Comparison of Efficiency

Binary Binomial
Procedure (worst- (worst- (amortized)
case) case)
Make-Heap ©(1) ©(1) o(1)
Insert ©(lgn) O(lgn) ©(1)
Minimum o(1) O(lgn) ©(1)
Extract-Min ©(lgn) ©(lgn) O(lgn)
Union ©(n) O(lgn) o(1)
Decrease-Key | ©(lgn) ©(lgn) ©(1)
Delete ©(gn) ©(lgn) O(lgn)

Chapter 23: Minimum Spanning Tree

Let G = (V, E) be a connected (undirected)
graph. A spanning tree of G is a tree T that
consists of edges of G and connects every
pair of nodes.

Let w be an integer edge-weight function. A
minimum-weight spanning-tree is a tree
whose weight weight respect to w is the
smallest of all spanning trees of G.

Safe edges and cuts

A . expandable to an MST

ec EF— Ais safe for A if AU {e} : expandable
to an MST or an MST already

a cut of G : a partition (S,V —8) of V

an edge e crosses (S,V — S) if e connects a
node in S and onein V- S

(S,V —8) respects A C F if no edges in A
cross the cut

For any edge property @, a light edge w.r.t.
() is one with the smallest weight among
those with the property @

Theorem A Let G = (V,FE) be a connected
(undirected) graph with edge-weight function
w. Let A be a set expandable to an MST, let
(S,V —S) be a cut respecting A, and let

e = (u,v) be a light edge crossing the cut.
Then e is safe for A.

Proof Let T be an MST containing A and
not containing e. There is a unique path p in
T from u to v. p has an edge crossing

(S,V —S). Pick one such edge d. Then

T' =T U{e} —{d} is a spanning tree such that
w(T") = w(T) so T’ is an MST and e is safe. |}

Corollary B Every light edge connecting
two distinct components in G4 = (V, A) is
safe for A.

Kruskal’s Algorithm

Maintain a collection of connected
components and construct an MST A.

Initially, each node is a connected component
and A = 0.

Examine all the edges in the nondecreasing
order of weights.

e If the current edge connects two different
components, add e to A to unite the two
components.

The added edge is a light edge; otherwise, an
edge with smaller weight should have already
united the two components.

8 8
/A/ 9 /4/ RN 9
SR A CEL AP
v 1 = 2 1~ 9
8

S R
/, S / S

mao LN
08\1%7 10 Qg\l 71‘6 - 10

8 8 -~

2 2
1 1
1 7 6 1 7 6 /
g 10 3 10
1 2 1 2
S At : o
/ 1% D*Q
10 A 10
80T 050 801 >}
8 8
}I+
;

9)/ >N\ 9
N ﬁ%i%

1 2 1 2

Implementation with “disjoint-sets”

A«— ()
for each vertex v € V do
Make-Set(v)
reorder the edges so their weights are
in nondecreasing order
for each edge (u,v) € E in the order do
If Find-Set(u) # Find-Set(v) then
A— Au{(u,v)}
Union(u, v)
return A

A W N B

© 00 N O O

The number of disjoint-set operations that
are executed is 2FE 4+ 2V — 1 = O(F), out of
which V are Make-Set operations.

What is the total running
time?

10

The total cost of the
disjoint-set operation is
O(FE|g* V) if the union-by-rank
and the path-compression
heuristics are used.

Sorting the edges requires
O(FElog F) steps.

We can assume E >V —1 and
E<VZ2,

So, it's O(FElog V) steps.

11

Prim’s algorithm

Maintain a set of edges A and a set of nodes
B. Pick any node r as the root and set B to
{r}. Set A to (. Then repeat the following
V —1 times:

e Find a light edge e = (u,v) connecting
uwe BandveV —B.

e Put ein A and v in B.

12

13

Implementation Using a Priority Queue

For each node in Q, let key[v] be the
Mminimum edge weight connecting v to a
node in B. By convention, key[v] = oo if there
IS NO such edge.

For each node v record the parent in the field
w[v]. This is the node u such that (u,v) is the
light edge when v is added to B.

An implicit definition of A is
{(v,m[v]) [veV —{r} —Q}.

14

Q—V
for each v € Q do key[u] + oo
key[r] < O
w[r] < nil
while Q #= 0 do

u +— Extract-Min(Q)

for each v € Adj[u] do

If ve @ and w(u,v) < key[v] then

wv] — u

© 00 ~NO 00 WN K

=
@)

key[v] «— w(u,v)

Line 3 forces to select r first. Lines 7-10 are
for updating the keys.

Implement Q using a heap. The running time
IS

V - (the cost of Build-Heap)
+ (V —1) - (the cost of Extract-Min)
+ FE - (the cost of Decrease-Key).

15

If either a binary heap or a binomial heap is
used, the running time is:

vV .0(1)
+ (V-1)-0(gV)
+ E-0O(lgV)

= O((E+V)IgV) =0(EIgE),

which is the same as the running time of
Kruskal's algorithm.

If a Fibonacci heap is used, the running time
IS:

V-0(1)

+ (V-1)-0(gV)
+ E-0(1)

= O(VIgV + E),

which is better than the running time of
Kruskal’'s algorithm.

16

