
Comparison of Efficiency

Binary Binomial
Procedure (worst- (worst- (amortized)

case) case)
Make-Heap Θ(1) Θ(1) Θ(1)
Insert Θ(lgn) O(lgn) Θ(1)
Minimum Θ(1) O(lgn) Θ(1)
Extract-Min Θ(lgn) Θ(lgn) O(lgn)
Union Θ(n) O(lgn) Θ(1)
Decrease-Key Θ(lgn) Θ(lgn) Θ(1)
Delete Θ(lgn) Θ(lgn) O(lgn)
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Chapter 23: Minimum Spanning Tree

Let G = (V, E) be a connected (undirected)

graph. A spanning tree of G is a tree T that

consists of edges of G and connects every

pair of nodes.

Let w be an integer edge-weight function. A

minimum-weight spanning-tree is a tree

whose weight weight respect to w is the

smallest of all spanning trees of G.
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Safe edges and cuts

A : expandable to an MST

e ∈ E −A is safe for A if A ∪ {e} : expandable

to an MST or an MST already

a cut of G : a partition (S, V − S) of V

an edge e crosses (S, V − S) if e connects a

node in S and one in V − S

(S, V − S) respects A ⊆ E if no edges in A

cross the cut
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For any edge property Q, a light edge w.r.t.

Q is one with the smallest weight among

those with the property Q
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Theorem A Let G = (V, E) be a connected

(undirected) graph with edge-weight function

w. Let A be a set expandable to an MST, let

(S, V − S) be a cut respecting A, and let

e = (u, v) be a light edge crossing the cut.

Then e is safe for A.

Proof Let T be an MST containing A and

not containing e. There is a unique path ρ in

T from u to v. ρ has an edge crossing

(S, V − S). Pick one such edge d. Then

T ′ = T ∪ {e} − {d} is a spanning tree such that

w(T ′) = w(T ) so T ′ is an MST and e is safe.

Corollary B Every light edge connecting

two distinct components in GA = (V, A) is

safe for A.
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Kruskal’s Algorithm

Maintain a collection of connected

components and construct an MST A.

Initially, each node is a connected component

and A = ∅.

Examine all the edges in the nondecreasing

order of weights.

• If the current edge connects two different

components, add e to A to unite the two

components.

The added edge is a light edge; otherwise, an

edge with smaller weight should have already

united the two components.
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Implementation with “disjoint-sets”

1 A← ∅

2 for each vertex v ∈ V do

3 Make-Set(v)

4 reorder the edges so their weights are

in nondecreasing order

5 for each edge (u, v) ∈ E in the order do

6 if Find-Set(u) 6= Find-Set(v) then

7 A← A ∪ {(u, v)}

8 Union(u, v)

9 return A
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The number of disjoint-set operations that

are executed is 2E + 2V − 1 = O(E), out of

which V are Make-Set operations.

What is the total running

time?
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The total cost of the

disjoint-set operation is

O(E lg∗ V ) if the union-by-rank

and the path-compression

heuristics are used.

Sorting the edges requires

O(E logE) steps.

We can assume E ≥ V − 1 and

E ≤ V 2.

So, it’s O(E logV ) steps.
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Prim’s algorithm

Maintain a set of edges A and a set of nodes

B. Pick any node r as the root and set B to

{r}. Set A to ∅. Then repeat the following

V − 1 times:

• Find a light edge e = (u, v) connecting

u ∈ B and v ∈ V −B.

• Put e in A and v in B.
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Implementation Using a Priority Queue

For each node in Q, let key[v] be the

minimum edge weight connecting v to a

node in B. By convention, key[v] =∞ if there

is no such edge.

For each node v record the parent in the field

π[v]. This is the node u such that (u, v) is the

light edge when v is added to B.

An implicit definition of A is

{(v, π[v]) | v ∈ V − {r} −Q}.
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1 Q← V

2 for each u ∈ Q do key[u]← ∞

3 key[r]← 0

4 π[r]← nil

5 while Q 6= ∅ do

6 u← Extract-Min(Q)

7 for each v ∈ Adj [u] do

8 if v ∈ Q and w(u, v) < key[v] then

9 π[v]← u

10 key[v]← w(u, v)

Line 3 forces to select r first. Lines 7-10 are

for updating the keys.

Implement Q using a heap. The running time

is

V · (the cost of Build-Heap)

+ (V − 1) · (the cost of Extract-Min)

+ E · (the cost of Decrease-Key).
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If either a binary heap or a binomial heap is

used, the running time is:

V ·O(1)

+ (V − 1) ·O(lgV )

+ E ·O(lgV )

= O((E + V ) lgV ) = O(E lgE),

which is the same as the running time of

Kruskal’s algorithm.

If a Fibonacci heap is used, the running time

is:

V ·O(1)

+ (V − 1) ·O(lgV )

+ E ·O(1)

= O(V lgV + E),

which is better than the running time of

Kruskal’s algorithm.
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