, the generalization to hypergraphs does not affect the NP-hardness
of the problem. Let us define S to be the set of all finite sets S = {s1, . . . , sn}
such that the si (1 ≤ i ≤ n) are strings of equal length of the form ui-ui, where
ui ∈ {0, 1}∗. We say that ui-ui is word adjacent to uj-uj if ui(l) = uj(l) for
some l, 1 ≤ l ≤ |ui|.

Every S ∈ S defines an undirected, unlabelled hypergraph h(S). If S is as
above, with |si| = 2m + 1 for i = 1, . . . , n, the set of nodes of h(S) is S and
the set of hyperedges is {1, . . . ,m}. Node si is in the set of attachments of
hyperedge j if ui(j) = 1. By definition, two nodes are adjacent in h(S) if the
corresponding strings are word adjacent, so h(S) has a Hamiltonian path if and
only if there is a sequence i1, . . . , in with {i1, . . . , in} = {1, . . . , n} such that,
for i = 1, . . . , n− 1, si and si+1 are word adjacent. Clearly, every undirected,
unlabelled hypergraph h is represented by some S ∈ S. Furthermore, given
any sensible representation of h we can compute some Sh ∈ S with h = h(Sh)
in polynomial time.

We are going to construct a linear edge replacement grammar such that
each of the generated graphs is a string graph, except that some of the edges
are missing. Thus, such a graph represents a multiset of strings. The individual
strings of the multisets generated have the form w-w′, where w,w′ ∈ {0, 1}∗.
The multisets themselves will be of the form

{w0-w111w12,
w′

111w
′
12-w211w22,
w′

211w
′
22-w311w32,

. . .

w′
n11w

′
n2-w1}

where each wi1 is generated along with the corresponding w′
i1, and each wi2 is

generated together with the corresponding w′
i2. This is used to ensure that wij

and w′
ij are of equal length, so that the digit 1 between wi1 and wi2 appears

at the same position as the one between w′
i1 and w′

i2. Thus, if such a multiset
S is in S it defines a hypergraph with a Hamiltonian path passing the nodes
represented by the strings above one after the other.

Consider the grammar ERG = ({S,A,B,C,D}, {-, 0, 1}, P, S), where all
terminals and nonterminals are of type 2, except for S, which is of type 0,
and where P consists of the productions given in Figure 2.17. (In Figure 2.17,
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S ::= 0/1 A

A ::=
1 2

0/1 A
1 2

- B

B ::=
1 2

0/1

B

0/1
1 2

1

C

1

C ::=
1 2

0/1

C

0/1
1 2

-

B

1 2
- D

D ::=
1 2

0/1 D
1 2

0/1

Figure 2.17: Productions of ERG in the proof of Theorem 2.7.1.

a right-hand side some of whose edges are labelled with “0/1” stands for all
right-hand sides in which the respective edges are labelled with 0 or 1.) If we
interpret the graphs in L(ERG) as multisets of strings in the obvious way, this
yields a set S(ERG) whose elements are these multisets. It is not too hard to
see that, as explained above, all these multisets are of the form

{w0-w111w12, w
′
111w

′
12-w211w22, w

′
211w

′
22-w311w32, . . . , w

′
n11w

′
n2-w1}.

The wi1 and w′
i1 are generated using the nonterminal B, and the wi2 and w′

i2

result from a nonterminal C. As a consequence, wij and w′
ij are indeed of

equal length, so that the 1 between wi1 and wi2 appears in the same position
as the one between w′

i1 and w′
i2. Therefore, one can show that the following

holds:

S(ERG) ∩ S is the set of all {s1, . . . , sn} ∈ S for which there is
an ordering i1, . . . , in of 1, . . . , n such that sij is word adjacent to
sij+1

for all i, 1 ≤ i < n.
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Clearly, for all S ∈ S some graph H(S) representing S in the same way as
above can be constructed in polynomial time. Now, H(S) ∈ L(ERG) if and
only if h(S) has a Hamiltonian path. We have thus reduced the Hamiltonian
path problem to the membership problem for L(ERG), as required. �

If we drop the requirement of bounded degree in Theorem 2.7.1 we can
even generate an NP-complete language of connected graphs, as one can see
by an easy modification of the grammar used.

Theorem 2.7.2 (NP-completeness 2) There is an edge replacement gram-
mar that generates an NP-complete graph language of connected graphs.

Proof
We construct an edge replacement grammar ERG ′ that generates for every
graph H ∈ L(ERG), where ERG is the edge replacement grammar in the
proof of Theorem 2.7.1, a graph obtained from H as follows. First, a new node
v0 is added. Then, every edge e labelled - is removed and its two attached nodes
are identified, yielding a new node ve. Finally, for each ve a new unlabelled
edge with attachment v0ve is added. The correspondence between the graphs in
L(ERG) and their counterparts in L(ERG ′) constructed this way is a bijection
that can be computed in polynomial time. Therefore, it remains to give an
appropriate grammar ERG ′. We may choose for this the grammar ERG ′ =
({S,A,B,C,D}, {0, 1}, P ′, S), where the types of symbols are as in ERG and
the productions are the ones given in Figure 2.18. In order to understand how
the grammar works, the reader should notice that, applying in a first phase
only the productions with left-hand sides S, A, and B yields a hypergraph as
in Figure 2.19. Now, it is easy to see that the remaining productions yield just
the type of graphs aimed at. �

2.7.2 Two polynomial algorithms

In view of Theorems 2.7.1 and 2.7.2 there is not much hope that one can find
an efficient solution to the membership problem for arbitrary hyperedge re-
placement grammars (and not even for linear edge replacement grammars),
since this would require P=NP. It is therefore natural to look for restrictions
that can be imposed on the languages or grammars to allow for efficient mem-
bership algorithms. The proofs of Theorem 2.7.1 and 2.7.2 give a hint. It
seems that, in the first case, the high complexity of the generated language is
caused by the fact that the graphs are disconnected, whereas in the the sec-
ond case the potentially unbounded degree of nodes seems to be responsible.
In fact, the two cases do not differ too much: The unbounded degree in the
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S ::=

B

A
A ::=

1 2
0/1 A

1 2
0/1

B ::=

1 2

C
B

1

2

A

C ::=

1 2

0/1 0/1

C

1 2

1 1

D

D ::=

1 2

0/1 0/1

D

1 2

Figure 2.18: The productions of ERG
′ in the proof of Theorem 2.7.2.

0/1 0/1

C

C

C

Figure 2.19: An intermediate graph generated by the productions in Figure 2.18.
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second case is nothing else than a hidden disconnectedness that reappears if
a single node is deleted. Later on, this observation will lead to the notion of
k-separability, which is needed to formulate a condition under which the first
membership algorithm we will discuss runs in polynomial time. As opposed to
the string case both algorithms we are going to present rely on the fact that
the grammar considered is supposed to be fixed. It is easy to see that the
running time of these algorithms becomes exponential if the grammar is made
part of the input.

In the following, we use the notation H = H0<e1/H1, . . . , en/Hn> to ex-
press the fact that H = H0[e1/H1, . . . , en/Hn], where VH = VH0

∪ · · · ∪ VHn
,

EH = EH0
∪ · · · ∪ EHn

, extH = extH0
, and labH(e) = labHi

(e), attH(e) =
attHi

(e) for all e ∈ EH ∩ EHi
, 0 ≤ i ≤ n. In other words, H0< · · ·> is hyper-

edge replacement on concrete hypergraphs without the possibility to take iso-
morphic copies (and is hence not always defined). The notion of X-candidates
is central to the first algorithm we are going to present.

Definition 2.7.3 (X-candidate) Let H be hypergraph and let X ∈ V ∗
H . A

hypergraph H ′ ⊆ H is an X-candidate of H if extH′ = X and for every
internal node v of H ′ and every hyperedge e ∈ EH with v ∈ [attH(e)] we have
e ∈ EH′ .

By definition of hyperedge replacement, every hyperedge of a hypergraph
H0<e1/H1, . . . , en/Hn> that is attached to an internal node of Hi for some
i, 1 ≤ i ≤ n, is a hyperedge of Hi. This can be used to prove that, in
H0<e1/H1, . . . , en/Hn>, every Hi (1 ≤ i ≤ n) is an attH0

(ei)-candidate of H
for i = 1, . . . , n. This fact restricts the number of sub-hypergraphs to be tested
recursively in the membership algorithm below. We formulate the algorithm
for growing hyperedge replacement grammars. By Lemma 2.4.3 this means no
loss of generality.

Algorithm 2.7.4
Given: A growing hyperedge replacement grammar HRG = (N,T, P, S).

Input: A hypergraph H̄ over T .

Output: Derive(S, H̄), where Derive(A,H) =

(1) if A• =⇒R with VR ⊆ VH and ET
R ⊆ EH

(where {e1, . . . , en} = EN
R )

(2) such that there are substantial attR(ei)-candidates Hi of H̄
(i = 1, . . . , n) with

(3) 1. H = R<e1/H1, . . . , en/Hn>
(4) 2. for i = 1, . . . , n we have Derive(labR(ei), Hi)
(5) then return true else return false
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Theorem 2.7.5 For all hypergraphs H̄ ∈ HT Algorithm 2.7.4 terminates and
yields true if H̄ ∈ L(HRG), and false otherwise.

Proof
Since HRG is growing all hypergraphs that can be derived from A• are substan-
tial. Therefore, Algorithm 2.7.4 is nothing else than an algorithmic formulation
of the context-freeness lemma. Since the hypergraph R chosen in step (1) and
the attR(ei)-candidates Hi of step (2) are substantial we have |Hi| < |H| for
i = 1, . . . , n, so the algorithm must eventually terminate. �

Since there is only a finite set of productions in HRG there are only poly-
nomially many possibilities to consider in step (1), and the equality in step (3)
can also be tested in polynomial time (note that the test is for equality, not iso-
morphy). Hence, there is only a single point that causes an exponential running
time of the algorithm: the number of X-candidates to be tested. Therefore, we
aim at a condition to be imposed on L(HRG) that implies a polynomial upper
bound on the number of X-candidates. Let us denote by H \ V , where H is
a hypergraph and V ⊆ VH , the hypergraph (VH \ V,EH , att , labH , λ), where
att(e) is the restriction of attH(e) to V , for all e ∈ E. A connected component
of H is a maximal connected sub-hypergraph of H. (Note that a 0-edge is a
connected component on its own.)

Definition 2.7.6 (k-separability) For k ∈ N the k-separability k-sep(H) of
a hypergraph H is the maximum number of connected components of H \ V ,
where V ranges over all subsets of VH of size at most k. For every language
L of hypergraphs, k-sepL : N → N is defined by

k-sepL(n) = max{k-sep(H) |H ∈ L and |H| ≤ n}.

The following theorem says that logarithmic k-separability of L(HRG)
(where HRG is of order k) results in a polynomial upper bound on the running
time of Algorithm 2.7.4.

Theorem 2.7.7 Let HRG ∈ HRGk be growing. If k-sepL(HRG) ∈ O(log n)

then Algorithm 2.7.4 can be implemented to run in polynomial time in
∣

∣H̄
∣

∣.

Proof
Let H̄ ∈ HT and X ∈ V ∗

H̄
with |X| ≤ k. By definition of X-candidates, if

a node of a connected component G of H̄ \ [X] occurs in an X-candidate H
of H̄, then G ⊆ H. Since there are only a logarithmic number of connected
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components in H̄ \ [X] this yields a polynomial bound on the number of X-
candidates in H̄ if H̄ ∈ L(HRG). Since the number of sequences X ∈ V ∗

H̄
with

|X| ≤ k is bounded by |VH̄ |k this yields a polynomial bound on the number
of X-candidates to be considered in the algorithm (that is, if there are more
X-candidates in the input graph it can be rejected immediately).

We are now able to make use of the well-known idea underlying the mem-
bership algorithm for context-free Chomsky grammars by Cocke, Kasami, and
Younger. In an initial phase, we compute the set of all X-candidates of H̄,
where |X| ≤ k. This can be done in polynomial time since it essentially suffices
to determine all combinations of connected components of the hypergraphs
H̄ \ V , where |V | ≤ k. Now, every call to Derive with parameters A and H is
performed only once and the result is stored in a list which is looked up when
repeated calls occur. As a consequence, the algorithm runs in polynomial time
in the number of X-components, which is polynomial in

∣

∣H̄
∣

∣, as required. �

The major drawback of Algorithm 2.7.4 is that, even if k-sepL(HRG) is
a constant, the running time is bounded by a polynomial whose degree may
vary with HRG . In view of step (1) of the algorithm, for instance, the degree
depends on the size of right-hand sides used in the grammar. We now want to
discuss a membership algorithm for edge replacement grammars that always
runs in cubic time. It applies to all input graphs that are almost 2-connected ,
a notion to be defined below. Again, the algorithm exploits the idea by Cocke,
Kasami, and Younger.

From now on, let us consider some arbitrary (but fixed) edge replacement
grammar (N,T, P, S) with type(A) = 2 for all A ∈ N ∪T . (In particular, every
graph is assumed to be of type 2 in the following, without mentioning.)

Definition 2.7.8 (almost k-connected hypergraph) A hypergraph H is al-
most k-connected for some k ∈ N if

• |VH | ≥ k and

• for all hypergraphs H1, H2 and every hyperedge e ∈ EH1
, if we have H =

H1[e/H2] and VH1
\ [attH1

(e)] 6= ∅ 6= VH2
\ [extH2

] then type(H2) ≥ k.

Intuitively, almost k-connectedness means that a graph cannot be decom-
posed into non-trivial parts using hypergraphs of type less than k. The graph
H shown in Figure 2.20, for example, is almost 2-connected, but H ′ is not.

A substantial graph H (of type 2) is a bond if VH = extH , that is, if H
consists of at least two edges between the external nodes. A substantial string
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1 2 1 2

H H ′

Figure 2.20: H is almost 2-connected while H′ is not.

graph is said to be a chain. H is called a block if it is almost 3-connected,
|VH | > 3, and [attH(e)] 6= [extH ] for all e ∈ EH . Notice that bonds, chains,
and blocks are substantial and that these three classes of graphs are mutually
disjoint. The smallest bonds and chains are those with two edges. We have
the following theorem about almost 2-connected graphs, that we state without
proof.

Lemma 2.7.9

1. Let H = H0<e/H1> for substantial graphs H0 and H1. Then H is
almost 2-connected if and only if both H0 and H1 are almost 2-connected.

2. Every substantial 2-connected graph H can be written as H0<e/H1>, for
substantial graphs H0, H1, unless H is a bond or chain with two edges,
or a block.

In the following, let us reserve a label τ to be used as a special one in some
constructions, that is, we assume τ 6∈ N ∪ T . For the algorithm we are going
to explain the following notions are of basic importance.

Definition 2.7.10 (total and collapsed split tree) Let H be a hypergraph
over T .

1. A total split tree of H is a derivation tree for H over Pt, where Pt is
the set of all productions over {τ} whose right-hand sides are bonds and
chains with two edges, and blocks.

2. Let Pc be the set of all productions over {τ} whose right-hand sides are
bonds, chains, or blocks. A collapsed split tree of H is a derivation tree
for H over Pc such that no edge in this derivation tree connects two bonds
or two chains.

By definition, the result of a (total or collapsed) split tree t is a substantial,
almost 2-connected graph. Since the left-hand side of productions in a split
tree is always τ we may consider a split tree as a pair (H, branch) rather
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than as a triple (τ,H, branch). Using Lemma 2.7.9 it is not hard to see that
every substantial, almost 2-connected graph has some total split tree. From
a total split tree one can obtain a collapsed one as follows: As long as a
subtree (H, branch) exists with branch(e) = (H ′, branch ′) for some e ∈ EN

H ,
where both H and H ′ are bonds or both are chains, replace the subtree by
(H[e/H ′], branch ′′), where

branch ′′(e′) =

{

branch(e′) if e′ ∈ EH
N − {e}

branch ′(e′) if e′ ∈ EH′

N .

Then H[e/H ′] is a bond (chain, respectively), so the procedure eventually
leads to a collapsed split tree. As a consequence, every substantial, almost
2-connected graph has a total as well as a collapsed split tree, and for every
(total or collapsed) split tree t the graph result(t) is substantial and almost
2-connected.

The algorithm we are going to present makes use of a result by MacLane
[78] saying that collapsed split trees are unique in a certain sense. It is easy
to see that collapsed split trees cannot be really unique. This is because, if H
and H ′ are graphs with e ∈ EH , and we let G and G′ be obtained from them
by reversing e in H and interchanging the external nodes of H ′ we obviously
obtain H[e/H ′] = G[e/G′]. Hence, for split trees we must allow to reverse
nonterminal edges if at the same time the external nodes of the graphs that
replace them are interchanged. This is stated more precisely below.

Definition 2.7.11 (similar split trees) split trees with EN
H = {e1, . . . , en}

and, for i = 1, . . . , n, branch(ei) = (Hi, branchi). Then t and t′ are similar if
there is some I ⊆ {1, . . . , n} such that the following hold.

1. The graph obtained from H by reversing all ei with i ∈ I is isomorphic
to H ′ via some isomorphism h.

2. For all i ∈ I, (H ′
i, branchi) and branch(hE(ei)) are similar, where H ′

i is
obtained from Hi by reversing extHi

if i ∈ I and H ′
i = Hi otherwise.

As one can easily show by induction, similarity of t and t′ implies that
result(t) and result(t′) are isomorphic. The algorithm we are developing is
based on the following result by MacLane [78].

Fact 2.7.12 (uniqueness of collapsed split trees) All collapsed split trees
of a substantial, almost 2-connected graph are similar.
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Using Theorem 2.7.12 we want to prove the following.

Theorem 2.7.13 Let ERG be an edge replacement grammar. Then there is
a cubic algorithm that takes as input a graph H and decides whether H is an
almost 2-connected member of L(ERG). In particular, if all graphs in L(ERG)
are almost 2-connected, the algorithm decides whether H ∈ L(ERG).

We are now going to develop the means to prove Theorem 2.7.13. Let us
first assume some edge replacement grammar ERG = (N,T, P, S) as in the
theorem is given. By Lemma 2.4.3 it may be assumed that ERG is growing.
We modify ERG as follows.

(1) Remove all productions whose right-hand side is not almost 2-connected.
By Lemma 2.7.9 we are allowed to do so because this modification does
not affect the set of almost 2-connected graphs in the language generated.

(2) As long as there is a production (A,R) such that H = R[e/H ′] for
some substantial H and H ′, choose a new nonterminal label A′ for e
in H and replace (A,R) by the two productions (A,H) and (A′, H ′).
Obviously, such a modification does not influence the generated language.
By Lemma 2.7.9 the right-hand sides of the grammar obtained are bonds
and chains with two edges, and blocks.

(3) Complete the grammar as follows: For every label A (nonterminal as
well as terminal ones), add a new label Ā, and add for all productions
(A,R) in the grammar obtained in step (2), all productions (X,H), where
X ∈ {A, Ā} and H is obtained from R by reversing some edges while
changing their label from labR(e) to labR(e), and reversing extR ifX = Ā.

Let the edge replacement grammar resulting from steps (1)–(3) be given by
ERG0 = (N0, T0, P0, S). Then it follows by a straightforward induction that
the set of graphs over T generated by ERG0 coincides with the one of the
grammar obtained by steps (1) and (2), that is, L(ERG0) = L(ERG). For
every derivation tree t over P ∗

0 (see page 115 for the definition of P ∗
0 ) let us

denote by unlabel(t) the derivation tree we obtain by replacing all nonterminal
labels with τ . We have the following lemma.

Lemma 2.7.14 Let H ∈ HT0
and A ∈ N0. If A• =⇒∗

P0
H and t is a collapsed

split tree of H, then there is a derivation tree t′ over P ∗
0 with root A such that

unlabel(t′) = t.

Proof
Let t0 be a derivation tree for H in ERG0. As remarked above, by modification
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(2) unlabel(t0) is a total split tree for every derivation tree t0 over P0. Hence
there is some derivation tree t′0 over P ∗

0 such that unlabel(t′0) is a collapsed
split tree. (We can construct t′0 from t0 in the same way a collapsed split tree
can be constructed from a total one; see the paragraph after Definition 2.7.10.)
By Theorem 2.7.12 the given collapsed split tree t and unlabel(t′0) are simi-
lar. By modification (3) this means there is a derivation tree t′ over P ∗

0 with
unlabel(t′) = t. �

We are now able to sketch the construction of the cubic algorithm we
aimed at, thereby proving Theorem 2.7.13.

Proof of Theorem 2.7.13 To find out whether an input graph H is in L(ERG0),
where ERG0 is constructed as above, proceed as follows. First, compute a
collapsed split tree t of H. By a result proved by Hopcroft and Tarjan [79] this
can be done in linear time. By Lemma 2.7.14, if H ∈ L(ERG0) (and, of course,
only then) we can exchange every τ in t by an appropriate nonterminal label
to obtain a derivation tree over P ∗

0 for H whose root is S. To find out whether
this is possible, for all subtrees t′ of t we compute by a bottom-up approach
the set poslab(t′) of all A ∈ N0 such that A• =⇒∗

P0
result(t′). This can be

done efficiently, as follows. Suppose t′ = (R, branch) with branch(e) = te for
e ∈ EN

R , and we have already computed poslab(te) for all e ∈ EN
R . Then, we

have to decide whether A• =⇒∗
P0
R1 for some R1 obtained from R by labelling

every edge labelled with τ in R with one of the labels in poslab(te). Since R is
either a bond, a chain, or a block there are three possible cases to consider.

1. R is a bond.
Construct R′ from R by giving a hyperedge e ∈ ER the label {labR(e)} if
labR(e) ∈ T0 and the label poslab(te) if labR(e) = τ . Let R′′ be the graph
obtained from R′ by reversing all edges e with attR′(e) = endR′beginR′ ,
while exchanging labR′(e) with {Ā |A ∈ labR′(e)}. By the completion
performed in modification (3) and Theorem 2.4.8 it is not hard to see
that A ∈ poslab(t′) if and only if ψ(R′′) is in some fixed semilinear set
associated with A. (To be able to apply Theorem 2.4.8, add productions
(A,X•), where X ⊆ N0 and A ∈ X, or A ∈ T0 and X = {A}. Then we
have to decide whether A• =⇒∗

P0
R′′.) Due to results by Fischer, Meyer,

and Rosenberg [80] membership in a semilinear set can be decided in
linear time.

2. R is a chain.
Then, since in a derivation A• =⇒∗

P0
R1 we cannot use any production

with a substantial right-hand side which is not a chain, we can use
the well-known algorithm by Cocke, Kasami, and Younger to find out
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S ::=
1

S

S
1

Figure 2.21: A hyperedge replacement grammar with componentwise derivations.

poslab(t′). (Note that we do not have to consider all the possible R1

separately, because the CKY-algorithm works with sets of nonterminals
like our poslab(te) provide.) Since the CKY-algorithm runs in cubic time
this step takes cubic time in the size of R.

3. R is a block.
Here, we only have to test a finite number of possibilities since R must
be isomorphic to a right-hand side in ERG0, up to the labelling. Hence,
this case can be handled in constant time.

Altogether, we need at most a cubic number of steps (in |H|) in order to find
poslab(t), and accept H if S ∈ poslab(t). �

2.7.3 Further results and bibliographic notes

The proof of NP-completeness given in the beginning of this section was found
by Lange and Welzl [81], who presented it for string grammars with discon-
necting rather than for edge replacement, as we did here.

Algorithm 2.7.4 is due to Lautemann [29]. The paper contains a sec-
ond variant of the algorithm that does not rely on logarithmic k-separability.
Instead, it is required that the considered hyperedge replacement grammar
has componentwise derivations . Roughly speaking, this means that an X-
candidate is derivable from A• if and only if each of the connected components
this X-candidate consists of is derivable from A•. As an example, one may
consider the grammar HRG = ({S}, { }, P, S) (where “ ” means “unlabelled”)
whose productions are the two given in Figure 2.21. L(HRG) is the set of all
(rooted, directed) trees, and a graph as in Figure 2.22 on the left is derivable
from S• if and only if each of its components (shown on the right) can be
derived from S•. Under the condition that the grammar satisfies this require-
ment, we may look at the (linear number of) individual connected components
rather than at all X-candidates, which yields a polynomial algorithm. As
Lautemann remarks in his paper, more sophisticated notions of component-
wise derivations, that still lead to polynomial algorithms, may more or less
obviously be thought of.
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1

H components of H

Figure 2.22: A graph generated by HRG and its components.

The cubic membership algorithm was presented by Vogler in [82]. As
shown by Drewes [33], Theorem 2.7.13 and the results used to prove it can be
generalized to hyperedge replacement grammars of order k generating almost
k-connected k-hypergraphs, where a k-hypergraph is a hypergraph all of whose
hyperedges are of type k. This yields the case treated here by choosing k = 2.
It may be interesting to notice that the generalized version of the algorithm is
still cubic; the exponent does not depend on the order of the grammar.

As mentioned, the generalization works only for k-hypergraphs. It is there-
fore natural to wonder whether this restriction can be avoided. Is there still
a polynomial algorithm if a grammar of order k generates, for instance, a lan-
guage of almost k-connected graphs? Unfortunately, it is likely that this ques-
tion has to be answered negatively, since it was shown by Drewes [32] that this
case is again NP-complete for all k > 2. (For k = 2, we have Theorem 2.7.13.)
Intuitively, this is caused by the fact that, if we replace every hyperedge in a
k-connected k-hypergraph by, say, a clique on the k attached nodes, we retain
k-connectedness, but loose the information which of the resulting edges belong
together, so that a unique reconstruction of the hypergraph is not possible.

2.8 Conclusion

In this survey, we have outlined the theory of hyperedge replacement as a gram-
matical device for the generation of hypergraph, graph, and string languages
with an emphasis on the sequential mode of rewriting. Hyperedge replace-
ment (without application conditions) has a context-free nature which is the
key for an attractive mathematical theory including structural properties and
decidability results.

Although several interesting (hyper)graph languages occurring in com-
puter science and graph theory can be generated by hyperedge replacement
grammars, their generative power is bound to be restricted. As we saw in
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Section 2.4 there is, for instance, no way to generate a language of unbounded
connectivity. As mentioned in the bibliographic notes of Section 2.3, exten-
sions can be found in the literature, which make it possible to overcome one or
the other deficiency. However, one cannot expect to get additional power for
free. Normally, extensions lack some of the useful properties of hyperedge re-
placement, or their rewriting mechanisms are more complicated and therefore
harder to reason about. In many cases hyperedge replacement seems to be a
good compromise between the wish to have a nicely developed mathematical
theory and the demand for reasonable generative power.
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