
Homework 3 Due Thursday Sept 30

• CLRS 8-3 (sorting variable-length items)

• CLRS 9-2 (weighted median)

• CLRS 11-1 (longest probe bound for

hashing)

1



Chapter 11: Hashing

We use a table of size m � n and select a

function h : U → Zm, which we call a hash

function.

We put an element with key k to the slot

h(k), where collision is resolved by chaining

the elements with the same “hash value.”

2



Load Factor

To analyze efficiency of hashing we use the

load factor, α, which is the average number

of elements in a slot. This is a quantity that

changes over time as the table acquires or

loses elements.

What is the load factor of an

m-slot hash table holding q

objects?

4



Fundamental operations in hashing

Insertion

Insert the given item with key k somewhere in

the list at the slot h(k).

Where in the list should the

item be inserted?

And how does the strategy

influence the running time?

5



It should go at the beginning

of the list.

Then the time for insertion is

constant excluding the time

for evaluation the hash

function.

If all the elements happen to

have the same hash value,

then the time for insertion is

proportion to the number of

elements in the table, again

excluding time for evaluation

the hash function.

6



Deletion and Searching

To find or delete an element with key k, we

scan the list at slot h(k) to find it.

The worst-case scenario in searching and

deletion is when the item is at the very end of

the list.

7



Selection of the Hash Function

The performance of dynamic table operations

is dependent on the choice of h.

Suppose that, for each of the three

operations, selection of the target element is

subject to a probability distribution P . That

is, for each key x, 0 ≤ x ≤ n − 1, the

probability that the key x is selected for an

operation is P (x).

Ideal hashing can be achieved when the hash

function has a property such that for all y,

0 ≤ y ≤ m − 1,
∑

x:h(x)=y P (x) = 1
m. Such a

situation is called simple uniform hashing.

What is the expected number

of elements in a slot under

simple uniform hashing?

8



Under simple uniform hashing, for each slot,

the probability that the target element is

assigned to the slot is 1
m. If there are q

elements in the table, then for every slot the

expected number of elements in the slot is

q/m, which is the load factor. The expect

time for searching in a list of length L is L/2

for successful search and L for unsuccessful

search. So, we have the following theorem.

Theorem A If h is computable in a

constant time searching under simple

uniform hashing takes Θ(1 + α) on the

average.

Unfortunately, designing a simple uniform

hash function is usually impossible because P

is not known.

9



Heuristics for Hash Functions

1. The division method

For all k, h(k) = k mod m.

It often happens that the keys are character

strings interpreted in radix 2p. Then

• m = 2p maps two keys with the same last

character to the same hash value, and

• m = 2p − 1 maps two keys composed of

the same set of characters to the same

hash value.

A heuristic choice for m is a prime far apart

from any powers of 2, e.g. the prime closest

to 2p/3.

2. The multiplication method

For all k, h(k) = bm(kA − bkAc)c, where

A ∈ (0 ..1) is a constant.

It is known that the value of m is not critical.

10



Universal Hashing

Suppose that a situation in which an

application that employs hashing is repeatedly

executed and in which the hash function is

selected from a pool of hash functions at

each execution.

Let H be the pool of hash functions.

We say that H is universal if, for all keys x

and y, x 6= y, it holds that

(*) ‖{h ∈ H | h(x) = h(y)}‖ =
‖H‖
m .

Suppose that at each execution the hash

function h is chosen from H uniformly at

random. Then, for all pairs (x, y), x 6= y, the

probability that h(x) = h(y) is 1/m.

11



Usefulness of Universal Hashing

Theorem B Let H be a universal family of

hash functions. Let S be a nonempty set of

keys having cardinality at most m. Let x be

any key in S. For h ∈ H chosen uniformly at

random, the expected number of collisions in

S with x is less than 1.

Proof Let E be the expected number in

question. Then

E =

∑

h∈H
∑

y∈S,x 6=y σ(h, x, y)

‖H‖
,

where σ(h, x, y) = 1 if h(x) = h(y) and 0

otherwise. This quantity is equal to
∑

y∈S,x 6=y
∑

h∈H σ(h, x, y)

‖H‖
.

By (*), this is

∑

y∈S,x 6=y

1

m
≤

m − 1

m
< 1.

12



Designing Universal Hash Functions

Choose a prime p greater than all keys k.

Choose a ∈ {1...p − 1}

Choose b ∈ {0...p − 1}

ha,b(k) = ((ak + b) (mod p)) (mod m)

Lemma C The class Hp,m is universal.

13



Universality of the Family

The class Hp,m is universal.

Proof For two distinct keys k 6= l:

r = (ak + b) (mod p)

s = (al + b) (mod p)

r − s = a(k − l) (mod p)

r 6= s

Furthermore we can solve for a and b:

a = ((r − s)((k − l)−1 (mod p))) (mod p)

b = (r − ak) (mod p)

So there is a one-to-one correspondence

between pairs (a, b) and (r, s). If we choose

(a, b) uniformly at random, (r, s) are uniformly

distributed.

14



(r, s) are uniformly distributed.

Collision when r = s mod m. Given r, the

number of colliding s is at most

dp/me − 1 ≤
(p + m − 1)

m
− 1

= (p − 1)/m

Pr{r = s mod m} ≤
(p − 1)/m

p − 1
= 1/m

15



Open Addressing

Open addressing is an alternative to chaining,

where collision is resolved by putting the

element into an open slot.

To do this we assign to each key a sequence

of addresses to search for an open slot.

Formally, we extend the hash function to one

that takes two inputs, namely a mapping

from U ×Zm to Zm, where for each k ∈ U the

slots h(k,0), . . . , h(k, m − 1) are examined in

this order and the first open one is used to

store k. The sequence

〈h(k,0), . . . , h(k, m − 1)〉 is called the probe

sequence for k. We design that each probe

sequence is a permutation of Zm.

16



Deletion with Open Addressing

We cannot simply delete an element. When

deleting an element we store in the slot a

special value “DELETED” to signify that a

key has been deleted. This means that the

computation time for deletion depends on not

the load factor in the original sense but on

the load factor that even counts the slots

that have the “DELETED” flag.

Can we store an item in a slot

with “DELETED” label?

17



Insertion with Open Addressing

To insert an element with key k, we put it in

the first open (either completely empty or

having “DELETED”) slot in the probe

sequence for k.

Searching with Open Addressing

Searching is subject to the probe sequence of

the key. It goes on until either the key is

found or a completely open slot is

encountered.

18



Three probe sequence schemes

1. Linear probing: Define

h(k, i) = (h′(k) + i) mod m,

where h′ is an ordinary hash function from

U to Zm.

2. Quadratic probing: Define

h(k, i) = (h′(k) + c1i + c2i2) mod m,

where h′ is an ordinary hash function and

c1, c2 6≡ 0 (mod m).

3. Double hashing: Pick two ordinary hash

functions h1, h2 of U to Zm. Define

h(k, i) = (h1(k) + ih2(k)) mod m.

19



Primary clustering

Primary clustering is a situation in which

there is a long line of occupied slots. Primary

clustering is observed typically in linear

probing

In linear probing, if every other slot is

occupied, then the average unsuccessful

search takes 1.5 probes. On the other hand,

if there is a cluster of one half of the slots,

then the average number of probes is

1

m
·







m

2
+

m/2
∑

i=1

i






=

1

2
+

1

2m
·
m

2

(

m

2
+ 1

)

=
m

8
+

3

4
.

20



Analysis of Open-Address Hashing

Let m be the number of slots and let n be

the number of occupied slots, including those

that hold the “DELETED” label. Let β = n
m.

Theorem D Suppose that all the probe

sequences (all m! permutations) are equally

likely to occur and that β < 1. Then, in an

open-address hashing, the expected number

of probes in an unsuccessful search is ≤ 1
1−β.

22



Proof For each i ≥ 0, define pi (respectively,

qi) to be the probability that exactly

(respectively, at least) i probes are made

before finding an open slot. The expected

number of probes is 1 +
∑n

i=1 ipi.

For all i, 1 ≤ i ≤ n, qi =
∑n

j=i pi. So,

n
∑

i=1

ipi =
n

∑

i=1

qi.

Note that

qi =

(

n

m

) (

n − 1

m − 1

)

· · ·

(

n − i + 1

m − i + 1

)

≤

(

n

m

)i

= βi.

So, the expected number of probes is at most

1 +
∑n

i=1 βi ≤
∑∞

i=0 βi = 1
1−β.

23


