
Chapter 20: Fibonacci Heaps

Fibonacci heaps are linked lists of

heap-ordered trees (children’s keys are at

least that of their parent) with the following

characteristics:

1. The trees are not necessarily binomial

2. Siblings are bidirectionally linked

3. There is a pointer min[H] to the root with

the minimum key

4. The root degrees are not unique.

5. A special attribute n[H] maintains the

total number of nodes

6. Each node has an additional boolean label

mark , indicating whether has lost a child

since the last time it was made a child

of another node
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We assume that roots are always unmarked.

Then what is the running time

for finding the minimum key

in an n-node Fibonacci heap?
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Amortized Cost Analysis a lá the

Potential Method

Let t(H) be the number of trees and m(H)

the number of marked nodes in H. We

assume that the computation begins with H

being empty.

Define the potential Φ(H) to be

β(t(H) + 2m(H))

for some fixed positive constant β. This β is

the scale-up factor. The term t(H) is for

achieving an amortized cost of O(lgn) for the

minimum extraction operation and the term

2m(H) is for achieving an amortized cost of

O(1) for the key decreasing operation.
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Then the potential is always nonnegative. We

stipulate that an X number of operations are

executed on an initially empty Fibonacci heap.

Then the potential at the beginning is 0.

How large can the potential

be at the end?
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How large can the potential

be at the end?

At most 3βX because there

can be at most X marked

nodes and X trees at the end.

This means that the

contribution of the potential

to the amortized cost is O(1).
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Insertion of a Key

Suppose we wish to insert a key k into a

Fibonacci heap H.

To do this we create a single-node tree T ,

whose unique node is unmarked and has k as

the key. Then we insert T immediately to the

right of min[H]. If k happens to be smaller

than the current minimum key, set min[H] to

T . We also increment n[H] by one.
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What is the actual cost of this

operation?

How much is the potential

increased?

The actual cost is O(1) and

the potential is increased by β.

So the amortized cost is O(1).
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Uniting Two Heaps

Suppose that we have two heaps, H and H ′,
and want to unite them.

To do this we insert the bidirectionally linked

root list of H ′ after min[H]. If min[H ′] has a

smaller key than min[H], then set min[H] to

min[H ′]. We also increase n[H] by n[H ′].

What is the actual cost of this

operation?

How much is the potential

increased?
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The actual cost is O(1)

because the root lists are

bidirectional. The potential

will be the sum of the

potentials of the two heaps.
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Deleting min[H]

Let x = min[H]. Then remove x from the link

of the roots and insert the child list of x to it.

This requires O(1) steps.

What more do we need to do?
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The min is changed, so we

need to recalculate this.

To do that we must examine

all the keys at the root level.

We will take this opportunity

to “clean up.” This is we

will combine some trees

together to make the

bottom-level list shorter.
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Clean up

We will unite trees so that in the remaining

trees no two trees have the same root degree.

We think of a tree having root degree k as

the integer 2k−1 and think of clean-up as

binary addition by linking two trees with

the same root degree, where a marked root

that is made a child of another node is

unmarked.

Use a binary counter A[0..D], where for each

i, 0 ≤ i ≤ D, A[i] is the pointer to a tree

having root degree i. Starting with the empty

counter (i.e. all nil), we add the trees one by

one.
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Bounding the Size of the Counter

Lemma A There is a constant α such that

the maximum root degree in an n-node

Fibonacci heap is at most α lgn.

So we let D = bα lgnc.
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What is the actual cost of cleaning up?

We view “A[i] 6= nil” as the bit being 1

“A[i] = nil” as the bit being 0.

Incorporation of one tree “sets” a bit at

one position and resets some bits. So, the

total number of bits that are set is t(H).

Note that a bit cannot be reset unless it is

already set. Since the counter is initially

zero, the total number of bits that are reset

is ≤ t(H). Thus, the actual cost is ≤ ct(H)

for some constant c.
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The Amortized Cost

Let H ′ be the heap after “clean up.” The

amortized cost is

ct(H) + β(t(H ′) + 2m(H ′) − t(H) − 2m(H)).

We have t(H ′) ≤ D and m(H ′) ≤ m(H). So,

the amortized cost of “clean-up” is at most

ct(H)+β(t(H ′)− t(H)) = (c−β)t(H)+βt(H ′).

Choose β so that β ≥ c. Then the amortized

cost is O(D) = O(lgn).
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Decreasing a Key

Suppose that a key at node x is decreased.

We resolve the heap-property violation by

repeatedly exchanging the keys as we did for

binary heaps. Then the cost can be as large

as the depth of the tree. Unfortunately, this

operation does not change the potential and

we don’t have a good bound on the depth of

the tree.
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An Alternative for Resolution

Let y be the parent of x. After decreasing

key[x], if key[x] < key[y], we mark x and then

repeat the following until x is unmarked:

• Insert x to the root list.

• Unmark x if x is marked.

• Adjust min[H] if key[min[H]] > key[x].

• Eliminate x from the list of children.

- Decrease degree[y] by 1.

• If y is marked, then set x to y, set y to

p[x]. Otherwise, if y is not a root, then

mark y.
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Amortized Cost Analysis

Suppose that s nodes are cut in a sequence.

Then this operation

• requires γs steps for some constant γ,

• increases t(H) by s, and

• decreases m(H) by at least s − 1.

The amortized cost is at most

β(s − 2(s − 1)) + γs = (γ − β)s + 2β.

Choose β so that β ≥ γ. Then the cost

becomes O(1).
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Deleting a Node

Decrease the key to −∞ and then remove the

minimum key. The amortized cost is O(1).
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Bounding the Maximum Degree

For a node x, let k = degree[x]. Let

y1, y2 . . . yk be the children of x. Then

degree[y1] ≥ 0 and degree[yi] ≥ i − 2 for

i = 2 . . . k.

Proof: Node yi had same degree as x when

linked to x, and has lost at most one child.

Fibonacci numbers: Fk = Fk−1 + Fk−2

Fk+2 = 1 +
k∑

i=0

Fi

Fk+2 ≥ φk, φ = (1 +
√

5)/2
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Bounding the Maximum Degree

For any node x with k = degree[x]:

size(x) ≥ Fk+2 ≥ φk

Proof: let sk be minimum size for degree k.

size(x) ≥ sk

= 2 +
k∑

i=2

sdegree[yi]

= 2 +
k∑

i=2

si−2

By induction over k, sk ≥ Fk+2.
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