
Homework 1 Due Thursday Sept 16

• CLRS 2.3-7

• CLRS 2-2

• Solve the following recurrence exactly:

T(1) = 2, and for all n ≥ 2 a power of

three, T (n) = 4T (n/3) + 3n + 5.

1



Chapter 6: Heapsort

A complete binary tree is a binary tree in

which each non-leaf has two children and all

the leaves are at the same depth from the

root.

A nearly complete binary tree is a binary

tree constructed from a complete binary tree

by eliminating a number of nodes (possibly

none) from right at the leaf level.

A heap is a node-labeled, nearly complete

binary tree with a special property.

2



Implementing Node-Labeled, Nearly

Complete Binary Trees Using Arrays

The array indices start from 1. The nodes are

enumerated level-wise, by going from the

root to the leaf level and going from left to

right within each level.

Justification for Using the Array

Implementation

With this implementation, accessing the

parent and the children is easy.

• For every i, 2 ≤ i ≤ n, the parent of the

ith node is bi/2c.

• For every i, 1 ≤ i ≤ bn/2c, the left child

of the ith node is 2i.

• For every i, 1 ≤ i ≤ b(n− 1)/2c, the right

child of the ith node is 2i + 1.
3



2 4 1 10

4 8 7

2 14

5 69 37

10

16

3

98

1

1 987 102 3 4 5 6
7 9 3 2 4 18101416

4



The Special Property of a Heap

A max-heap is a node-labeled, nearly

complete binary tree, where the label is called

the key and the keys satisfy the following

max-heap property:

• For every non-leaf, its key is less than or

equal to its parent’s key.

A min-heap is defined with “less than or

equal to” in place of “greater than or equal

to.” In this case the property is called the

min-heap property.

Here we study only max-heaps.

5



The Height of a Heap

The height of a node is the maximum

number of downward edges to a leaf node.

What is the height of an

n-node heap?

6



The Height of a Heap

What is the height of an

n-node heap?

Let’s see... A heap of height

1 has up to 3 nodes, height

two is up to 7 seven nodes...

height i has up to 2i+1 − 1

nodes...

The height is dlog(n+1)e−1.

...

Equivalently, it is blognc.

7



Basic Operations on Max-Heaps

Max-Heapify

An input to the procedure is a heap and a

node i. We set k to i, and then execute the

following:

• If k is a leaf, then quit the loop now.

• If the key of each child of k is at most the

key of k, then quit the loop.

• If k has only one child, then set k′ to the

unique child. Otherwise, set k′ to the

child with the greater key than the other.

• Exchange the keys between k and k′.

• Set k to k′.

8



2 11

7

10

6

9 3

1

BEFORE

4

8

>

<

2

9 3

1

AFTER

4

8

10

7

6

11

9



The Pseudo-code

Max-Heapify(A, n, i)

1: k ← i

2: while k ≤ n/2 do

3: { k′ ← 2k

4: B Set k′ to the left child for now

5: if (k′+ 1 ≤ n and A[k′] < A[k′+ 1])

6: then k′ ← k′+ 1

7: B If the right child exists and it has a larger key

8: B than the left child, k′ is the right child

9: if A[k] < A[k′] then

10: { x← A[k]; A[k]← A[k′]; A[k′]← x }

11: B Swap A[k] and A[k′] if A[k′] > A[k]

12: k ← k′

13: B Move to k′

14: }

10



Why is the loop terminated

when k exceeds n/2?

11



Why is the loop terminated

when k exceeds n/2?

It’s because the nodes beyond

n/2 are leaves and thus are

without children.

Now what’s the running time?

12



Now what’s the running

time?

It’s proportional to the height

of i.

13



Build-Max-Heap

This operation turns a given array into a

max-heap.

To do this, we first turn each of the subtrees

of the root into a max-heap. Then there is

only one spot where violation of the

max-heap property may exist, which is the

root. If we execute Max-Heapify from the

root, then such violation will be eliminated.

Build-MaxHeap(A, n)

1: Build-MaxHeap0(A, n,1)

Build-MaxHeap0(A, n, i)

1: if 2i ≤ n then

2: Build-MaxHeap0(A, n,2i)

3: if 2i + 1 ≤ n then

4: Build-MaxHeap0(A, n,2i + 1)

5: Max-Heapify(A, n, i)

14



Unrolling the Recursion

The algorithm is a collection of calls to

Max-Heapify. Since Max-Heapify(A, n, i)

does not change the keys of the nodes

outside subtree(i), we can reorder any way we

want so long as the call for a node comes

after the for its descendants. So, the

following does the same:

1: for i← n downto 1 do

2: Max-Heapify(A, n, i)

Since Max-Heapify(A, n, i) does nothing if

i > n/2, the initial value of i can be bn/2c.

1: for i← bn/2c downto 2 do

2: Max-Heapify(A, n, i)

15



An example

2 4 11

8 7

10

6

9 3

1

2 4

8

10

6

9 3

1

7

11

2 4

8

10

6

3

7

11 1

9

2 4

8

6

3

7

10

11

1

9

2

38

4

1

9

11

10

7

6

16



What is the running time of

Build-MaxHeap(A, n)?

17



What is the running time of

Build-MaxHeap(A, n)?

The height of the heap is

O(logn), so each call to

Heapify costs O(logn).

Since there are O(n) calls, the

total cost is O(n logn).

But the analysis can be more

rigorous...

18



For each h, 0 ≤ h ≤ blgnc, the number of

nodes having height h is at most d n
2h+1e. So,

the total cost is at most

blgnc
∑

h=0

d
n

2h+1
eO(h) = O






n
blgnc
∑

h=0

h

2h






.

Note that

∞
∑

h=0

(

1

2

)h
=

1

(1− 1/2)
= 2.

∞
∑

h=0

h

2h
=

1/2

(1− 1/2)2
= 2.

Thus, the running time is O(n).

Can you argue that the

running time is actually Θ(n)?

19



Can you argue that the

running time is actually Θ(n)?

That’s easy!

Max-Heapify is called bn/2c

times, so the running time is

Ω(n).

Since the running time is

O(n), this implies that the

running time is Θ(n).

20



Heapsort · · · Sorting Using a Max-Heap

First, we turn the input array into a

max-heap. By the max-heap property, the

root has the largest key. So, we record the

key as the largest key in the input array.

Now we replace the key of the root by the

key of the last node and decrement the size

of the node by one. This may generate

violation of the max-heap property, but that

can be resolved by Build-Max-Heap. Thus,

we find the second largest key.

We will repeat the replacement process to

find the third largest, the fourth largest, and

so on.

21



The Pseudo-code

HeapSort(A, n)

1: Build-MaxHeap(A, n)

2: for i = n downto 1 do

3: { B[i]← A[1]

4: B Identify the ith smallest element

5: A[1]← A[i]

6: B Replace A[1]

7: Max-Heapify(A, i,1) }

8: B Heapify

9: for i = 1 to n do A[i]← B[i]

What’s the running time?

22



What’s the running time?

Well, Max-Heapify runs in

time O(logn).

There are n calls to it.

So, the running time in

question is O(n logn).

23



An Example

2 4 11

8 7

10

6

9 3

1

2

38

4

1

9

11

10

7

6

The input numbers After Build-Max-Heap

112

38

4

1

910

7

6

112

36

4

1

98

7

10

6 has replaced 11 Heapified from the root

10112

36 1

98

7

4

10112

36 1

48

7

9

4 has replaced 10 Heapified from the root

24



9 1011

36 1

48

7

2

9 1011

36 1

47

2

8

2 has replaced 9 Heapified from the root

8 9 1011

6 1

47

2

3

8 9 1011

3 1

46

2

7

3 has replaced 8 Heapified from the root

25



A priority queue

A data structure for maintaining elements

that are assigned numeric values.

Operations on Priority Queues

• Maximum: To obtain an element with

the largest key.

• Extract-Max: To take out the element

with the largest key.

• Insert: Insert an element.

• Delete: Delete an element.

• Decrease-Key: Decrease the key of an

element.

• Increase-Key: Increase the key of an

element.

26



Implementation of a Priority Queue Using

a Max-Heap

Maximum(A) : Return A[1].

Extract-Max(A, n) : This is the core of

HeapSort.

Insert(A, n, x) : To add a key x to A whose

size is n, first increment n by one. Then

insert x as the nth element. Then resolve

violation from the inserted key towards

the root.

27



2

38

4

1

5

13

10

7

6 11

28



The Pseudo-code

Insert(A, n, x)

1: n← n + 1; A[n]← x

2: Upward-Fix(A, n, n)

Upward-Fix(A, k)

1: i← k

2: while i ≥ 2 do

3: { j ← bi/2c

4: if A[j] < A[i] then

5: { y ← A[i]; A[i]← A[j]; A[j]← y }

6: B Swap A[i] and A[j] if A[j] < A[i]

7: i← j }

8: B Move to j

The running time is O(lgn).

29



Delete(A, i) : Exercise 6.5-7.

Increase-Key(A, i, x) : What needs to be

done is to replace A[i] by x if x > A[i]. To

do the replacement, set A[i] to x and call

Upward-Fix(A, i).

Decrease-Key(A, i) : Use Heapify.

30


