
Chapter 12: Binary Search Trees

A binary search tree is a binary tree with a

special property called the BST-property,

which is given as follows:

? For all nodes x and y, if y belongs to the

left subtree of x, then the key at y is less

than the key at x, and if y belongs to the

right subtree of x, then the key at y is

greater than the key at x.

We will assume that the keys of a BST are

pairwise distinct.

Each node has the following attributes:

• p, left, and right, which are pointers to the

parent, the left child, and the right child,

respectively, and

• key, which is key stored at the node.
1



An example

4

2

3

6

5

12

9

8 11 15

19

20

7

2



Traversal of the Nodes in a BST

By “traversal” we mean visiting all the nodes

in a graph. Traversal strategies can be

specified by the ordering of the three objects

to visit: the current node, the left subtree,

and the right subtree. We assume the the left

subtree always comes before the right

subtree. Then there are three strategies.

1. Inorder. The ordering is: the left subtree,

the current node, the right subtree.

2. Preorder. The ordering is: the current

node, the left subtree, the right subtree.

3. Postorder. The ordering is: the left

subtree, the right subtree, the current

node.

3



Inorder Traversal Pseudocode

This recursive algorithm takes as the input a

pointer to a tree and executed inorder

traversal on the tree. While doing traversal it

prints out the key of each node that is visited.

Inorder-Walk(x)

1: if x = nil then return

2: Inorder-Walk(left[x])

3: Print key[x]

4: Inorder-Walk(right[x])

We can write a similar pseudocode for

preorder and postorder.

4



preorder postorderinorder

2

1 3

1

12 23

3

4

2

3

6

5

12

9

8 11 15

19

20

7

What is the outcome of

inorder traversal on this BST?

How about postorder traversal

and preorder traversal?

5



Inorder traversal gives: 2, 3,

4, 5, 6, 7, 8 , 9, 11, 12, 15,

19, 20.

Preorder traversal gives: 7, 4,

2, 3, 6, 5, 12, 9, 8, 11, 19,

15, 20.

Postorder traversal gives: 3,

2, 5, 6, 4, 8, 11, 9, 15, 20,

19, 12, 7.

So, inorder travel on a BST

finds the keys in

nondecreasing order!

6



Operations on BST

1. Searching for a key

We assume that a key and the subtree in

which the key is searched for are given as an

input. We’ll take the full advantage of the

BST-property.

Suppose we are at a node. If the node has

the key that is being searched for, then the

search is over. Otherwise, the key at the

current node is either strictly smaller than the

key that is searched for or strictly greater

than the key that is searched for. If the

former is the case, then by the BST property,

all the keys in th left subtree are strictly less

than the key that is searched for. That means

that we do not need to search in the left

subtree. Thus, we will examine only the right

subtree. If the latter is the case, by symmetry

we will examine only the right subtree.

7



Algorithm

Here k is the key that is searched for and x is

the start node.

BST-Search(x, k)

1: y ← x

2: while y 6= nil do

3: if key[y] = k then return y

4: else if key[y] < k then y ← right[y]

5: else y ← left[y]

6: return (“NOT FOUND”)

8



An Example

search for 87

4

2 6 9 13

11

NIL

What is the running time of

search?

9



2. The Maximum and the Minimum

To find the minimum identify the leftmost

node, i.e. the farthest node you can reach by

following only left branches.

To find the maximum identify the rightmost

node, i.e. the farthest node you can reach by

following only right branches.

BST-Minimum(x)

1: if x = nil then return (“Empty Tree”)

2: y ← x

3: while left[y] 6= nil do y ← left[y]

4: return (key[y])

BST-Maximum(x)

1: if x = nil then return (“Empty Tree”)

2: y ← x

3: while right[y] 6= nil do y ← right[y]

4: return (key[y])

10



3. Insertion

Suppose that we need to insert a node z such

that k = key[z]. Using binary search we find a

nil such that replacing it by z does not break

the BST-property.

11



BST-Insert(x, z, k)

1: if x = nil then return “Error”

2: y ← x

3: while true do {

4: if key[y] < k

5: then z ← left[y]

6: else z ← right[y]

7: if z = nil break

8: }

9: if key[y] > k then left[y]← z

10: else right[p[y]]← z

12



4. The Successor and The Predecessor

The successor (respectively, the predecessor)

of a key k in a search tree is the smallest

(respectively, the largest) key that belongs to

the tree and that is strictly greater than

(respectively, less than) k.

The idea for finding the successor of a given

node x.

• If x has the right child, then the successor

is the minimum in the right subtree of x.

• Otherwise, the successor is the parent of

the farthest node that can be reached

from x by following only right branches

backward.

13



An Example

4

2

3

6

5

12

9

8 11 15

19

20

7 25

23

14



Algorithm

BST-Successor(x)

1: if right[x] 6= nil then

2: { y ← right[x]

3: while left[y] 6= nil do y ← left[y]

4: return (y) }

5: else

6: { y ← x

7: while right[p[x]] = x do y ← p[x]

8: if p[x] 6= nil then return (p[x])

9: else return (“NO SUCCESSOR”) }

15



The predecessor can be found similarly with

the roles of left and right exchanged and with

the roles of maximum and minimum

exchanged.

For which node is the

successor undefined?

What is the running time of

the successor algorithm?

16



5. Deletion

Suppose we want to delete a node z.

1. If z has no children, then we will just

replace z by nil.

2. If z has only one child, then we will

promote the unique child to z’s place.

3. If z has two children, then we will identify

z’s successor. Call it y. The successor y

either is a leaf or has only the right child.

Promote y to z’s place. Treat the loss of

y using one of the above two solutions.

17



10 10

5

61

3

2 4

7

9 13

11

8

5

61

3

2 4

9 13

11

8

42

3

5

61

3

2 4

7

9 13

11

8

5

6 9 13

11

8

710 10

10

5

61

3

2 4

7

9 13

11

8

5

61

3

2 4

13

11

9

10

18



Algorithm

This algorithm deletes z from BST T .

BST-Delete(T , z)

1: if left[z] = nil or right[z] = nil

2: then y ← z

3: else y ← BST-Successor(z)

4: � y is the node that’s actually removed.

5: � Here y does not have two children.

6: if left[y] 6= nil

7: then x← left[y]

8: else x← right[y]

9: � x is the node that’s moving to y’s position.

10: if x 6= nil then p[x]← p[y]

11: � p[x] is reset If x isn’t NIL.

12: � Resetting is unnecessary if x is NIL.

19



Algorithm (cont’d)

13: if p[y] = nil then root[T ]← x

14: � If y is the root, then x becomes the root.

15: � Otherwise, do the following.

16: else if y = left[p[y]]

17: then left[p[y]]← x

18: � If y is the left child of its parent, then

19: � Set the parent’s left child to x.

20: else right[p[y]]← x

21: � If y is the right child of its parent, then

22: � Set the parent’s right child to x.

23: if y 6= z then

24: { key[z]← key[y]

25: Move other data from y to z }

27: return (y)

20



Summary of Efficiency Analysis

Theorem A On a binary search tree of

height h, Search, Minimum, Maximum,

Successor, Predecessor, Insert, and

Delete can be made to run in O(h) time.

21



Randomly built BST

Suppose that we insert n distinct keys into an

initially empty tree. Assuming that the n!

permutations are equally likely to occur, what

is the average height of the tree?

To study this question we consider the

process of constructing a tree T by inserting

in order randomly selected n distinct keys

to an initially empty tree. Here the actually

values of the keys do not matter. What

matters is the position of the inserted key in

the n keys.

22



The Process of Construction

So, we will view the process as follows:

A key x from the keys is selected uniformly at

random and is inserted to the tree. Then all

the other keys are inserted. Here all the keys

greater than x go into the right subtree of x

and all the keys smaller than x go into the

left subtree. Thus, the height of the tree

thus constructed is one plus the larger of the

height of the left subtree and the height of

the right subtree.

23



Random Variables

n = number of keys

Xn = height of the tree of n keys

Yn = 2Xn.

We want an upper bound on E[Yn].

For n ≥ 2, we have

E[Yn] =
1

n





n
∑

i=1

2E[max{Yi−1, Yn−i}]



 .

E[max{Yi−1, Yn−i}] ≤ E[Yi−1 + Yn−i]

≤ E[Yi−1] + E[Yn−i]

Collecting terms:

E[Yn] ≤
4

n

n−1
∑

i=1

E[Yi].

24



Analysis

We claim that for all n ≥ 1 E[Yn] ≤
1
4

(

n+3
3

)

.

We prove this by induction on n.

Base case: E[Y1] = 20 = 1.

Induction step: We have

E[Yn] ≤
4

n

n−1
∑

i=1

E[Yi]

Using the fact that

n−1
∑

i=0

(i + 3

3

)

=
(n + 3

4

)

E[Yn] ≤
4

n
·
1

4
·
(n + 3

4

)

E[Yn] ≤
1

4
·
(n + 3

3

)

25



Jensen’s inequality

A function f is convex if for all x and y,

x < y, and for all λ, 0 ≤ λ ≤ 1,

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Jensen’s inequality states that for all random

variables X and for all convex function f

f(E[X]) ≤ E[f(X)].

Let this X be Xn and f(x) = 2x. Then

E[f(X)] = E[Yn]. So, we have

2E[Xn] ≤
1

4

(n + 3

3

)

.

The right-hand side is at most (n + 3)3. By

taking the log of both sides, we have

E[Xn] = O(logn).

Thus the average height of a randomly build

BST is O(logn).

26


