
Chapter 7: Quicksort

Quicksort is a divide-and-conquer sorting

algorithm in which division is dynamically

carried out (as opposed to static division in

Mergesort).

The three steps of Quicksort are as follows:

Divide: Rearrange the elements and split the

array into two subarrays and an element

in between such that so that each

element in the left subarray is less than or

equal the middle element and each

element in the right subarray is greater

than the middle element.

Conquer: Recursively sort the two subarrays.

Combine: None.

1



The Algorithm

Quicksort(A, n)

1: Quicksort′(A,1, n)

Quicksort′(A, p, r)

1: if p ≥ r then return

2: q = Partition(A, p, r)

3: Quicksort′(A, p, q − 1)

4: Quicksort′(A, q + 1, r)

2



The subroutine Partition

Given a subarray A[p .. r] such that p ≤ r − 1,

this subroutine rearranges the input subarray

into two subarrays, A[p .. q − 1] and

A[q + 1 .. r], so that

• each element in A[p .. q − 1] is less than or

equal to A[q] and

• each element in A[q + 1 .. r] is greater

than or equal to A[q]

Then the subroutine outputs the value of q.

Use the initial value of A[r] as the “pivot,” in

the sense that the keys are compared against

it. Scan the keys A[p .. r− 1] from left to right

and flush to the left all the keys that are

greater than or equal to the pivot.

3



The Algorithm

Partition(A, p, r)

1: x = A[r]

2: i← p− 1

3: for j ← p to r − 1 do

4: if A[j] ≤ x then {

5: i← i + 1

6: Exchange A[i] and A[j] }

7: Exchange A[i + 1] and A[r]

8: return i + 1

During the for-loop i + 1 is the position at

which the next key that is greater than or

equal to the pivot should go to.

4



An Example:

q

17 9 22 31 7 12 10 21 13 29 18 20 11

9 17 22 31 7 12 10 21 13 29 18 20 11

9 22 31 12 10 21 13 29 18 20 117 17

9 7 10 31 17 12 22 21 13 29 18 20 11

p rpivot=11

9 7 10 11 17 12 22 21 13 29 18 20 31

5



Another Example:

17 9 22 31 7 12 10 21 13 29 18 20 23

17 9 22 31 7 12 10 21 13 29 18 20 23

p rpivot=23

17 9 22 31 7 12 10 21 13 29 18 20 23

17 9 22 31 7 12 10 21 13 29 18 20 23

17 9 22 7 31 12 10 21 13 29 18 20 23

17 9 22 7 10 21 13 29 18 20 2312 31

17 9 22 7 21 13 29 18 20 2312 10 31

6



Another Example (cont’d):

q

17 9 22 7 13 29 18 20 2312 10 3121

17 9 22 7 29 18 20 2312 10 2113 31

17 9 22 7 29 20 2312 10 2113 18 31

17 9 22 7 2312 10 2113 18 312920

17 9 22 7 12 10 2113 18 2920 23 31

7



Proving Correctness of Partition

Let (A, p, r) be any input to Partition and let

q be the output of Partition on this input.

Suppose 1 ≤ p < r. Let x = A[r]. We will

prove the correctness using loop invariant.

The loop invariant we use is: at the

beginning of the for-loop, for all k, p ≤ k ≤ r,

the following properties hold:

1. If p ≤ k ≤ i, then A[k] ≤ x.

2. If i + 1 ≤ k ≤ j − 1, then A[k] > x.

3. If k = r, then A[k] = x.

8



Initialization

The initial value of i is p− 1 and the initial

value of j is p. So, there is no k such p ≤ k ≤ i

and there is no k such that i + 1 ≤ k ≤ j − 1.

Thus, the first conditions are met. The initial

value of A[r] = x, is so the last one is met.

9



Maintenance

Suppose that the three conditions are met at

the beginning and that j ≤ r − 1.

Suppose that A[j] > x. The value of i will not

be changed, so (1) holds. The value of j

becomes j + 1. Since A[j] > x, (2) will for the

new value of j. Also, A[r] is unchanged so

(3) holds.

Suppose that A[j] ≤ x. Then A[i + 1] and

A[j] will be exchanged. By (2), A[i + 1] > x.

So, after exchange A[i + 1] ≤ x and A[j] > x.

Both i and j will be incremented by 1, so (1)

and (2) will be preserved. Again (3) still

holds.

10



Termination

At the end, j = r. So, for all k, 1 ≤ k ≤ i,

A[k] ≤ x and for all k, i + 1 ≤ k ≤ r − 1,

A[k] > x.

Running Time Analysis

The running time of quicksort is a linear

function of the array size, r − p + 1, and the

distance of q from p, q − p. This is

Θ(r − p + 1).

What are the worst cases of

this algorithm?

11



Worst-case analysis

Let T be the worst-case running time of

Quicksort. Then

T (n) = T (1) + T (n− 1) + Ω(n).

By unrolling the recursion we have

T (n) = nT (1) + Ω(
n∑

i=2

n).

Since T (1) = O(1), we have

T (n) = Ω(n2).

Thus, we have:

Theorem A The worst-case running time

of Quicksort is Ω(n2).

Since each element belongs to a region in

which Partition is carried out at most n

times, we have:

Theorem B The worst-case running time

of Quicksort is O(n2).

12



The Best Cases

The best cases are when the array is split half

and half. Then each element belongs to a

region in which Partition is carried out at

most dlogne times, so it’s O(n logn).

13



Randomized-Quicksort

The idea is to turn pessimistic cases into

good cases by picking up the pivot

randomly.

We add the following two lines at the

beginning of the algorithm:

−2: Pick t ∈ [p, r] under the uniform distribution

−1: Exchange A[r] and A[t]

14



Expected Running Time of

Randomized-Quicksort

Let n be the size of the input array. Suppose

that the elements are pairwise distinct.∗

Let T (n) be the expected running time of

Randomized-Quicksort on inputs of size n.

By convention, let T (0) = 0.

Let x be the pivot. Note that the size of the

left subarray after partitioning is the rank of x

minus 1.

∗A more involved analysis is required if this condition is
removed.

15



Making a hypothesis

We claim that the expected running time is

at most cn logn for all n ≥ 1. We prove this

by induction on n. Let a be a constant such

that partitioning of a size n subarray requires

at most an steps.

For the base case, we can choose a value of c

so that the claim hold.

For the induction step, let n ≥ 3 and suppose

that the claim holds for all values of n less

than the current one.

16



The expected running time satisfies the

following:

T (n)

≤ an +

∑n−1
k=0(T (k) + T (n− 1− k))

n

= an +
2

n

n−1∑
k=1

T (k).

By our induction hypothesis, this is at most

an +
2c

n

n−1∑
k=1

k log k.

Note that

n−1∑
k=1

k lg k ≤
∫ n

1
x lgxdx.

The integration is equal to

1

2
n2 lgn−

n2

4
+

1

4
.

This is at most

1

2
n2 lgn−

n2

8
.

17



By plugging this bound, we have

T (n) ≤ cn lgn + (a−
c

4
)n.

Choose c so that c > 4a. Then,

T (n) ≤ cn lgn.

Thus, we have proven:

Theorem C Randomized Quicksort has the

expected running time of Θ(n lgn).

18


