
Chapter 14: Augmenting Data Structures

By augmenting already existing data

structures one can build new data structures

Augmenting a red-black tree

For each node x, add a new field size(x), the

number of non-nil nodes in the subtree

rooted at x

Now with the size information, we can fast

compute the dynamic order statistics and

the rank, the position in the linear order.

1



: red nodes
: black nodes

2
1

6
2 3

1 11

What is the size of the root of

the above RB-tree?

2



Selection

To find the ith order statistics, run binary

search.

Let a and b be the size of the left child and

that of the right child, respectively. Then we

do the following

• If i = a + 1, the current node holds the

i-th o.s.

• If i < a + 1, search for the i-th o.s. in the

left subtree.

• If i > a + 1, search for the (i− a− 1)-st

o.s. in the right subtree.

What is the running time of

this selection procedure?

3



a

search for
the i-th

b

the (i-a-1)-st
search for

a+b+1

4



Computing the Rank of a Given Node x

Rank(T, x)

1: m ← size[left[x]] + 1

2: y ← x

3: while y 6= root[T ] do

4: { if right[p[y]] = x

5: then m ← m + size[left[p[y]]] + 1

6: y ← p[y]

7: }

8: Return(m)

5



b

f

d

a

e

c

x

u

Here the rank of x is

1 + (c + 1) + (e + 1) = c + e + 3.

What is the running time of

rank?

6



Maintaining the Size Information During

RB-Tree Operations

1. Rotation

The size has to be changed for only one node:

• the left-child of the rotated node in the

case of right rotation and

• the right-child of the rotated node in the

case left rotation.

7



a+b+c+2

a+b+1 a

a+b+c+2

cb

b+c+1

a b

c

8



2. Insertion/Deletion

Climb up the tree from the actual point of

insertion (respectively, deletion) all the way

to the root. For each of the node that is

encountered, and 1 to the size (respectively,

subtract 1 from the size).

9



An Augmentation Strategy

Augmenting a data structure can be broken

into the following four steps:

1. choosing an underlying data structure,

2. determining what kind of additional

information should be maintained in the

underlying data structure,

3. verify that the additional information

can be maintained during the execution

of each basic modifying operation of the

underlying data structure, and

4. developing new operations.

10



The third step is easy for red-black trees.

Theorem A Let f be a field that augments

a red-black tree T of n nodes, and suppose

that the f-value of a node x can be

computed solely from the information stored

at x and at its children.

Then, maintaining the f-values of all nodes in

T during insertion and deletion can be done

in O(lgn) steps.

11



Proof Sketch Suppose that an operation

has applied to an RB-tree T . Let T ′ the

RB-tree after this operation.

There is a downward path π in T ′ such that

every node that has been “touched” (its

or its children’s information has been

modified) is within distance three from the

path.

Thus, there are only O(logn) nodes for which

the f-field has to be modified.

So, store π and update the f-fields of all the

nodes within distance 3 from the path in a

bottom-up fashion.

12



An Illustrating Example: Interval trees

For an interval i = [l, t], call l the low end

and t the high end of i.

The trichotomy of intervals

For every pair of intervals i and j, exactly one

of the following conditions holds:

1. i and j overlap

2. high[i] < low [j], i.e., j is to the right of i

3. high[j] < low [i], i.e., j is to the left of i

13



The Trichotomy

b
a

c
d

overlap low[c]>high[b]

overlap

14



How can we maintain a dynamic set of

closed intervals?

Step 1: Underlying Data Structure

Use the RB tree, where each node holds an

interval. Use int[·] to refer to the interval.

Use lowint[·] as the key.

Step 2: Additional Information

At each node store as additional information

the largest high end of the intervals in the

subtree rooted at the node. Use max [·] to

refer to this information.

15



Step 3: Maintaining max

For all nodes x, max [x] is equal to

max{high[int[x]], max [left[x]], max [right[x]]}.

By the previous theorem, max can be

maintained in O(lgn) steps.

16



Step 4: Developing New Operation

The only new operation needed is searching

for an interval that overlaps an interval i.

Let T be the tree and i be the input.

Then set x to the root and execute the

following loop:

• If int[x] ∩ i 6= ∅, output int[x]. The search

is over. ;-)

• Otherwise, if x is a leaf, then output “no

intersecting intervals found.” :-(

• Otherwise, if x has a unique child, then

set x to the unique child.

• Otherwise, if the max [left[x]] ≥ low [i], then

set x to left[x].

• Otherwise, set x to right[x].

17



Theorem B The algorithm works correctly.

Proof Call a subtree U good if it contains

an interval overlapping i and bad otherwise.

We have only to show that if

(*) if T is good then Tx is good

holds during the course of the algorithm.

For initialization, the property (*) holds at

the beginning of the search.

18



For the induction step, suppose that we are

at non-leaf x and (*) holds. Suppose that T

is good. Then by (*) Tx is good. Suppose

that the interval at x does not intersect with

i. Let y be the node that is visited at the

next round. We will show that Ty is good.

Since the interval at x does not intersect with

i, either the left subtree of x is good or the

right subtree of x is good.

This means that if there is only one child of x,

then the unique child is good. Since y is this

unique child (*) when x has only one child.

So, assume that x has two children.

19



(Case 1) max [left[x]] ≥ low [i]:

Here y = left[x].

(Case 1a) subtree(left[x]) is good:

This implies Ty is good and T is good. So,

(*) holds for y.

(Case 1b) subtree(left[x]) is bad:

Since max [left[x]] ≥ low [i] there is an interval

to the right of i in the left subtree of x. This

means that every interval in the right subtree

is to the right of i. Thus, the right subtree is

bad. So, both subtrees are bad, which is

impossible. So, (Case 1b) never occurs.

(Case 2) max [left[x]] < low [i]:

Here y = right[x]. Since max [left[x]] < low [i],

there is no interval that intersects with i in

the left subtree tree. So Ty is good.

20


