
Chapter 2: Getting Started

A computational problem is a mathematical

problem, specified by an input/output

relation.

An algorithm is a computational procedure

for solving a computational problem.

1



Sorting

A well-known example of computational

problems is the sorting problem, which can

be formally specified as follows:

• Given some n numbers a1, . . . , an,

compute their enumeration a′1, . . . , a′n such

that a′1 ≤ · · · ≤ a′n.

We assume that the numbers to be sorted are

given in an array. The objects in the array are

sometimes refered to as the element and the

values with respect to which those elements

need to sorted are sometimes refered to as

the keys. When there is no confusion the

elements are identified as their keys.

2



Two Sorting Algorithms

Here we study two sorting algorithms,

Insertion Sort and Mergesort.

Insertion Sort sorts by inserting into a

sorted list the elements of the input array

one after the other.

Mergesort sorts by recursively dividing the

input array into halves, sorting the halves

separately, and then merging them into a

full sorted list.

3



Insertion Sort

Let A[1 .. n] be an input array.

Idea: Given an array of size n, obtain for

each i, 1 ≤ i ≤ n, a completely sorted list of

the first i elements. To incorporate a new

element find the position at which the new

element should be inserted.

1: for j ← 2 to n do

2: � incorporate the jth element

3: { x← A[j]; i← j − 1

4: while (i > 0) and (A[i] > x) do

5: { A[i + 1]← A[i]

6: i← i− 1 }

7: A[i + 1]← x

8: }

4



An Example:

12

the input

6

6

12

15

12

6 12 915

7 2014139156

6 715129

151276 9 13

14151312976

1312976 1514 20

5



Proving Correctness of Algorithms

Goal Identify what property needs to be

established at the end of the algorithm

and argue that the property is indeed

achieved.

For long algorithms it may be necessary to do

this by a line of arguments:

• Identify a number of points, p1, . . . , pm, in

the algorithm and properties

corresponding to them, Q1, . . . , Qm. Here

p1 and pm are respectively the beginning

and the end of the algorithm.

• Argue that Q1 holds and that Qm implies

that the algorithm works correctly.

• For each i, 1 ≤ i ≤ m− 1, argue that the

condition Qi implies Qi+1.

6



Making Arguments about Branches

Strategy Argue that the cases are exhaustive

and each case is correctly handled.

7



Making Arguments about Loops

Strategy Use a property that is maintained

during the execution of the loop. Such a

property is called a loop invariant. Pick

a reference point on the loop (usually

either the beginning or the end of the

loop-body). Then we show that the

following three properties hold:

Initialization The loop invariant holds before

the first iteration of the loop.

Maintenance The loop invariant is

maintained in each iteration of the

loop-body.

Termination Due of the above two

properties the loop invariant holds after

the last iteration of the loop.

8



Using a Loop Invariant to Prove the

Correctness of Insertion Sort

Loop Invariant At the beginning of the

for-loop, the following condition hold:

(*) The subarray A[1 .. j − 1] holds in sorted

order the elements that were originally in

A[1 .. j − 1].

9



Initialization

This is easy! At the

beginning, j = 2.

A[1 .. j − 1] is sorted by itself.

So, (*) holds.

10



Maintenance

Suppose we are at the beginning of the

for-loop and (*) holds. Let us look at the

subsequent iteration of the loop.

What the loop does is essentially

• finding the first i in the sequence

j − 1, j − 2, . . . ,1 such that A[i] ≤ A[j]

and then

• inserting A[j] right after A[i].

Since (*) holds at the beginning, this implies

that A[1 .. j] is sorted at the end of the

iteration.

Thus, (*) is preserved during one iteration.

11



Termination

This is easy, too! At the end,

j = n + 1. So, by (*), A[1 .. n]

is sorted. Thus, (*) holds.

This completes the proof.

12



Running-Time Analysis

The running time of an algorithm depends on

the actual implementation and the instance,

which makes analysis highly complicated. We

simplify the process by the following policies:

• Use the number of primitive operations

that are executed as the running time.

• Group the instances according to their

sizes and analyze the “global behavior” of

the “running time” on the instances of

the same size.

13



There are three kinds of analysis:

Worst-Case Analysis For each n, we

calculate the largest value of the running

time over all instances of size n.

Best-Case Analysis For each n, we

calculate the smallest value of the running

time over all instances of size n.

Average-Case Analysis For each n, we

calculate the average of the running time

over all instances of size n where the

instances are subject to a certain

distribution (for example, the uniform

distribution).

14



Worst-Case & Best-Case Analysis

The running-time of Insertion Sort is a

complicated function, but it is a linear

function of the array size n and the number

of comparisons that are executed.

Since there are at least n− 1 comparisons,

analyzing the number of comparisons will be

sufficient. This number is

• maximized when the input numbers are

sorted in the decreasing order and is

• minimized when they are sorted in the

increasing order.

We use the former to obtain the worse-case

running time and the latter to obtain the

best-case running time.

15



Running-Time Analysis (cont’d)

Worst-Case Analysis The number of

comparisons is

n−1∑

i=1

i =
n(n− 1)

2
.

So, the worst-case running time is Θ(n2).

Best-Case Analysis The number of

comparisons is

n−1∑

i=1

1 = n− 1.

So, the best-case running time is Θ(n).

16



Mergesort

Mergesort is a well-known example of an

algorithm design strategy called

divide-and-conquer.

Divide-and-conquer consists of the following

three steps:

Divide Divide the given instance into smaller

instances.

Conquer Solve all of the smaller instances.

Combine Combine the outcomes of the

smaller instances.

17



Mergesort in the Divide&Conquer Framework

Divide Split the array into halves

Conquer Sort the halves

Combine Merge the sorted halves into a

single sorted list

18



The Algorithm

Mergesort(A, p, q)

1: � sort A[p .. q]

2: n← q − p + 1; m← p + bn/2c

3: � Halve the indices

4: if n = 1 then return

5: Mergesort(A, p, m− 1)

6: � Sort the first half

7: Mergesort(A, m, q)

8: � Sort the second half

9: Merge(A, p, q, m)

10: � Merge the two sorted lists

19



Merge(A, p, q, m)

1: � Merge A[p .. m− 1] & A[m .. q]

2: � into B[1 .. q − p + 1]

3: i← p; j ← m; t← 1

4: � Initialization

5: while (i ≤ m− 1) or (j ≤ q) do

6: if j = q + 1 then

7: � A[m .. q] has been emptied

8: { B[t]← A[i]; i← i + 1; t← t + 1 }

9: else if i = p + 1 then

10: � A[p .. m− 1] has been emptied

11: { B[t]← A[j]; j ← j + 1; t← t + 1 }

12: else if A[i] < A[j] then

13: � Neither have been emptied and A[i] < A[j]

14: { B[t]← A[i]; i← i + 1; t← t + 1 }

15: else

16: � Neither have been emptied and A[i] ≥ A[j]

17: { B[t]← A[j]; j ← j + 1; t← t + 1 }

18: for t = 1 to q − p + 1 do

19: A[p + t− 1]← B[t]

20



An example

13

6

14

12

6

1314

6

20

6

6

20
15

7 9 121314

9

9

15

6

1413

6

1512

131297
15

14

6

20

7 9 12131415

7
1512
20

7
15129
2014

20

13
15129

7 20

the input
7 2014139

7

12 6 15 9 7 13 14 20

6 12 9 15 7 13 1420

6 9 13142071215
recursive structure

21



Proving Correctness of Mergesort

Theorem A For all n ≥ 1, Mergesort

correctly sorts any subarray of size n.

The proof is by induction on n.

The base case is when n = 1.

How do you argue that the

algorithm works correctly on

size-one arrays?

22



One-element arrays are

already sorted by themselves.

Given a subarray of size one,

Mergesort stops without

modifying the subarray.

So, it correctly works when

n = 1.

23



For the induction step, let n ≥ 2 and suppose:

the claim holds for smaller values of n.

This is our inductive hypothesis.

Let (A, p, q) be an input to Mergesort such

that q − p + 1 = n. Since n ≥ 2 the last three

command lines of the code will be executed:

Mergesort(A, p, m− 1)

Mergesort(A, m, q)

Merge(A, p, q, m)

Here m = p + bn/2c. Since the two subarrays

have size smaller than n, by our inductive

hypothesis the first two lines work correctly.

So, it suffices to show that Merge correctly

merges two sorted lists.

24



Using a Loop Invariant to Prove the

Correctness of Merge

Loop Invariant At the beginning of the

while-loop, the following conditions hold:

1. B[1 .. t− 1] holds the elements that were

originally in A[p .. i− 1] and A[m .. j − 1].

2. Both A[i .. m− 1] and A[j .. q] are sorted.

3. B[1 .. t− 1] is sorted.

4. Each element in A[i .. m− 1] and A[j .. q] is

greater than or equal to any element in

B[1 .. t− 1].

25



t−1

1

Array BTwo subarrays of A

p

i

m+1

q

j

m

26



Initialization

At the very beginning

t = 1, i = p, and j = m.

So, (1) holds.

Since B[1 .. t− 1] is empty,

both (3) and (4) hold.

The two subarrays of A are

sorted, so (2) holds.

27



Maintenance

We’ll examine one-round execution of the

loop-body.

Suppose that the execution is at the

beginning of the while-loop. Suppose that

the condition [(i ≤ m− 1) ∨ (j ≤ q)] holds and

that the loop invariant holds.

Let t′, i′, and j′ be the values of t, i, and j at

the beginning of the loop-body, respectively,

and let t”, i”, and j” be their values at the

end of the loop-body.

28



Proving Maintenance

The loop does not modify A, so (2) is

preserved.

The property (1) is preserve because during

the execution of the loop-body exactly one of

A[i] and A[j] is appended to B.

The element appended to B is, by (4),

greater than or equal to any element in

B[1 .. t− 1]. By (3), this implies that

B[1 .. t”− 1] is sorted. Thus, (3) is preserved.

By (2), the element appended to B is the

smallest of the elements in A[i′ .. m− 1] and

A[j′ .. q]. Since (4) is preserved, the element

appended to B is the largest element in the

updated B. Thus, each element in

A[i” .. m− 1] and A[j” .. q] is greater than or

equal to any element in B[1 .. t”− 1]. Thus,

(4) is preserved.

29



Termination

By (1), B[1 .. t− 1] consists of

the elements in A[p .. q].

By (3), this array B is sorted.

Now, in the very last two

lines, the contents of B are

copied to A while keeping the

order.

Thus, the algorithm works

correctly.

30



Running-Time Analysis of Mergesort

Let T (n) be the running time of Mergesort.

We may assume that for all n it holds that

T (n + 1) ≥ T (n). T is a complicated function,

but we observe that it is linear in the number

of “assignment” operations performed on the

arrays A and B. This number is 2n for

merging. So,

T (n) ≤ αn + T (dn/2e) + T (bn/2c).

The ceiling and the floor functions make the

analysis cumbersome.

To get rid of them, let m = 2dlogne. Then

m ≤ 2n and T (n) ≤ T (m). We’ll obtain an

upper bound for T (m).

Each divisor of m is a power of 2. So, for

each d ≥ 2 that divides m,

dm/2e = bm/2c = m/2.

31



Running-Time Analysis (cont’d)

We have

T (m)

≤ αm + 2T (m/2)

≤ αm + 2(αm/2 + 2T (m/2))

= 2αm + 4T (m/4)

≤ 2αm + 4(αm/4 + 2T (m/4))

≤ 3αm + 8T (m/8)

≤ · · ·

≤ αm logm + mT (1)

= α′m logm

So, T (n) = O(m logm) = O(n logn).

By using m the floor function in place of

ceiling function and by using > in place of <,

we have that T (n) = Ω(n logn).

32



Comparing the Two Algorithms

Suppose that n(n + 1)/4 is the running time

of Insertion Sort and 3n logn is the running

time of Mergesort

n Insertion Sort Mergesort

10 25 9.3

102 2.5× 103 1.8× 102

103 2.5× 105 2.7× 103

104 2.5× 107 3.6× 104

105 2.5× 109 4.5× 105

106 2.5× 1011 5.4× 106

107 2.5× 1013 6.3× 107

The gap grows as n grows!

33


