Chapter 25: All-Pairs Shortest Path

A trivial solution is to use SSSP algorithms
for APSP

With Dijkstra’'s algorithm (no negative
weights!) the running time would become

oOWV(VIgV +E) =0(V?2IgV +VE)

With the Bellman-Ford algorithm the running
time would become O(V(VE)) = O(V2E)

Three approaches for improvement:

algorithm cost
matrix multiplication O(V3igV)
Floyd-Warshall O(V3)
Johnson O(V21gV + VE)

Matrix Multiplication

Define the V x V matrix D{m) = (d(m)) by:

dg.”) — the length of the shortest path from i
to 5 with < m edges. Then

(1) 0] if 1 =7,
dij — \ Wiy ifi7%4,(,5) € E,
oo Otherwise,

and for all 7,7, p,q,

(p+q) _ (p) (q)
AT = o, G+ 45

DWWV =1) is the matrix (5(i,5)).

Computing D(?+9 from D®) and D(?
using matrix multiplication

prta) — pp) . pla)

where (min, 4) is used as the computational
basis instead of (4, x)

min(10+8,9+6,

j 18! 4+12)
109 4 iet || i15:
12

r
1
1

The complexity is O(V3IgV)

How can you check the
existence of negative weight
cycles?

1.8 2o
2 |

D(1):

(() —4 oo 2 o \

4 0O b oo 1
1 oo 0 oo -2
3 o 1 0 3
\oo —1 oo 1 O /
D(2) :
[0 -4 1 2 -3
4 O b 2 1
1 -3 0 -1 -2
3 .11 0 -1
\3 -1 2 1 0)
D(4),D(8)
(0 -4 1 —2 -3
4 0 3 2 1
1 -3 0 -1 -2
3 - 21 0 -1
\3 -1 2 1 0)

Method 2: Floyd-Warshall

Define the V x V matrix F(m) = (f(m)) by:

f(m) is the shortest path length from 7 to j
passing only through nodes 1...m

Define f(o) = Wj;- Then for every 7,57 and
every k > 1,

£ = min(f4D), D) 4 D)y

k only nodes up to k-1

pick the smaller’g J-

only nodes up to k-

F) is the matrix (5(4,5)).

Compute F* from Fk=1 for k=1,...

How many steps are needed
for computing an entry?

How many entries are
evaluated in total?

So, what is the total cost?

|
|

4 5 3
O 1 -1

-5 -1 0 -2
2* 3 O

0
—4
_2*

4 5 3
-4 0 1 -1
-5 -1 0 -2
-2 2 3 0

0

Johnson’s Algorithm

Define a new weight function w so that

e the shortest paths are preserved and

e w(u,v) >0 for all u,v

Then use Dijkstra’s algorithm to compute the
shortest path

Theorem A Let h be any mapping of V to
R. Define w(u,v) = w(u,v) + h(u) — h(v) and
g(u,v) — the shortest path with respect to w.
If 6(u,v) is defined for all u,v, then

§(u,v) = 6(u,v) + h(v) — h(w);

i.e., the new weight function preserves the
shortest paths.

Proof For any path p = [v1,...,v;] the path
length of p w.r.t. w is

k—1

> (wig1,vi) + h(vs) — h(vig1)) -
i=1

This is equal to

k—1 k—1
(Z ’w(vq;+1fvz')> + Z (h(’vi) — h(’Uz'+1)) :

=1 1 =1
The right hand-side is h(vy) — h(vg). So for
every uw and v, §(u,v) = §(u,v) + h(w) — h(v).

10

1. Add a new node s with no incoming
edges and with a O-weight outgoing edge
to every other node

2. Use the Bellman-Ford algorithm to
compute h(u) = 6(s,u) for all u

3. Let w(u,v) = w(u,v) + h(u) —h(v) and use
Dijkstra’s method to compute §(u,v)

4. Qutput for all v and v, 6(u,v) as
6(u,v) + h(v) — h(u)

The use of Dijkstra’'s method is possible
because for all v and v,

6(s,v) <w(u,v) + 5(s,u)
w(u,v) = w(u,v) + h(u) — h(v) >0

11

Add a Super-Source

1T e

] X
0 0
0

®

Modified Weights

After Bellman-Ford

0

0
e
1
110 00l |1
0
1 1/

After Dijkstra

12

0 0
_~ T~
1
110 00 |1
0
i 1 f

After Dijkstra

Back to Original Weights

13

Summary
Dijkstra: O(V(VIgV +E)) =0(V2IgV +VE)
Bellman-Ford: O(V(VE)) = O(V2E)

Three approaches for improvement:

algorithm cost
matrix multiplication O(V3IgV)
Floyd-Warshall O(V3)
Johnson O(V2IgV 4+ VE)

14

