Homework 9 Due Tuesday Dec 6

- CLRS 19.2-4 (correctness of heap union)
- CLRS 22.3-4 (depth-first search)
- CLRS 22-1 (breadth-first search)

Chapter 22: Elementary Graph Algorithms

- Graph representation
- Search strategies
- Shortest path
- Topological sort
- Strongly connected components

Representations

- 1. Adjacency-List Representation A list of adjacent nodes per node. Encoding size $= \Theta(E + V)$. Suitable for sparse graphs.
- 2. Adjacency-Matrix Representation The $|V| \times |V|$ matrix that represents connection between nodes. Encoding size $= \Theta(V^2)$. Suitable for dense graphs.

Adjacency-List Representation

Adjacency-Matrix Representation

Traversal of Nodes

The problem of visiting all the nodes of a given graph G starting from a specific node s.

- Breadth-First Search Mark all the unmarked adjacent nodes. Then recursively visit each of the adjacent nodes.
- Depth-First Search If there are unmarked adjacent nodes visit one of them.

Connectivity in Undirected Graphs Nodes *u* and *v* are **connected** if there is a path between them. A graph *G* is **connected** if every pair of nodes is connected.

So, when search is finished check whether any node is yet to be visited. If so, start the search from any such one.

Breadth-First Search

Depth-First Search

Computing the Minimum Distance from *s* **with BFS**

 $\delta(v) \stackrel{\rm def}{=}$ the minimum distance of v from s

- $\delta(v) = 0$ if and only if v = s.
- For all $i \ge 1$, $\delta(v) = i$ if and only if $\delta(v) \not\in \{0, 1, \dots, i-1\}$ and there is a node u such that $\delta(u) = i - 1$ and $(u, v) \in E$.

Use a <u>queue</u> Q. Initially, we set $Q = \{s\}$, d(s) = 0, and for all $v \neq s$, set $d[v] = +\infty$. Then while $Q \neq \emptyset$, do the following:

- Pop the top element u from Q.
- For each v such that (u, v) ∈ E, if
 d(v) ≠ +∞ do nothing; otherwise, set
 d[v] = d[u] + 1 and push v into Q.

Correctness Proof

Theorem A For each vertex v, $d[v] = \delta(v)$ at the end.

Proof Suppose that G is connected. Then every node is put in the queue at least once. Also,

- At any point of the algorithm if $Q = [v_1, \dots, v_m]$ then $d[v_1] \leq \dots \leq d[v_m] \leq d[v_1] + 1.$
- For all v, once d[v] is set to a finite value d[v] is unchanged to another finite value unless d[v] becomes +∞ again.

These imply that the value assigned to d[v]after initialization never exceeds n - 1, which implies that a node is never put in the queue twice. So, every node is put in the queue exactly once. Now we use induction on the value of d[v] to show the correctness: for all $t \ge 0$ and for all v, d[v] = t if and only if $\delta(v) = t$.

The base case is when t = 0. The proof is trivial for this case.

Why?

There is only one node whose d-value is 0.

The unique node is s.

The value of d[s] is set to 0.

For the induction step, let t > 0 and suppose that the claim holds for all values of t less than the current one. Let v be such that d[v] = t. By our induction hypothesis $\delta(v) \ge t$. There is a node u such that d[u] = t - 1 and the algorithm sets d[v] to t by identifying (u, v). By our induction hypothesis $\delta(u) = d[u]$. So, $\delta(v) \le t$. Thus, $\delta(v) = t$.

Constructing a Tree from BFS

Suppose that for all nodes v we record its "predecessor," i.e. the node from which v is touched, as $\pi[v]$. Then the edge set $\{(\pi[v], v) \mid v \in V - \{s\}\}$ defines a tree. We call it **the BFS tree** of G.

The complexity of BFS

- A node is placed in a queue just once
- An edge is examined twice

node	π
s	
w,x	s
v	w
t,y	x
u	t

DFS

Use recursive calls to a subroutine Visit. Use a global clock, initially set to 0. The clock is incremented by one when Visit is called and when a call to Visit is finished.

The main-loop:

- For all u, set $d[u] = \infty$, $\pi[u] = nil$, and clock = 0.
- For each u, if $d[u] = \infty$ then call Visit(u).

Visit(u):

- 1. Add 1 to *clock* and set d[u] = clock.
- 2. For each $v \in Adj[u]$, if $d[v] = \infty$ then set $\pi[v] = u$ and call Visit(v).
- 3. Add 1 to *clock* and set f[u] = clock.

V

Χ

V

Running Time Analysis

- A call of Visit with respect to a node is exactly once.
- Each edge is examined exactly twice.
- So, what's the running time?

Use the π field to constuct a tree, called the **DFS tree**.

node	π	
u		1/12^u 2/9^v 5/6^w
v,x	u	
w	z	
y	v	
z	y	

The Parenthesis Structure of DFS

For each u, let I[u] = (d[u], f[u]). Then, for all u and v, exactly one of the following three holds for I[u] and I[v],

- $I[u] \cap I[v] = \emptyset$. This is the case when uand v are not on the same path from s.
- $I[u] \subseteq I[v]$. This is the case when u is a descendant of v on a path from s.
- $I[v] \subseteq I[u]$. This is the case when v is a descendant of u on a path from s.

This is called the parenthesis structure of DFS.

Classification of edges

- 1. The Tree Edges: The edges on the tree.
- The Back Edges: The non-tree edges connecting descendants to ancestors (including self-loops).
- The Forward Edges: The non-tree edges connecting ancestors to descendants.
- 4. The Cross Edges: The rest.

In DFS, when e = (u, v) is first explored:

- $d[v] = \infty \Rightarrow e$ is a tree edge,
- $d[v] < f[v] = \infty \Rightarrow e$ is a back edge, and
- $f[v] < \infty \Rightarrow e$ is a forward or cross edge.

Theorem B Every edge is either a tree edge or a back edge for an undirected graph.

Topological sort

Let G be a DAG (directed acyclic graph). **Topological sorting** of the nodes of G is a linear ordering of the nodes such that for all uand v if there is an arc from u to v (i.e., $(u,v) \in E$) then u precedes v in the ordering.

What is a topological sort of these nodes?

An Algorithm for Topological Sort

Call DFS(G) to compute *f*-values. While doing this, each time a node, say v, is done, insert v as the top element of the list.

The running time is O(E + V).

Strongly Connected Components

Let G be a directed graph. For all nodes uand v, write $u \rightsquigarrow v$ if there is a directed path from u to v in G.

Two vertices u and v of a directed graph Gare **strongly connected** if $u \rightsquigarrow v$ and $v \rightsquigarrow u$. A strongly connected component of G is a maximal set S of vertices in G in which every two nodes are strongly connected.

Algorithms for Computing Strongly Connected Components

A trivial algorithm would be to compute for each u the set, W_u , defined by $\{v \mid u \rightsquigarrow v\}$, and then to check for all u and v whether it holds that $u \in W_v$ and $v \in W_u$.

How efficiently can this algorithm be implemented?

An O(E + V)-Step Method

Define $G^{\mathbf{T}}$ to be the graph G in which the direction of each edge is reversed. We do the following:

- 1. Call DFS(G) to compute f[u] for all u.
- 2. Compute $H = G^{\mathbf{T}}$ where the nodes are enumerated in order of decreasing f.
- Call DFS(H), in which whenever the paths have been exhausted, find the next node that is not visited yet in the above ordering.
- Output the vertices of each DFS-tree of *H* as a separate strongly connected component.

The *f*-values:

The DFS-trees of H:

Correctness of Strongly Connected Components

Let C, C' be SCCs in G = (V, E). If there is an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$, f(C) > f(C')

Induction on number of components.

Hypothesis: first k tree produced in second DFS are SCCs.

When visiting next vertex u, f[u] = F(C) > F(C') for any SCC C' not yet visited. Any edge leaving C in G^{T} is to a SCC already visited. All vertices in C will be descendents of u in DFS.