
Homework 9 Due Tuesday Dec 6

• CLRS 19.2-4 (correctness of heap union)

• CLRS 22.3-4 (depth-first search)

• CLRS 22-1 (breadth-first search)

2

Chapter 22: Elementary Graph

Algorithms

• Graph representation

• Search strategies

• Shortest path

• Topological sort

• Strongly connected components

Representations

1. Adjacency-List Representation A list of

adjacent nodes per node. Encoding size

= Θ(E + V). Suitable for sparse graphs.

2. Adjacency-Matrix Representation The

|V | × |V | matrix that represents

connection between nodes. Encoding size

= Θ(V 2). Suitable for dense graphs.

3

Adjacency-List Representation

1

2

3 6

5

4 1 : [2,6]

2 : [3,5]

3 : []

4 : [1,3]

5 : [4,6]

6 : [2]

Adjacency-Matrix Representation

1

2

3 6

5

4

0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 1
0 1 0 0 0 0

4

Traversal of Nodes

The problem of visiting all the nodes of a

given graph G starting from a specific node s.

1. Breadth-First Search Mark all the

unmarked adjacent nodes. Then

recursively visit each of the adjacent

nodes.

2. Depth-First Search If there are

unmarked adjacent nodes visit one of

them.

Connectivity in Undirected Graphs Nodes

u and v are connected if there is a path

between them. A graph G is connected if

every pair of nodes is connected.

So, when search is finished check whether

any node is yet to be visited. If so, start the

search from any such one.

5

Breadth-First Search

1

2

3

4

6

5

1

3
1

2

2

1

2

3

4

6

5

1

1

2

2

3

Depth-First Search

1

2

3

4

6

5

1

2

3

4

6

5

6

Computing the Minimum Distance from s

with BFS

δ(v)
def
= the minimum distance of v from s

• δ(v) = 0 if and only if v = s.

• For all i ≥ 1, δ(v) = i if and only if

δ(v) 6∈ {0,1, . . . , i − 1} and there is a node

u such that δ(u) = i − 1 and (u, v) ∈ E.

Use a queue Q. Initially, we set Q = {s},

d(s) = 0, and for all v 6= s, set d[v] = +∞.

Then while Q 6= ∅, do the following:

• Pop the top element u from Q.

• For each v such that (u, v) ∈ E, if

d(v) 6= +∞ do nothing; otherwise, set

d[v] = d[u] + 1 and push v into Q.

7

t us

v x

0

Q s

t us

v x
Q

01

1

x
y y

t us

v x
Q x

t us

v x
Q

01

v
y y

01

1

v

2 2 1

2

t us

v x
Q

t us

v x
Q

0

y y

t us

v x
Q u

y

1

2 1 12

10

2

t y

2

22 3

uy

2

t y

3

t us

v x y

0 2

21

1

12 2

0 2 3

2

1

w

w

w w

w

w

ww

w

8

Correctness Proof

Theorem A For each vertex v, d[v] = δ(v)

at the end.

Proof Suppose that G is connected. Then

every node is put in the queue at least once.

Also,

• At any point of the algorithm if

Q = [v1, . . . , vm] then

d[v1] ≤ · · · ≤ d[vm] ≤ d[v1] + 1.

• For all v, once d[v] is set to a finite value

d[v] is unchanged to another finite value

unless d[v] becomes +∞ again.

These imply that the value assigned to d[v]

after initialization never exceeds n − 1, which

implies that a node is never put in the queue

twice. So, every node is put in the queue

exactly once.

9

Now we use induction on the value of d[v] to

show the correctness: for all t ≥ 0 and for all

v, d[v] = t if and only if δ(v) = t.

The base case is when t = 0. The proof is

trivial for this case.

Why?

10

There is only one node whose

d-value is 0.

The unique node is s.

The value of d[s] is set to 0.

11

For the induction step, let t > 0 and suppose

that the claim holds for all values of t less

than the current one. Let v be such that

d[v] = t. By our induction hypothesis δ(v) ≥ t.

There is a node u such that d[u] = t − 1 and

the algorithm sets d[v] to t by identifying

(u, v). By our induction hypothesis

δ(u) = d[u]. So, δ(v) ≤ t. Thus, δ(v) = t.

12

Constructing a Tree from BFS

Suppose that for all nodes v we record its

“predecessor,” i.e. the node from which v is

touched, as π[v]. Then the edge set

{(π[v], v) | v ∈ V − {s}} defines a tree. We call

it the BFS tree of G.

The complexity of BFS

• A node is placed in a queue just once

• An edge is examined twice

13

node π

s —
w, x s

v w

t, y x

u t

t us

v x y

1

12 2

0 2 3
w

14

DFS

Use recursive calls to a subroutine Visit. Use

a global clock, initially set to 0. The clock is

incremented by one when Visit is called and

when a call to Visit is finished.

The main-loop:

• For all u, set d[u] = ∞, π[u] = nil, and

clock = 0.

• For each u, if d[u] = ∞ then call Visit(u).

Visit(u):

1. Add 1 to clock and set d[u] = clock .

2. For each v ∈ Adj [u], if d[v] = ∞ then set

π[v] = u and call Visit(v).

3. Add 1 to clock and set f [u] = clock .

15

w
1/?

y zx

u v

?/? ?/?

?/? ?/?

?/?

w
1/?

y zx

u v

?/?

?/?

?/?

2/?

?/?

w
1/?

y zx

u v
?/?

?/?

2/?

?/? 3/?

w
1/?

y zx

u v
?/?

4/?

2/?

?/? 3/?

w
1/?

y zx

u v

4/?

2/?

?/? 3/?

5/?
w

1/?

y zx

u v

4/?

2/?

?/? 3/?

5/6

16

w
1/?

y zx

u v

4/7

2/9

3/8

5/6
w

1/?

y zx

u v

4/7

2/9

3/8

5/6

w
1/?

y zx

u v

4/7

2/?

?/? 3/?

5/6
w

1/?

y zx

u v

4/7

2/?

?/? 3/8

5/6

w
1/?

y zx

u v

4/7

2/9

?/? 3/8

5/6
w

1/?

y zx

u v

4/7

2/9

?/? 3/8

5/6

10/? 10/11

17

Running Time Analysis

• A call of Visit with respect to a node is

exactly once.

• Each edge is examined exactly twice.

So, what’s the running time?

Use the π field to constuct a tree, called the

DFS tree.

node π

u —
v, x u

w z

y v

z y

w

y zx

u v

4/7

2/9

3/8

5/6

10/11

1/12

18

The Parenthesis Structure of DFS

For each u, let I[u] = (d[u], f [u]). Then, for

all u and v, exactly one of the following three

holds for I[u] and I[v],

• I[u] ∩ I[v] = ∅. This is the case when u

and v are not on the same path from s.

• I[u] ⊆ I[v]. This is the case when u is a

descendant of v on a path from s.

• I[v] ⊆ I[u]. This is the case when v is a

descendant of u on a path from s.

This is called the parenthesis structure of

DFS.

19

1 4 5 7 8 9 10 11 122 3 6
u

w
11/12

4/5

1/10
u v

y zx 2/7 3/6

8/9

vx
y

z

w

20

Classification of edges

1. The Tree Edges: The edges on the tree.

2. The Back Edges: The non-tree edges

connecting descendants to ancestors

(including self-loops).

3. The Forward Edges: The non-tree

edges connecting ancestors to

descendants.

4. The Cross Edges: The rest.

In DFS, when e = (u, v) is first explored:

• d[v] = ∞ ⇒ e is a tree edge,

• d[v] < f [v] = ∞ ⇒ e is a back edge, and

• f [v] < ∞ ⇒ e is a forward or cross edge.

Theorem B Every edge is either a tree

edge or a back edge for an undirected graph.

21

4/5

1/10
u v

y zx 2/7 3/6

8/9 back

cross
fwd

22

Topological sort

Let G be a DAG (directed acyclic graph).

Topological sorting of the nodes of G is a

linear ordering of the nodes such that for all u

and v if there is an arc from u to v (i.e.,

(u, v) ∈ E) then u precedes v in the ordering.

23

u v w

zyx

What is a topological sort of

these nodes?

24

An Algorithm for Topological Sort

Call DFS(G) to compute f-values. While

doing this, each time a node, say v, is done,

insert v as the top element of the list.

The running time is O(E + V).

25

1/12 3/42/11
u v w

8/9
z

5/10
y

6/7
x

wxzyvu

26

Strongly Connected Components

Let G be a directed graph. For all nodes u

and v, write u ; v if there is a directed path

from u to v in G.

Two vertices u and v of a directed graph G

are strongly connected if u ; v and v ; u.

A strongly connected component of G is a

maximal set S of vertices in G in which every

two nodes are strongly connected.

27

28

Algorithms for Computing Strongly

Connected Components

A trivial algorithm would be to compute for

each u the set, Wu, defined by {v | u ; v},

and then to check for all u and v whether it

holds that u ∈ Wv and v ∈ Wu.

How efficiently can this

algorithm be implemented?

29

An O(E + V)-Step Method

Define GT to be the graph G in which the

direction of each edge is reversed. We do the

following:

1. Call DFS(G) to compute f [u] for all u.

2. Compute H = GT where the nodes are

enumerated in order of decreasing f .

3. Call DFS(H), in which whenever the

paths have been exhausted, find the next

node that is not visited yet in the above

ordering.

4. Output the vertices of each DFS-tree of

H as a separate strongly connected

component.

30

The f-values:

b c d e fa

hg i kj l

2:21 6:17

9:1013:14

1:24 7:165:18 8:11

12:154:193:2022:23

The DFS-trees of H:

22:23

1:24

3:20 4:19

5:182:21 7:166:17 8:11

9:1012:1513:14

g

a b

h i

c d

j k

e f

l

31

Correctness of Strongly Connected

Components

Let C, C ′ be SCCs in G = (V, E). If there is

an edge (u, v) ∈ E, where u ∈ C and v ∈ C ′,

f(C) > f(C ′)

Induction on number of components.

Hypothesis: first k tree produced in second

DFS are SCCs.

When visiting next vertex u,

f [u] = F (C) > F (C ′) for any SCC C ′ not yet

visited. Any edge leaving C in GT is to a

SCC already visited. All vertices in C will be

descendents of u in DFS.

32

