
Weighted DAG Automata
for Semantic Graphs

David Chiang∗
University of Notre Dame

Frank Drewes∗∗
University of Umeå

Daniel Gildea†
University of Rochester

Adam Lopez‡
University of Edinburgh

Giorgio Satta§

University of Padua

Graphs have a variety of uses in natural language processing, particularly as representations of
linguistic meaning. A deficit in this area of research is a formal framework for creating, combining,
and using models involving graphs that parallels the frameworks of finite automata for strings
and finite tree automata for trees. A possible starting point for such a framework is the formalism
of DAG automata, defined by Kamimura and Slutzki and extended by Quernheim and Knight. In
this article, we study the latter in depth, demonstrating several new results, including a practical
recognition algorithm that can be used for inference and learning with models defined on DAG
automata. We also propose an extension to graphs with unbounded node degree and show that
our results carry over to the extended formalism.

1. Introduction

Statistical models of natural language semantics are making rapid progress. At the risk of
oversimplifying, work in this area can be divided into two streams. One stream, semantic
parsing (Mooney 2007), aims to map from sentences to logical forms that can be executed
(for example, to query a knowledge base); work in this stream tends to be on small,
narrow-domain datasets like GeoQuery. The other stream aims for broader coverage, and
historically tackled shallower, piecemeal tasks, like semantic role labeling (Gildea and
Jurafsky 2000), word sense disambiguation (Brown et al. 1991), coreference resolution

∗ Department of Computer Science and Engineering, University of Notre Dame, IN 46656, United States.
E-mail: dchiang@nd.edu. Some of the work described in this paper was done while Chiang was at the
University of Southern California, Information Sciences Institute.

∗∗ Department of Computing Science, Umeå University, 90187 Umeå, Sweden. E-mail: drewes@cs.umu.se
† Department of Computer Science, University of Rochester, Rochester, NY 14627, United States. E-mail:

gildea@cs.rochester.edu
‡ School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom. E-mail:

alopez@inf.ed.ac.uk. Some of the work described in this paper was done while Lopez was at Johns
Hopkins University.
§ Department of Information Engineering, University of Padua, I-35131 Padova, Italy. E-mail:

satta@dei.unipd.it

Submission received: 1st August, 2016; Revised version received: 9th May, 2017; Accepted for publication:
11th October, 2017.

Computational Linguistics Volume xx, Number xx

(Soon, Ng, and Lim 2001), and so on. Correspondingly, resources like OntoNotes (Hovy
et al. 2006) provided separate resources for each of these tasks.

This piecemeal situation parallels that of early work on syntactic parsing, which
focused on subtasks like part-of-speech tagging (Ratnaparkhi 1996), noun-phrase chunk-
ing (Ramshaw and Marcus 1995), prepositional phrase attachment (Collins and Brooks
1995), and so on. As the field matured, these tasks were increasingly synthesized into
a single process. This was made possible because of a single representation (phrase
structure or dependency trees) that captures all of these phenomena, because of corpora
annotated with these representations, like the Penn Treebank (Marcus, Marcinkiewicz,
and Santorini 1993), and because of formalisms, like context-free grammars, which can
model these representations practically (Charniak 1997; Collins 1997; Petrov et al. 2006).

In a similar way, more recent work in semantic processing consolidates various
semantics-related tasks into one. For example, the Abstract Meaning Representation
(AMR) Bank (Banarescu et al. 2013) began as an effort to unify the various annotation
layers of OntoNotes. It has driven the development of many systems, chiefly string-to-
AMR parsers like JAMR (Flanigan et al. 2014) and CAMR (Wang, Xue, and Pradhan
2015b,a), as well as many other systems submitted to the AMR Parsing task at SemEval
2016 (May 2016). AMRs have also been used for generation (Flanigan et al. 2016),
summarization (Liu et al. 2015), and entity detection and linking (Li et al. 2015; Pan
et al. 2015).

But the AMR Bank is by no means the only resource of its kind. Others include: the
Prague Dependency Treebank (Böhmová et al. 2003), DeepBank (Oepen and Lønning
2006), and Universal Conceptual Cognitive Annotation (Abend and Rappoport 2013).
By and large, these resources are based on, or equivalent to, graphs, in which vertices
stand for entities and edges stand for semantic relations among them. The Semantic
Dependency Parsing task at SemEval 2014 and 2015 (Oepen et al. 2014, 2015) converted
several such resources into a unified graph format and invited participants to map from
sentences to these semantic graphs.

The unification of various kinds of semantic annotation into a single representation,
semantic graphs, and the creation of large, broad-coverage collections of these repre-
sentations are very positive developments for research in semantic processing. What is
still missing — in our view — is a formal framework for creating, combining, and using
models involving graphs that parallels those for strings and trees. Finite string automata
and transducers served as a framework for investigation of speech recognition and
computational phonology/morphology. Similarly, context-free grammars (and push-
down automata) served as a framework for investigation of computational syntax and
syntactic parsing. But we lack a similar framework for learning and inferring semantic
representations.

Two such formalisms have recently been proposed for NLP: one is hyperedge
replacement graph grammars, or HRGs (Bauderon and Courcelle 1987; Habel and
Kreowski 1987; Habel 1992; Drewes, Kreowski, and Habel 1997), applied to AMR parsing
by various authors (Chiang et al. 2013; Peng, Song, and Gildea 2015; Björklund, Drewes,
and Ericson 2016). The other formalism is DAG automata, defined by Kamimura and
Slutzki (1981) and extended by Quernheim and Knight (2012). In this article, we study
DAG automata in depth, with the goal of enabling efficient algorithms for natural
language processing applications.

After some background on the use of graph-based representations in natural
language processing in Section 2, we define our variant of DAG automata in Section 3.
We then show the following properties of our formalism:

2

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

r Path languages are regular, as is desirable for a formal model of AMRs (Section 4.1).r The class of hyperedge-replacement languages is closed under intersection with
languages recognized by DAG automata (Section 4.2).r Emptiness is decidable in polynomial time (Section 4.3).

We then turn to the recognition problem for our formalism, and show:r The recognition problem is NP-complete even for fixed automata (Section 5.1).r For input graphs of bounded treewidth, there is an efficient algorithm for
recognition or summing over computations of an automaton for an input graph
(Section 5.2).r The recognition/summation algorithm can be asymptotically improved using
specialized binarization techniques (Section 6).

We expect that nodes of potentially unbounded degree will be important in natural lan-
guage processing to handle phenomena such as coreference and optional modifiers. We
show how to extend our formalism to handle nodes of unbounded degree (Section 7.2),
and demonstrate the following additional results:r All closure and decidability properties mentioned above continue to hold for the

extended model, and the path languages stay regular (Section 7.3).r We provide a practical recognition/summation algorithm for the novel model
(Section 7.4).

2. Graphs for Natural Language

Graphs, or representations equivalent to graphs, have been used by many linguistic
formalisms and natural-language processing systems to model semantic dependencies.
For example, unification-based grammar formalisms use feature structures, like LFG
f-structures (Kaplan and Bresnan 1982) and HPSG synsem objects (Pollard and Sag
1994), that can be drawn as rooted, directed, (usually) acyclic graph structures (Shieber
1986). The Prague Dependency Treebank’s tectogrammatical trees (Böhmová et al. 2003)
can be turned into graphs using coreference and argument-sharing annotations, while
DeepBank’s annotations using Minimal Recursion Semantics can be stripped down
to Elementary Dependency Structures, which are graphs (Oepen and Lønning 2006).
Universal Conceptual Cognitive Annotation (Abend and Rappoport 2013) uses several
annotation layers, which are graphs. Abstract Meaning Representations, whose format
is derived from the PENMAN generation system, are equivalent to graphs (Banarescu
et al. 2013). Several of these graph representations have been the target of the Semantic
Dependency Parsing task at SemEval 2014 and 2015 (Oepen et al. 2014, 2015).

In this section, we focus on Abstract Meaning Representations (AMRs), but the
formalisms we work with in the remainder of the paper could, in principle, be used on
any of the other graph representations listed above. Although the standard AMR format
somewhat resembles the Penn Treebank’s parenthesized representation of trees, AMRs
can be thought of as directed graphs. Examples of these two representations, from the
AMR Bank (LDC2014T12), are reported in Figure 1 and Figure 2. Nodes are labeled,
in order to convey lexical information. Edges are labeled to convey information about
semantic roles. Labels at the edges need not be unique, meaning that edges impinging
on the same node might have the same label. Furthermore, our DAGs are not ordered,
meaning that there is no order relation for the edges impinging at a given node, as is
usually the case in standard graph structures. A node can appear in more than one place

3

Computational Linguistics Volume xx, Number xx

(a / and
:op1 (a2 / ask-01

:ARG0 (i / i)
:ARG1 (t / thing

:ARG1-of (t2 / think-01
:ARG0 (s2 / she)
:ARG2 (l / location

:location-of (w / we))))
:ARG2 s2)

:op2 (s / say-01
:ARG0 s2
:ARG1 (a3 / and

:op1 (w2 / want-01 :polarity -
:ARG0 s2
:ARG1 (t3 / think-01

:ARG0 s2
:ARG1 l))

:op2 (r / recommend-01
:ARG0 s2
:ARG1 (c / content-01

:ARG1 i
:ARG2 (e / experience-01

:ARG0 w))
:ARG2 i))

:ARG2 i)
:op3 c)

Figure 1
Example AMR in its standard format, number DF-200-192403-625_0111.7 from the AMR Bank.
The sentence is: “I asked her what she thought about where we’d be and she said she doesn’t
want to think about that, and that I should be happy about the experiences we’ve had (which I
am).”

(for example, in Figure 1, node s2 appears six times); we call this a reentrancy, analogous
to a reentrant feature structure in unification-based grammar formalisms.

Cycles and multiple roots. Although the AMR guidelines1 describe AMRs as acyclic graphs,
the AMR Bank in fact contains some graphs with cycles. The majority of these cyclic
graphs involve an edge labeled with an inverse role such as ARG0-of, which means that
the parent node is the ARG0 of the child node. The purpose of these inverse roles is to
make the graph singly-rooted. If we reverse such edges, most cyclic graphs become
acyclic (but multiply-rooted).

Most remaining cycles are caused by a relatively small number of roles. By “reifying”
these, that is, changing them into nodes (see Figure 3), these cycles can be eliminated.
Table 1 shows some statistics on the December 2014 internal release of the AMR Bank.2

The small percentage of graphs that are cyclic is reduced by reversing *-of edges, and

1 http://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf.
2 The first release is LDC catalog number LDC2014T12; we are grateful to ISI for providing us with an

internal release which is somewhat larger than the first release.

4

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

a / and

a2 / ask-01

op1

s / say-01

op2

c / content-01

op3

i / i

ARG0

t / thing

ARG1

s2 / she

ARG2

ARG2ARG0

a3 / and

ARG1

ARG1

e / experience-01

ARG2

w2 / want-01

op1

r / recommend-01

op2

ARG0 -

polarity

t3 / think-01

ARG1 ARG1

ARG2ARG0

ARG0

l / location

ARG1

w / we

ARG0

location

t2 / think-01

ARG1ARG0

ARG2

Figure 2
The AMR of Figure 1, presented as a directed graph.

x

y

purpose →

purpose

yx

ARG1 ARG2

Figure 3
Reification of a role (edge label) can break cycles.

all but eliminated by reification. The three cyclic graphs that remain (out of 20,628) were
clearly annotation mistakes and were subsequently corrected.

The table also shows that the average number of roots more than doubles as a result
of these transformations. (The original corpus had a small number of instances which
contained more than one sentence, and were annotated as multiple graphs under a
multi-sentence node; we counted these as multiple roots.)

In summary, we can think of AMRs as singly-rooted, possibly cyclic directed graphs,
or as multiply-rooted directed acyclic graphs.

Node degree. The in-degree (out-degree) of a node in a DAG is the number of incoming
(outgoing, respectively) edges at that node. AMRs have unbounded in-degree and out-

5

Computational Linguistics Volume xx, Number xx

original reversed reified
cyclic 746 105 3

avg. roots 1.07 2.37 2.37
avg. treewidth 1.55 1.55 1.55
treewidth = 0 153 153 153
treewidth = 1 10174 10174 10148
treewidth = 2 9092 9092 9118
treewidth = 3 1178 1178 1178
treewidth = 4 31 31 31

Table 1
Statistics on AMR graphs, out of 20,628 total. Key: original = as provided in the corpus; reversed
= with all edge labels of the form *-of reversed; reified = with certain roles reified as needed to
break cycles. A graph with no edges is counted as having zero treewidth.

degree. Unbounded in-degree is needed for instance in the semantic representation of
sentences with coreference relations, in which some concept is shared among several
predicates. Unbounded out-degree allows to attach to a given predicate a number of
optional modifiers which can grow with the length of the sentence. We studied the
degree distribution of nodes in the AMR Bank.3 The maximum degree (in-degree plus
out-degree) is 17, and the average is 2.12. The full degree distribution is shown in Figure 4.
In practice, AMRs strongly favor nodes of low degree. Nonetheless, the presence of
nodes with large degree indicates that practical applications are likely to benefit from
algorithms capable of handling potentially unbounded degree, which we develop in
Section 7.

Multiple edges. In the standard definition for graphs, also called simple graphs, there can
be at most one edge between two nodes. As opposed to simple graphs, multigraphs
allow more than one edge between two nodes, called multiple edges. In semantic
representations this is very useful. For instance, in the AMR for the sentence “John
likes himself”, the node for the predicate “like” has its ARG0 and ARG1 semantic roles
filled by the same argument “John”. Accordingly, we use multigraphs to represent AMR.
This also simplifies the definition of a recognition model for AMRs, since a check to avoid
multiple-edges would in some sense add an external condition, making the theory more
difficult to develop.

Treewidth. Several of the algorithms presented in this article depend on the graph-
theoretical notion of treewidth. The treewidth of a graph G, written tw(G), is a natural
number that formalizes the degree to which G is “tree-like”, with trees having treewidth
of 1. We will postpone the mathematical definition of tw(G) to the next section.

For a graph G and a value k given as input, it is NP-complete to determine whether G
has treewidth at most k. However, for the semantic graphs we are dealing with, the worst
case might not be realized. Using a reimplementation of the QuickBB algorithm (Gogate
and Dechter 2004), with only the “simplicial” and “almost-simplicial” heuristics, we
found that we could compute the exact treewidth of all the graphs in the AMR Bank in

3 LDC catalog number LDC2014T12.

6

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

5 10 15
0

50

100

150

Degree

C
ou

nt
(×

10
00

)

Figure 4
Degree distribution of nodes in the AMR Bank (reversed and reified).

a few seconds. The results (deleting multi-sentence nodes) are shown in Table 1: the
average treewidth is only about 1.5, and the maximum treewidth is only 4. An example of
a graph with treewidth 4 is shown in Figure 2. As we will see, this means that algorithms
with an exponential dependence on treewidth can be practical for real world AMRs.

3. DAG Automata

In this section we formally specify the type of DAGs that we use in this article. We then
define a family of automata that process languages of these DAGs, under the restriction
that nodes have bounded degree. We also briefly discuss the existing literature on DAG
automata. The restriction on node degree will be later dropped, in Section 7.

3.1 Preliminaries

We make frequent use of finite multisets. Formally, given a set Q, a multiset over
Q is a mapping µ : Q→N. Intuitively, µ(q) = n means that q occurs n times in µ. The
collection of all finite multisets over Q is denoted byM(Q). We usually specify a multiset
µ ∈ M(Q) by listing its elements using a set-like notation such as {q1, . . . , qn}. Note,
however, that q1, . . . , qn may contain repeated elements, in contrast to ordinary sets. We
also use the latter, but the context will always disambiguate the two different meanings.
The union of multisets is denoted by the operator] and is defined by pointwise addition:
(µ] µ′)(q) = µ(q) + µ′(q) for all q ∈ Q. Thus, if µ = {q1, . . . , qm} and µ′ = {q′1, . . . , q

′
n} then

µ] µ′ = {q1, . . . , qm, q′1, . . . , q
′
n}. If f : Q→ P is a function, we extend it to a function from

M(Q) toM(P) in the canonical way: f ({q1, . . . , qn}) = { f (q1), . . . , f (qn)}.
An alphabet is a finite set Σ which we are going to use as node labels for our graphs.

We consider graphs that are directed and unordered, have nodes labeled by symbols
from Σ, and have multiple edges. We do not use edge labels, despite the fact that the
AMR structures we want to model have labels at their edges. Our choice is motivated by

7

Computational Linguistics Volume xx, Number xx

our goal to simplify the notation. Graphs with labels only at their nodes can easily encode
graphs with edge labels by splitting every edge into two, and putting an extra node in
the middle, whose label is the label of the edge. We will come back to the discussion of
this encoding at the end of this section, after our definition of DAG automata.

Definition 1
A (node-labeled, directed and unordered) graph is a tuple D = (V,E, lab, src, tar), where
V and E are finite sets of nodes and edges, respectively, lab : V → Σ is a labeling function,
and src, tar : E→ V are functions that assign to each edge e ∈ E its source node src(e) and
its target node tar(e), respectively.

Note that our definition does not identify an edge with the pair of nodes the edge is
incident upon. In the terminology of standard graph theory, this means that our graphs
are not simple graphs. This allows us to use multiple edges incident upon the same pair
of nodes, a feature that is not only natural for AMRs (see the previous section) but will
also be used in several of our algorithms.

A graph D as above is a directed acyclic graph if it is acyclic. More precisely, there
do not exist e0, . . . , ek−1 ∈ E with k > 0 such that tar(ei−1) = src(ei mod k) for 1 ≤ i ≤ k. In this
article, we will only consider directed acyclic graphs that are nonempty and connected.
We call them DAGs, for short, and denote the set of all DAGs over Σ by DΣ. Note
that a DAG can have multiple roots, that is, there may be more than one node v ∈ V
such that tar(e) , v for all e ∈ E. (By acyclicity, there is always at least one root.) For a
node v ∈ V we define the sets of incoming and outgoing edges of v in the obvious way:
in(v) = {e ∈ E | tar(e) = v} and out(v) = {e ∈ E | src(e) = v}.

As usual, the graph D is a tree if there is a node r ∈ V, the root of D, such that every
node v ∈ V \ {r} is reachable from r on exactly one directed path, i.e., there is exactly
one sequence of edges e1, . . . , ek with k > 0 such that r = src(e1), tar(ei) = src(ei+1) for all
1 ≤ i < k, and tar(ek) = v. We use standard terminology regarding trees. In particular, a
node v is a child of a node u if out(u) ∩ in(v) , ∅.

As mentioned in the previous section, the treewidth of DAGs plays an important
role for the algorithms proposed in this paper. We now recall the notions of tree
decompositions and treewidth, at the same time introducing the specific notation that
will be used later in the paper.

Definition 2
A tree decomposition of a graph D = (V,E, lab, src, tar) is a tree T whose nodes and edges
we call bags and arcs, respectively, and whose node labels are subsets of V. For the sake
of clarity, the label of bag b is denoted by cont(b) rather than by lab(b) and is called the
content of b. T is required to satisfy the following:

1. For every node v ∈ V, there is a bag b such that v ∈ cont(b).
2. For every edge e ∈ E, there is a bag b such that {src(e), tar(e)} ⊆ cont(b).
3. For every node v ∈ V, the subgraph of T induced by the bags b containing v is

connected.

The width of T is the maximum of quantity |cont(b)| − 1 computed over all bags b of T,
and the treewidth of D is the minimum of the widths of its tree decompositions.

We note here that, in most definitions in the literature, the edges of a tree decomposi-
tion are undirected. In the context of this paper it is, however, more convenient to define
tree decompositions to be directed trees, because later on we will define algorithms that
process our DAGs in an order that is guided by the arc directions in the associated tree

8

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

1

2 3

4 5 6

7 8 9 10

(a)

{1, 2, 3, 5}

{2, 4, 5, 8} {3, 5, 6, 9}

{4, 7} {6, 10}

(b)

Figure 5
DAG D (a) and a tree decomposition T (b).

decompositions. In order to turn an undirected tree decomposition into a directed one,
just choose an arbitrary bag as the root, and establish edge directions accordingly.

Example 1
Consider the DAG D shown in Figure 5(a). A possible tree decomposition T of D is
displayed in Figure 5(b), consisting of 5 bags, each containing a maximum of 4 nodes
from D. It is easy to check that T satisfies the first two conditions in the definition of tree
decomposition. Consider now node 5 of D. The bags of T containing this node are the
three topmost ones. The subgraph of T induced by these bags is connected (and thus a
tree in itself). The same holds true for any other node of D, and this shows that the third
condition in the definition of tree decomposition is satisfied as well.

Several other tree decompositions can be constructed for D. For instance, a trivial
tree decomposition of D is the tree containing a single bag with all the nodes of D.
However, it is not difficult to argue that every tree decomposition of D must have a bag
that contains at least 4 nodes from D. Thus, the treewidth of D is 3. Informally, the size of
the largest bags in a tree decomposition increases with the number of reentrancies that
can be found along a path in the DAG.

3.2 Definition

Let us now embark on the definition of DAG automata. Informally, a DAG automaton
consists of a set of nondeterministic transitions that read DAG nodes and associate
states with their incoming and outgoing edges. Since we do not only want to recognize
DAG languages but, more generally, want to be able to use DAG automata to associate
a weight with each DAG, we define a more general version in which the transitions
have weights taken from some semiring K. Throughout the entire paper, all semirings
are assumed to be commutative, i.e., not only the additive but also the multiplicative
operator is commutative.

Definition 3
A weighted DAG automaton is a tuple M = (Σ,Q, δ,K), wherer Σ is an alphabet of node labelsr Q is a finite set of statesr (K,⊕,⊗, 0, 1) is a semiring of weights (which we identify with its domainK if there

is no danger of confusion)

9

Computational Linguistics Volume xx, Number xx

r δ : Θ→ K \ {0} is a transition function that assigns nonzero weights to a finite
set Θ of transitions of the form t = 〈{q1, . . . , qm}, σ, {r1, . . . , rn}〉 ∈ M(Q) × Σ ×M(Q),
where m,n ≥ 0. If δ(t) = w we also write this transition in the form

{q1, . . . , qm}
σ/w
−−→ {r1, . . . , rn} . (1)

As already mentioned, a DAG automaton processes an input DAG by assigning
states to edges. A transition of the form (1) gets m states on the incoming edges of a
node and puts n states on the outgoing edges. Alternatively, we may read the transition
bottom-up, i.e., it gets n states on the outgoing edges and puts m states on the incoming
edges. As two special cases, note that when m = 0 in (1) then the transition processes a
root node, and when n = 0 it processes a leaf node.

Note that the transition function δ : Θ→ K \ {0} assigns nonzero weights to the
transitions of a DAG automaton. Intuitively, the weight of all transitions not in Θ is 0.
Reflecting this intuition, we extend δ to the set of all possible transitions t ∈ M(Q) × Σ ×
M(Q) by defining δ(t) = 0 for every t < Θ. In this way, δ is turned into a total function,
which is sometimes convenient.

The use of multisets of states in (1) is needed since, when processing a node v, the
same state might be assigned to several of the edges in in(v) or in out(v), and we have
to specify the collection of all these state occurrences. As an example, assume |in(v)| = 3.
Then we should distinguish between the scenario where the assigned states are {q, q, q′}
and the scenario where the assigned states are {q, q′, q′}.

Let us now formally define the semantics [[M]] of a DAG automaton M as in
Definition 3. As may be expected, [[M]] maps every DAG over Σ to its weight. A run of
M on a DAG D with node set V and edge set E is a mapping ρ : E→ Q. The transition
function δ extends to runs by taking the product of all local transition weights:

δ(ρ) =
⊗
v∈V

δ(〈ρ(in(v)), lab(v), ρ(out(v))〉).

Now, [[M]] (D) is the sum of the weights of all runs on D:

[[M]] (D) =
⊕

run ρ on D

δ(ρ).

An unweighted DAG automaton is the special case of a DAG automaton in which
K is the Boolean semiring. In this case, [[M]] : DΣ → {true, false} is the characteristic
function of a subset ofDΣ. We generally identify such a characteristic function with the
corresponding set, i.e., [[M]] = {D ∈ DΣ | [[M]] (D) = true}, and call it the DAG language
recognized by M. DAG languages that can be recognized by unweighted DAG automata
are recognizable DAG languages. Note that since false is the zero element of the Boolean
semiring, all transitions appearing in an unweighted DAG automaton are of the form

{q1, . . . , qm}
σ/true
−−−−→ {r1, . . . , rn}. So we can simplify the notation of such a transition by

writing {q1, . . . , qm}
σ
−→ {r1, . . . , rn}. An accepting run of M is a run whose weight is true,

i.e., which uses only transitions of M.

Example 2
Let us illustrate unweighted DAG automata with a small example, where the label
alphabet Σ is given by Σ = {a, b}. In our example, a’s have two children and can be roots

10

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

a

a

b b

a

b

1

a

b

b
0

2

1

0

2

1

a
1

2
2

2

0

2

0

Figure 6
Example run of a DAG automaton.

whereas b’s have two parents and can be leaves. We want the automaton to accept all
DAGs such that no path contains more than two consecutive a’s. To accomplish this,
viewing a run as a top-down process, we need to use the states in order to keep track of
whether we have recently seen zero, one, or two a’s. Consequently, we let M = (Σ,Q, δ,K),
where Q = {0, 1, 2} and δ is given by the transitions

∅
a
−→ {1, 1}

{i} a
−→ {i + 1, i + 1} for 0 ≤ i ≤ 1

{i, j} b
−→ {0} | ∅ for 0 ≤ i, j ≤ 2.

The notation in the last line, which will also be used later on, abbreviates two transitions,
namely {i, j} b

−→ {0} and {i, j} b
−→ ∅. An accepting run on a DAG in [[M]] is shown in Figure 6.

It may be instructive to note that the construction of a run of the automaton can
be understood as a top-down or a bottom-up process. Under the top-down view,
this particular automaton is deterministic: for each node the states on the incoming
edges uniquely determine those on the outgoing edges. In contrast, under a bottom-
up view, thus essentially reading transitions backwards, the transitions for b create a
nondeterministic behavior.

Example 3
A finite automaton for strings, as traditionally defined (Hopcroft and Ullman 1979), is
a special case of our DAG automata, where each transition has at most one incoming
state and at most one outgoing state. Each DAG in the language recognized by such an
automaton consists of one long path, and the vertex labels can be interpreted as tokens
in a string. For example, the finite automaton

1 2 3
a

b

c

11

Computational Linguistics Volume xx, Number xx

Transitions:

∅
want
−−−→ {qwant-arg0, qwant-arg1}

{qwant-arg0}
ARG0
−−−−→ {qperson}

{qwant-arg1}
ARG1
−−−−→ {qpred}

{qpred}
believe
−−−−−→ {qbelieve-arg0, qbelieve-arg1}

{qbelieve-arg0}
ARG0
−−−−→ {qperson}

{qbelieve-arg1}
ARG1
−−−−→ {qperson}

{qperson, qperson}
John
−−−→ ∅

{qperson}
Mary
−−−→ ∅

Example run:

want

ARG1

believe

ARG1

John

qperson

ARG0

Mary

qperson

qbelieve-arg0 qbelieve-arg1

qpred

ARG0

qwant-arg0 qwant-arg1

qperson

Figure 7
A DAG automaton (top) and an example run (bottom) on the AMR for the sentence “John wants
Mary to believe him”.

can be represented by a DAG automaton with the transitions:

∅
a
−→ {q}

{q} b
−→ {q}

{q} c
−→ ∅

Note that empty state sets take the place of initial and final states in traditional finite
automata.

Similarly, our DAG automata generalize tree automata (Comon et al. 2002), because
a DAG automaton with transitions having at most one incoming state and any number
of outgoing states will recognize a tree.

12

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

Example 4
We now present a linguistic example based on the sentence “John wants Mary to believe
him” and its AMR representation D. In Figure 7 we display a fragment of the transitions
of a DAG automaton M, along with an accepting run of M on D.

As already mentioned, while the standard AMR representation has labels on both
edges and nodes, for simplicity we only consider DAGs with labels on nodes. We
represent the edge labels of AMR, such as ARG0 and ARG1, as nodes with one incoming
and one outgoing edge.

We observe that our DAG automata could, without any change in the definitions,
also be applied to directed acyclic graphs that may be disconnected, or even to graphs
over Σ containing cycles if this turns out to be of interest for some application. Of course,
the algorithmic results presented in the following could not necessarily be assumed to
hold in such a generalized case anymore.

To conclude the present section, we discuss the theoretical implications of our choice
to exclude edge labels for our DAGs. Assume for the moment that we did include edge
labels, taken from an alphabet Λ. A generalized transition applying to a node labeled
with σ that has incoming edges labeled by λ1, . . . , λm ∈ Λ and outgoing edges labeled by
λ′1, . . . , λ

′
n ∈ Λ would then look like this:

{q1:λ1, . . . , qm:λm}
σ/w
−−→ {r1:λ′1, . . . , rn:λ′n},

with the obvious semantics. We now show that there is no power added in using edge
labels. To this end we generalize the approach of Example 4, where ARG0 and ARG1
are used as node labels rather than edge labels. Each edge e with label λ can be encoded
by splitting e into two new unlabeled edges e1 and e2, and by adding a fresh node v with
label λ in between e1 and e2. Using this special encoding, transitions of the form above
can be implemented by an automaton as in Definition 3. For this, we enlarge our node
labeling alphabet by adding the labels in Λ to it. Further, the state set Q is replaced by

(Λ ×Q) ∪ (Q ×Λ). The automaton contains all transitions {(q, λ)}
λ/1
−−→ {(λ, q)}, for q ∈ Q

and λ ∈ Λ. Thus, for each of the fresh nodes, the label is carried to the states on its
incident edges, and the same state q is assigned to both edges, effectively simulating a
single edge labeled with λ and carrying the state q. Now, every generalized transition
as above can be turned into the ordinary transition

{(q1, λ1), . . . , (qm, λm)}
σ/w
−−→ {(λ′1, r1), . . . , (λ′n, rn)}.

It should be clear that this DAG automaton simulates the processing of the edge labels
of the generalized DAG automaton in a faithful way.

3.3 Related Formalisms

Other than in the perspective of natural language processing, DAG automata have
been investigated in several different domains, as for instance to represent derivations
in Chomsky type-0 phrase structure grammars (Kamimura and Slutzki 1981), to solve
systems of set constraints (Charatonik 1999), or else to process series-parallel graphs in
pattern matching applications (Fujiyoshi 2010).

Kamimura and Slutzki (1981) define automata for two classes of DAGs. They
primarily consider so-called d-DAGs, a recursively defined type of ordered planar

13

Computational Linguistics Volume xx, Number xx

DAGs, where ordered means that there is a global total order on the set of nodes
of the graph which implicitly orders the incoming and outgoing edges of each node.
These d-DAGs are intended to model the derivations of type-0 grammars (equivalent
to Turing machines). Accordingly, d-DAGs have bounded node degree and cannot have
subgraphs matching certain Z-like patterns that would correspond to the same node
being rewritten by two different rules. These restrictions are unsuitable when modeling
natural language semantic structures. The authors also briefly consider DAGs without
the planarity restriction, but still ordered in the sense mentioned above.

Our definition of DAG automata is based on that of Quernheim and Knight (2012).
Also motivated by modeling semantic representations of natural languages, Quernheim
and Knight (2012) extend the automata of Kamimura and Slutzki (1981) by adding
weights and by dropping the planarity restriction as well as the bound on the in-
degree. In order to process nodes with unbounded in-degree, Quernheim and Knight
(2012) exploit some ordering on the incoming edges at each node, and introduce so-
called implicit rules that process these edges in several steps. In Section 7, we take a
different, simpler approach for processing DAGs with unbounded node degree that
can also handle unbounded out-degree. Overall, this article can be viewed as an in-
depth exploration of the theoretical properties of a somewhat simplified version of the
formalism of Quernheim and Knight (2012).

There are also major notational differences with respect to our proposal: Quernheim
and Knight (2012) essentially view computations as top-down rewriting processes,
and the rewriting relation is defined via the introduction of specialized DAGs, called
incomplete DAGs. In contrast, in our definition of run in Sections 3.1 and 7.2, there is
no commitment to a specific rewriting process, which makes the notation somewhat
simpler. Quernheim and Knight (2012) also show how to obtain weighted DAG-to-tree
transducers, that could form the basis of a natural language generation system.

With the goal of modeling ground terms in logical languages, Charatonik (1999)
proposes devices that are mainly bottom-up tree automata running on DAGs, and
states the external restriction, not implemented through the defined automata, that
for these DAGs common substructures should be maximally shared. This maximal
sharing condition is quite common in the literature on unification, but is unsuitable
when modeling natural language semantic structures: two copies of the same semantic
substructure should be shared only in case they refer to the same concept or action.
A consequence of the maximal sharing is that, even in a nondeterministic automaton,
isomorphic sub-DAGs are assigned the same state (since they are actually identical).
This is exploited in the main result of Charatonik (1999), the NP-completeness of the
emptiness problem. This is in contrast with the polynomial time result for the same
problem for our DAG automata, presented in Section 5.1.

Anantharaman, Narendran, and Rusinowitch (2005) also work under the maximal
sharing assumption, and solve in the negative the problem of closure under comple-
mentation which had been left as an open question by Charatonik (1999). The authors
consider the uniform membership problem for their automata, showing NP-hardness.
Here uniform means that the automaton is considered as part of the input. In our
article and relative to our family of automata, we consider the easier problem of
deciding membership for a fixed automaton, given only the DAG as input. Despite
the more restricted question, we can show NP-hardness. Anantharaman, Narendran,
and Rusinowitch also show that universality is undecidable for their automata. Finally,
with the motivation of representing sets of terms by means of a single DAG, they also
consider DAGs where each node has an additional Boolean label. This representation
does not seem to be relevant for modeling of natural language semantic structures.

14

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

Fujiyoshi (2010) considers DAG automata that are essentially top-down tree au-
tomata. Such an automaton is said to accept a DAG if there exists a spanning tree of the
DAG that is accepted by the automaton (viewed as a tree automaton). In particular,
whenever a DAG is accepted, every other DAG obtained by adding edges is also
accepted. This property does not seem to be desirable for modeling semantic structures.
Similarly to our result, Fujiyoshi proves that the non-uniform membership problem is
NP-complete, but while he also uses a reduction from SAT, the reduction itself is very
different from ours (as expected, due to the differences in the automata models).

Among the types of DAG automata studied in theoretical computer science, the
model by Priese (2007) is the one that comes closest to the extended DAG automaton
introduced in Section 7, even though Priese uses an algebraic setting to describe it. The
major difference is that the DAG automata of Priese (2007) are able to check that the
multiset of states assigned to the roots and leaves of the input DAG belongs to a given
regular set, in the sense of Section 7.1. For example, it is possible to express the condition
that recognized DAGs shall have a unique root. At first sight, this may appear to be
a minor point, but this is not so. Section 4.1 shows the path languages of our model
are regular whereas they are not even context-free once it becomes possible to express
that a DAG has a unique root (which is also observed by Priese (2007)). We consider
this to be an indication that our DAG automata are better suited for studying semantic
structures because we expect those to have regular path languages, and in the interest
of algorithmic results one should not use unnecessarily powerful models. In the more
general setting of Priese (2007), our recognition algorithm does not apply, and our proof
of the polynomial decidability of the emptiness problem, and the corresponding result
for finiteness of Blum and Drewes (2016), break down. Apart from the mentioned study
of path languages, the questions studied by Priese (2007) are essentially disjoint with
those studied in this paper.

Another automaton model for graph processing is the graph acceptor by Thomas
(1991, 1996). A graph acceptor consists mainly of a finite set of pairwise non-isomorphic
r-tiles that play the role of the rules. Each tile is an r-sphere, i.e., a graph with a center
node whose distance to all other nodes is at most r. Each node of such a tile carries a
state. A run on an input graph G is then a mapping of states to the nodes of G such
that each node is the center of one of the tiles. The definition of the graph acceptor
includes an occurrence constraint, a boolean combination of conditions that restrict the
number of occurrences of each tile. A given run is accepting if the occurrence constraint
is satisfied. The expressiveness of the model can be characterized by existential monadic
second-order logic (Thomas 1996), and it can be extended by weights (Droste and Dück
2015). Similar to our basic (non-extended) model, graph acceptors of this type recognize
graph languages of bounded degree. However, because of the overlapping of tiles in
runs and the occurrence constraint, they are considerably more powerful than our DAG
automata (and thus too powerful for our purposes) unless the tiles are required to have
the radius 0, i.e., they are single nodes. The latter restriction results in too weak a model,
because it cannot say anything about the edges in the graph if each tile is just a single
node.

More results on the (non-extended) DAG automata invented in this paper were
proved by Blum (2015) and Blum and Drewes (2016). In particular, an alternative proof
of the regularity of path languages was given in (Blum 2015) (which is simpler and
more constructive, but was conceived after the proof in Section 4.1), and the polynomial
decidability of the finiteness problem was proved.

Without going into further detail, we mention here some additional publications
by diverse authors on automata recognizing DAGs or graphs: Bossut, Dauchet, and

15

Computational Linguistics Volume xx, Number xx

Warin (1988); Kaminski and Pinter (1992); Potthoff, Seibert, and Thomas (1994); Bossut,
Dauchet, and Warin (1995). Furthermore, there exists considerable work within the
XML community on evaluating tree automata and logical queries on compressed
representations of trees, which are DAGs (see, e.g., Frick, Grohe, and Koch (2003); Lohrey
and Maneth (2006)). This work seems to be only tangentially related to the present paper
because it is not interested in the DAG as a structure in its own right (and automata that
define DAG languages), as we are.

4. Properties

In this section we consider only unweighted DAG automata. We explore three properties
of such DAG automata and of the (unweighted) DAG languages recognized by them:r With multiple roots, the path languages of DAG automata are regular; but not

under the constraint of a single root (Section 4.1).r Hyperedge replacement graph languages are closed under intersection with
languages recognized by DAG automata (Section 4.2).r Testing for emptiness of DAG automata is decidable under our definition, but not
under the original definition by Kamimura and Slutzki (Section 4.3).

The results in this section are not required for understanding Sections 5–7 on recognition.

4.1 Path Languages

Reading the labels of nodes on the paths in a DAG D from a root to a leaf yields the path
language of the DAG, denoted by paths(D). (In the following, all paths are assumed
to start at a root; their rootedness will thus not be mentioned anymore.) The path
language of a set L of DAGs is the union paths(L) =

⋃
D∈L paths(D) of the path languages

of its individual DAGs. We now show that the path language of a recognizable DAG
language is always a regular string language. Thus, in this respect our DAG automata
are similar to those by Kamimura and Slutzki (1981), whose path languages are trivially
regular. However, if we restrict recognizable DAG languages to DAGs with only one
root, then this does not hold any more. In fact, in this case even non-context-free path
languages are obtained as in the case of Priese (2007).

Let us first show that path languages of recognizable DAG languages (without the
restriction to unique roots) are regular. To this end, recall that we have defined DAGs as
connected directed acyclic graphs. Let us now drop the connectedness assumption, and
consider arbitrary directed acyclic graphs, which we call nc-DAGs. Then any nc-DAG
can be written as the finite disjoint union D1 + · · · + Dk of (connected) DAGs D1, . . . ,Dk,
for k ≥ 1. Here D + D′ is used to denote the disjoint union of DAGs D and D′.

We define as [[M]]+ the language of nc-DAGs recognized by M: in words, each nc-
DAG in [[M]]+ is the disjoint union of one or more DAGs from [[M]]. We extend our
definition of path language of a DAG to nc-DAGs and to languages of nc-DAGs. Let
D1, . . . ,Dk ∈ [[M]]. We have paths(D1 + · · · + Dk) = paths(D1) ∪ · · · ∪ paths(Dk). It directly
follows that paths([[M]]) and paths([[M]]+) coincide. This observation will be used later to
simplify our proof.

Another useful observation is the following. Consider a DAG D = (V,E, lab, src, tar)
and two edges e1, e2 ∈ E. Let D[e1 ↔ e2] denote the graph that is obtained from D by
interchanging the targets of e1 and e2. More precisely, if vi (i = 1, 2) is the node such that
ei ∈ in(vi), then D[e1 ↔ e2] has e1 ∈ in(v2) and e2 ∈ in(v1) but is otherwise identical to D.
It is not difficult to see that the edge interchange operator we have just defined might

16

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

introduce cycles, that is, D[e1 ↔ e2] may no longer be a DAG. However, in what follows
we will use this operator in a restricted way, such that the resulting graph is still a DAG.

Suppose that D ∈ [[M]]+ and let ρ be an accepting run of M on D. If D = D1 + D2
and, for i = 1, 2, ei is an edge of Di such that ρ(e1) = ρ(e2), then D[e1 ↔ e2] ∈ [[M]]+. This
is true because D[e1 ↔ e2] is still acyclic (since e1 and e2 belong to distinct connected
components of D) and ρ is an accepting run on D[e1 ↔ e2] as well.

Now, let us turn M into M′ by adding a unique leaf symbol `, adding a new state f

and the transition { f } `−→ ∅, and turning all original transitions of the form {q1, . . . , qk}
a
−→ ∅

into {q1, . . . , qk}
a
−→ { f }. Thus, the DAGs recognized by M′ are those originally recognized

by M, but with additional leaves labeled ` added as leaves below the original leaves,
and the accepting runs of M′ are those of M, extended by labeling the (unique) outgoing
edges of the original leaves with f .

For a string w ∈ Σ+, let ∆(w) denote the set of all states q for which there exists an
accepting run ρ of M′ on a DAG D such that some path labeled w leads to an edge
e with ρ(e) = q. Hence, paths([[M]]) = {w | f ∈ ∆(w)}. By the Myhill-Nerode theorem, it
therefore suffices to show that the equivalence relation ∼, given by w1 ∼ w2 if and only
if ∆(w1) = ∆(w2), is a right congruence. In other words, if ∆(w1) = ∆(w2) and w is any
string, then w1w ∈ paths([[M]]) if and only if w2w ∈ paths([[M]]).

So, assume that ∆(w1) = ∆(w2) and w1w ∈ paths([[M]]). Then there is some D1 ∈ [[M′]]
containing a path p whose node labels are w1w`. Let ρ1 be a run on D1 and consider
the |w1|-th edge e1 on p, i.e., the edge between w1 and w. Then ρ1(e1) ∈ ∆(w1). Choose
any D2 ∈ [[M′]], edge e2, and accepting run ρ2 such that some path to e2 in D2 is labeled
by w2 and ρ2(e2) = ρ1(e1). Note that D2, e2, and ρ2 exist because ∆(w1) = ∆(w2). Now, let
D = D1 + D2. By the observation above the graph D[e1 ↔ e2] is in [[M′]]+. Furthermore,
it obviously contains the path w2w`, which means that f ∈ ∆(w2w) and thus w2w ∈
paths([[M]]), as required.

We have thus shown that the path language of every recognizable DAG language is a
regular string language. The proof of this statement relies crucially on the fact that DAGs
in [[M]] may have several roots: we considered the disconnected graph D = D1 + D2 ∈

[[M′]]+ and turned it into D[e1 ↔ e2] ∈ [[M′]]+. However, the latter may be connected and
may thus, in fact, be an element of [[M′]], while containing the roots of both D1 and D2.

To end this section, we discuss two examples showing that, indeed, the regularity of
path languages (and even its context-freeness) is lost if single-rootedness is imposed on
the DAGs (see Priese (2007) for similar arguments). More precisely, let [[M]]s = {D ∈ [[M]] |
D has only one root}. Then paths([[M]]s) is not necessarily context-free, as the following
two examples show.

Example 5
Let Σ = {a, b, ◦} and consider the DAG automaton with states q, r, r′, s and transitions

∅
a
−→ {q, r}, {q} a

−→ {q, r},

{r} ◦−→ {r′},

{q, r′} b
−→ {s}, {s, r′} b

−→ {s} | ∅.

In an accepting run on a DAG having a single root (labeled by a) every a is related to
a uniquely determined b, and vice versa, by paths of the form a→ ◦ → b (where ρ(e) = r
and ρ(e′) = r′ for the incoming and outgoing edge, respectively). Hence, the intersection
of the path language of [[M]]s with a∗b∗ is {anbn

| n ≥ 1}, a strictly context-free language.

17

Computational Linguistics Volume xx, Number xx

◦

◦

◦

◦

◦

a2

a3

a3

a1

a2

a1

a1

a3

a2

q

q

q

q

q

q

q

q

q

r

r

r

r

r1

r2

r3

r1

r2

r3

r1

r2

r3

Figure 8
Example run of the DAG automaton that recognizes paths of the form ◦w where w ∈MIX(k).

This means that the path language of [[M]]s cannot be regular. Note that the construction
breaks down if arbitrarily many roots are allowed (i.e., if [[M]] is considered); in this case,
no “counting” is possible and we simply get a+b+.

Example 6
In a similar way, one may build M such that paths([[M]]s), intersected with {a1, . . . , ak}

∗,
k ≥ 2, is equal to MIX(k), the language of all strings over the alphabet {a1, . . . , ak} that
contain the same number of occurrences of each symbol in this alphabet. To simplify the
construction, we show how to obtain all strings of the form ◦w such that w ∈MIX(k). Let
Σ = {◦, a1, . . . , ak}. We use states q, r, r1, . . . , rk and the following transitions:

∅
◦
−→ {q, r}

{r} ◦−→ {r, r1, . . . , rk} | ∅

{q, ri}
ai
−→ {q} | ∅ for 1 ≤ i ≤ k.

An example run of this automaton (for k = 3) is illustrated in Figure 8. Similarly
to the example above, taking the intersection of paths([[M]]s) with the regular language
{◦w | w ∈ {a1, . . . , ak}

∗
} yields the intended language. The reader should easily be able to

adapt the automaton in such a way that the initial ◦ is dropped.
Note that, while MIX(2) is well known to be context-free, MIX(k) is not context-free

for any k > 2. It has been recently discovered (Salvati 2014) that MIX(3) can be generated
by a Linear Context-Free Rewriting System (Vijay-Shanker, Weir, and Joshi 1987), but it
is unknown whether MIX(k), k > 3, can be generated by this class.

18

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

4.2 Intersection with Hyperedge Replacement Languages

Hyperedge replacement grammar (HRG, see Drewes, Kreowski, and Habel (1997) for
an overview) is a context-free type of graph grammar. It can in particular be used to
generate DAG languages. Recognition algorithms for HRGs (Lautemann 1990; Chiang
et al. 2013) can be thought of as constructions that intersect the graph language [[G]]
generated by an HRG G with a single graph. But just as the Cocke-Kasami-Younger
algorithm for context-free grammars can be thought of as a special case of intersecting
a context-free language with a regular language (Bar-Hillel, Perles, and Shamir 1961),
we would more generally like to be able to intersect [[G]] with any recognizable DAG
language. In other words, given an unweighted DAG automaton M, we would like to
construct an HRG G′ such that [[G′]] = [[G]] ∩ [[M]].

To discuss briefly how this can be done, we need to give a rough introduction to
HRGs (adapted to the setting and terminology of the current paper). An HRG comes
with a ranked alphabet N of nonterminal hyperedge labels, in addition to the alphabet
Σ of node labels. Here, saying that N is ranked means that N is specified as a disjoint
union N =

⋃
k Nk, where the elements of Nk are said to be the symbols of rank k. A

hypergraph H is a graph that may, in addition to the usual elements, contain a finite set
of hyperedges. Each hyperedge h has a label lab(h) ∈ Nk for some k ∈N and a sequence
att(h) ∈ Vk of attached nodes. We also view h as having k tentacles that connect it to its
k attached nodes.

An HR rule r = (L ::= R) consists of a left-hand side L and a right-hand side R. L
is a hypergraph that consists of a single hyperedge h labeled by some X ∈ Nk, together
with the attached nodes of h, say u1, . . . ,uk. These nodes should be thought of as being
unlabeled as their label is irrelevant. The right-hand side is a hypergraph whose set
of nodes also contains u1, . . . ,uk (among other nodes). Suppose that a host hypergraph
H contains a hyperedge h′ labeled with X and attached to nodes v1, . . . , vk. Then the
rule r can be applied to it, which yields the hypergraph obtained by removing h′ from
H and inserting the right-hand side of r in its place by identifying each ui with the
corresponding vi. Figure 9 shows an example of a rule and its application. An HRG G
consists of an alphabet N of nonterminals as above, an initial nonterminal of rank 0,
and a finite set of HR rules. The generated graph language [[G]], called an HR language,
consists of all graphs that can be derived from the initial nonterminal by repeated rule
application.

Suppose now that we are given an HRG G that generates graphs over Σ, and an
unweighted DAG automaton M that recognizes a DAG language over Σ. We want to
construct another HRG G′ such that [[G′]] = [[G]] ∩ [[M]]. That this is possible follows
from several known results, but most easily using monadic second-order (MSO) logic.
Courcelle (1990, Corollary 4.8) shows that the restriction of an HR language by a property
expressible in MSO logic yields an HR language (for which a suitable HRG can effectively
be constructed). Thus, it suffices to argue that every recognizable DAG language is
definable by an MSO formula. Suppose we want to express in MSO logic that a given
DAG automaton with state set Q = {q1, . . . , qn} accepts a DAG D = (V,E, lab, src, tar). We
can do this by constructing an MSO formula that “guesses” an accepting run ρ. The
formula states that there exists a partition of E into subsets E1, . . . ,En such that the
following holds: for every node v ∈ V with in(v) = {e1, . . . , em} and out(v) = {e′1, . . . , e

′
n},

there exist i1, . . . , im and j1, . . . , jn such that

1. {qi1 , . . . , qim }
lab(v)
−−−→ {q j1 , . . . , q jn } is a transition of M and

2. er ∈ Eir for 1 ≤ r ≤ m and e′s ∈ E js for 1 ≤ s ≤ n.

19

Computational Linguistics Volume xx, Number xx

X

1
2

3

::=
a

X

1
2

3

Y

1

2

. .

a

b

b

a

X

1
2

3

a

Y 1
2

⇒

a

b

b

a

a

Y 1
2

a

X

1
2

3

Y

1

2

Figure 9
An HR rule (top) and its application to a hyperedge (bottom). For better visibility the replaced
hyperedge as well as the portion of the resulting hypergraph that is added by the rule are drawn
using thick lines.

Intuitively, Ei corresponds to the set of all edges e for which ρ(e) = qi.
Let us now sketch a direct construction of G′. Without loss of generality, we may

assume that [[G]] is a set of DAGs, because it is well known that the class of HR languages
is closed under intersection with the set of all connected acyclic graphs. (This is, in fact,
another application of the closedness under intersection with MSO properties.) The idea
behind the construction of G′ is to use a guess-and-verify strategy to guarantee that only
those graphs are generated that have accepting runs in M. To implement this strategy,
we augment the nonterminal labels of hyperedges with the guessed information. To
understand this, note that every tentacle of a hyperedge intuitively controls a node to
which the derivation of this hyperedge will eventually attach a number of incoming and
outgoing edges. We have to guess beforehand the multiset of states that an accepting run
will assign to these edges. To keep track of this guess, we have to remember two multisets
of states for each tentacle, one referring to outgoing edges and one referring to incoming
edges that will be generated. Consequently, the new sets N′k of nonterminal labels of
rank k consist of all (X, µ1 · · ·µk, µ′1 · · ·µ

′

k) such that X ∈ Nk and µ1, . . . , µk, µ′1, . . . , µ
′

k are
multisets of states in Q. The size of these multisets is bounded by the maximum size of
multisets in the transitions of M. This makes sure that the set of nonterminals is finite.
The initial nonterminal is (X0, λ, λ), where X0 is the initial nonterminal of G and λ is the
empty sequence.

To define the rules of G′, we need a few preparations. Consider a hypergraph H
over Σ and N′ and a function ρ that maps every (ordinary) edge e of H to a state
ρ(e) ∈ Q. Below, we call ρ a state assignment for H. Given such a state assignment

20

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

and a node v of H, we let inρ(v) denote the multiset of states obtained by taking the
union of, first, all {ρ(e)} with e ∈ in(v) and, second, all µi such that there is a hyperedge
h labeled (X, µ1 · · ·µk, µ′1 · · ·µ

′

k) whose ith tentacle is attached to v. Similarly, outρ(v) is
the union of all {ρ(e)} with e ∈ out(v) and all µ′i such that there is a hyperedge h labeled
(X, µ1 · · ·µk, µ′1 · · ·µ

′

k) whose ith tentacle is attached to v.
Now, consider all HR rules L ::= R that can be obtained from rules of G by

augmenting each nonterminal label in all possible ways. A rule L ::= R obtained in
this way becomes a rule of G′ if there exists a state assignment ρ for R such that

1. inε(v) = inρ(v) and outε(v) = outρ(v) for all nodes v of L, where ε is the unique
(empty) state assignment for L, and

2. inρ(v)
lab(v)
−−−→ outρ(v) is a transition of M for every node v of R which is not in L.

By induction on the length of derivations it can be shown that D ∈ [[G′]] if and only if
D ∈ [[G]] and there exists an accepting run of M on D. In other words, [[G′]] = [[G]] ∩ [[M]],
as required.

4.3 Emptiness

The emptiness problem for DAG automata asks, for an unweighted DAG automaton M
as input, whether [[M]] = ∅. As mentioned earlier, the DAG automata of Kamimura and
Slutzki (1981) can encode computations of Turing machines. In particular, this means that
their emptiness problem is undecidable. As we shall see next, this sharply distinguishes
their DAG automata from ours, whose emptiness problem can be decided in polynomial
time as it can be reduced to a particular case of the reachability problem for Petri nets.
A similar idea was used by Kaminski and Pinter (1992) to prove the decidability of the
emptiness problem for their graph automata. However, in their case it required the use
of the general Petri net reachability problem, which leads to an algorithm whose running
time is non-elementary. In contrast, we obtain a polynomial algorithm.

Let us first briefly recall Petri nets. A Petri net is an unlabeled directed graph
N = (V,E, src, tar) such that V consists of disjoint sets T and P of transitions and places.
Edges only point from places to transitions and from transitions to places, i.e., N is
a bipartite graph. A marking is a mapping µ : P→N that assigns to every place p
a number µ(p) of tokens. Intuitively, the idea is that a transition t consumes tokens
via edges leading from places to t and it produces tokens via edges leading from t to
some places. We make this more precise, as follows. For a place p and a transition t let
inputt(p) = |in(t) ∩ out(p)| be the number of times p occurs as an input place of t. Similarly,
let outputt(p) = |out(t) ∩ in(p)| be the number of times p occurs as an output place of t. For
a given marking µ, a transition t can fire if µ(p) ≥ inputt(p) for each place p, i.e., if there
are enough tokens on the input places of t. In this case, the firing of t yields the marking
µ′ given by µ′(p) = µ(p) − inputt(p) + outputt(p) for all p ∈ P.

Note that a place p can be an input and output place of t at the same time, i.e., we
may have inputt(p) > 0 and outputt(p) > 0. A simple example of a Petri net consisting of
one transition together with its input and output places is shown in Figure 10, where
the bar represents the transition and the circles represent places. The transition can fire
if the top-most place contains at least one token. If it does fire, the token on the top-most
place is immediately reproduced. At the same time, four additional tokens are placed
on the places at the bottom, namely two on the place in the middle and one on each of
the other two places.

21

Computational Linguistics Volume xx, Number xx

Figure 10
A Petri net with four places and one transition.

Naturally, a firing sequence is a sequence of admissible firings. It transforms
an initial marking into a final marking. The Petri net reachability problem is the
following problem: Given a Petri net and two markings µ, µ′, is µ′ reachable from µ
via some firing sequence? This problem is known to be decidable, but no solution with
a primitive recursive running time is known (Reutenauer 1990; Esparza and Nielsen
1994). Fortunately, for our purpose it suffices to consider the case where both µ and µ′

are equal to the zero marking 0, i.e., µ(p) = µ′(p) = 0 for all places p. If 0 is reachable from
itself in a Petri net N via a nonempty firing sequence, then we say that N is structurally
cyclic, because then it holds for all markings µ that µ is reachable from itself. Drewes
and Leroux (2015) show that it is decidable in polynomial time whether a Petri net is
structurally cyclic.

We can reduce the emptiness problem for DAG automata M to the question whether
a Petri net is structurally cyclic, as follows. Every state of the DAG automaton becomes a
place of the Petri net N and every transition t = ({q1, . . . , qm}

σ
−→ {r1, . . . , rn}) of M becomes

a transition of N in an obvious way: for 1 ≤ i ≤ m, there is an edge pointing from qi to t,
and for 1 ≤ j ≤ n, there is one pointing from t to r j.

To argue for the correctness of the construction, let us consider DAGs which are
partial in the sense that, for some edges e, there is no node v with e ∈ in(v). Such edges are
“downward dangling”. Now, given a firing sequence starting with the empty marking,
we can inductively construct a run on a corresponding partial DAG. The initial empty
marking of N corresponds to the empty DAG (with no nodes and zero dangling edges).
After some firings the Petri net has reached a marking µ and we have inductively
constructed a partial DAG D and a run ρ on D such that for each state q, there are exactly
µ(q) dangling edges e with ρ(e) = q. Now suppose that, in N, a transition fires, which was
obtained from transition {q1, . . . , qm}

σ
−→ {r1, . . . , rn} of the DAG automaton M. To reflect

the firing of t, we add a node v labeled by σ to D and choose previously dangling edges
e1, . . . , em with ρ(ei) = qi as incoming edges of v; n new outgoing dangling edges e′1, . . . , e

′
n

are attached to v, and ρ is extended by defining ρ(e′i) = ri for 1 ≤ i ≤ n. Clearly, D is a
DAG without dangling edges if µ = 0. Thus, [[M]] , ∅ if 0 is reachable from itself in N.
In a similar way, if M accepts a DAG D, a run of M on D can easily be turned into a
nonempty firing sequence of N (under the top-down interpretation of runs) that turns
0 into itself. Thus, we have reduced the emptiness problem for DAG automata to the
problem of deciding whether a Petri net is structurally cyclic. Clearly, the reduction can
be computed in polynomial time (and, in fact, in logarithmic space). Using the main
result of Drewes and Leroux (2015) mentioned above, we conclude that the emptiness
problem for DAG automata is decidable in polynomial time.

22

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

5. Recognition

We consider the recognition problem for unweighted DAG automata: for a DAG
automaton M and a DAG D, does M accept D? This problem turns out to be NP-
complete even in case M is fixed, i.e., instead of both M and D, only D is the input.
(In theoretical computer science, the variant where M is part of the input is called the
uniform membership problem; accordingly, the one where M is fixed is the potentially
easier non-uniform one.) The situation is similar to that of the recognition problem based
on the hyperedge replacement grammar introduced in Section 4.2, which is NP-complete
even for a fixed grammar (Aalbersberg, Rozenberg, and Ehrenfeucht 1986; Lange and
Welzl 1987). On the positive side, as we shall see in Section 6, recognition by a (fixed)
DAG automaton can be done in polynomial time for input graphs of bounded treewidth,
which is encouraging in view of Table 1.

5.1 NP-completeness

It is easy to see that recognition is in NP even if the automaton is part of the input:
we can nondeterministically “guess” an assignment of states to the edges of D and
check in linear time whether it constitutes an accepting run of M. Next, we show that
recognition is NP-complete. Like Fujiyoshi (2010), we do this by reduction from SAT,
but the reduction is different (because our DAG automata differ essentially from his).

Since we want to prove NP-completeness of the non-uniform membership problem,
i.e., for a fixed DAG automaton, we construct a single DAG automaton M and a
reduction that turns any propositional formula φ into a DAG Dφ which is accepted
by M if and only if φ is satisfiable. We first define Dφ. Thus, assume that we are given
a propositional formula φ (which we do not require to be in conjunctive normal form).
We use the alphabet Σ = {true,∧,∨,¬, x}. First, we construct in the obvious way the tree
Tφ corresponding to φ (where every occurrence of a variable xi is represented by a node
labeled x). We then add a special root node labeled true on top of the tree. Intuitively, the
root node represents the claim that φ evaluates to true under an appropriate assignment.
Finally, for every variable xi, if there are n + 1 nodes u0, . . . ,un in Tφ that represent the
occurrences of xi in φ from left to right, we add edges from u j−1 to u j for j = 1, . . . ,n.
Thus, all nodes representing the same variable are linked together in a chain.

Example 7
For φ = ((x1 ∨ x2) ∨ ¬x3) ∧ (¬x2 ∨ (x4 ∨ x1)) the resulting DAG Dφ is shown in Figure 11,
where we have added indices to the x-labeled nodes in order to illustrate the correspon-
dence with the formula φ.

We can easily construct a DAG automaton M that, for every formulaφ, accepts DAG
Dφ if and only if φ is satisfiable. The automaton has just two states, t and f , to compute a
truth value for each node in a consistent way by means of a guess-and-verify technique.

The only transition for true is ∅ true
−−→ {t}.

23

Computational Linguistics Volume xx, Number xx

true

∧

∨

∨

x1x4

¬

x2

∨

¬

x3

∨

x2x1

Figure 11
Example instance in the reduction of 3-SAT to DAG automata recognition. The 3-SAT instance is
φ = ((x1 ∨ x2) ∨ ¬x3) ∧ (¬x2 ∨ (x4 ∨ x1)). We have added indices to the x-labeled nodes merely to
illustrate the correspondence with φ.

The transitions for processing conjunctions, disjunctions, and negations are the
expected ones:

{t} ∧−→ {t, t} { f } ∧−→ {t, f } { f } ∧−→ { f , f }

{t} ∨−→ {t, t} {t} ∨−→ {t, f } { f } ∨−→ { f , f }

{t} ¬−→ { f } { f } ¬−→ {t}.

Then for the nodes corresponding to the variables, we need the following transitions,
for b ∈ {t, f }:

{b, b} x
−→ {b}, {b} x

−→ {b}, {b, b} x
−→ ∅ and {b} x

−→ ∅

These make sure that multiple occurrences of the same variable (i.e., occurrences of x
that are “chained together”) are assigned the same truth value. It should be clear that
Dφ is accepted by this DAG automaton if and only if φ is satisfiable.

Note that, no matter whether we construct runs top-down or bottom-up, there is
always nondeterminism involved. Under the top-down view, the transitions for∧ and∨
are nondeterministic (reflecting the fact that ∧ and ∨ are not injective) whereas those for
x are deterministic. Conversely, under the bottom-up view, the transitions for x become
nondeterministic whereas those for ∧ and ∨ become deterministic (because ∧ and ∨
are functions). Intuitively, the top-down process corresponds to guessing the values
of subtrees and verifying consistency. In contrast, the bottom-up process guesses an
assignment of truth values and computes the resulting truth value of φ deterministically
in order to check that it results in true. In both cases, the outlined computational difficulty
is preserved.

5.2 Algorithm

We give an algorithm for a more general problem than the recognition problem for
unweighted DAG automata: Given a weighted DAG automaton M and a DAG D, what

24

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

is the total weight (in the semiringK) of all runs of M for D? This includes in particular
the recognition problem, since unweighted DAG automata are a special case of general
DAG automata, as explained at the end of Section 3.1. We also get an analogue of the
Viterbi algorithm if we define ⊗ and ⊕ to be multiplication and maximum. In Section 5.3
we will also discuss how to use this algorithm for learning transition weights from data.

We have already discussed in Example 3 how our DAG automata generalize finite
automata for strings. In order to introduce our algorithm for DAG automata, we therefore
consider the analogous problem for finite automata: given an input string w, find the
total weight of all runs of a nondeterministic weighted finite automaton M on w.
Let Q be the state set of M. A naïve algorithm for this problem would consider all
possible assignments of states in Q to the |w| + 1 inter-symbol positions of w, under the
restriction that the first position is assigned the unique starting state for M. For each
such assignment, we then check against M’s transitions that it corresponds to a run of
M and, if this is the case, we add in the weight of that run. The number of possible
assignments is |Q||w| and each assignment can clearly be checked in time O (|w|). If we
assume that the semiring operations can be computed in constant time, the algorithm
runs in time O

(
|Q||w||w|

)
.

A better algorithm, the forward algorithm (Baum 1972), uses dynamic programming
to run in polynomial time in the size of both w and M. This is reported in Algorithm 1.
We view w as a sequence of tokens wi from the alphabet of M. Symbols s and F denote
the initial state and the final state set, respectively, of M. Symbol δ denotes the transition
function, mapping a pair of states and an input symbol from M to a weight. For instance,
δ(q,wi, r) is the weight of the transition that takes M from state q to state r upon reading
token wi.

Algorithm 1 (Forward algorithm) Sum the weights of all computations of a finite
automaton on a single string.

n = |w|
α[0, s]← 1
for i← 1, . . .n do

for r ∈ Q do
α[i, r] =

⊕
q∈Q

α[i − 1, q] ⊗ δ(q,wi, r)

return
⊕

f∈F

α[n, f]

The algorithm processes w from left to right, computing the weights of larger and
larger prefixes of w. More precisely, for each prefix w1w2 · · ·wi of w and for each state
r ∈ Q, we compute the sum of the weights of all runs of M that start in s, read w1w2 · · ·wi,
and end up in r. This quantity is then stored in a chart entry α[i, r], for future reuse. In
fact, the basic idea underlying Algorithm 1 is that α[i, r] can be computed as a function of
all quantities α[i − 1, q], q ∈ Q, combined with all possible transitions of M over token wi,
using a recursive relation. We call each chart entry α[i, r] a partial analysis of w. Observe
that each partial analysis of w is uniquely identified by the inter-symbol position i we
have reached on w, and by the state r we have reached on M.

The complexity analysis of Algorithm 1 is rather straightforward. Considering the
two embedded for-loops and the summation performed at the inner loop, we get a
running time of O

(
|Q|2|w|

)
.

25

Computational Linguistics Volume xx, Number xx

We are now in a position to discuss the same problem for DAG automata. Let D be
an input DAG and let M be our DAG automaton with state set Q. In order to strengthen
the similarity with the string case, we view the nodes of D like the tokens of w and the
edges of D like the inter-symbol positions of w. A naïve algorithm, similar to the one
for finite automata, can be developed for computing the total weight for all runs of M
on D. We iterate over all possible assignments of states from Q to edges in E, i.e., over
all runs, and sum up their weights. The total number of runs is |Q||E|, and the weight
of each run can be checked in time O (|E|). We thus conclude that the algorithm runs in
time O

(
|Q||E||E|

)
.

Once again, we can do much better by using dynamic programming. The main
difference with respect to the string case is that the tokens of D are now organized in
some partial order, so we can no longer parse the input from left to right. To deal with
this, our algorithm assumes a total ordering of the edges of D, which is provided along
with D, and parses D accordingly, as explained below.

Informally, our parsing algorithm consists of the following two phases.r First, we make a partial analysis for each node v of D. Each partial analysis records
what states the incoming edges might be in and what states the outgoing edges
might be in, together with a weight.r Second, we merge partial analyses into larger and larger partial analyses. For each
edge e (following the total ordering of edges provided as input), we contract it,
replacing its source node src(e) and target node tar(e) with a new node z. We then
retrieve partial analyses associated with src(e) and tar(e) and merge them into new
partial analyses associated with z. This process is repeated, ending when all of
D has been contracted to a single node with a single analysis. The weight of this
analysis is the weight of all the runs on D.

The merging of partial analyses in the second phase above requires some additional
discussion. If p1 and p2 are partial analyses associated with src(e) and tar(e), respectively,
the partial analysis p, associated with z, inherits its state assignments from p1 and p2.
Since the edge e is shared between p1 and p2, the merging of p1 and p2 can be carried
out only if they assign the same state to e. Moreover, if several merges result in several
analyses for z with the same state assignments, their weights are summed.

In order to gain a better understanding of the above ideas, we discuss a simple
example, before providing a precise specification of the algorithm itself.

Example 8
The evolution of the structure of a DAG over a run of our DAG parsing algorithm is
shown in Figure 12. We start with DAG D in (a) with node set {v1, v2, v3, v4, v5}. To keep the
example simple, we only display one possible assignment of a hypothetical automaton
at each node; for instance, at node v2 we display the partial analysis representing the
transition in which q1 is assigned to the incoming edge, and q2, q3 are assigned to the
outgoing edges. We then contract the edge from v2 to v3, resulting in the new DAG
displayed in (b), where node (v2, v3) represents the merge of nodes v2 and v3. Observe
that, after edge contraction, the remaining incoming and outgoing edges at v2 and v3
are inherited at (v2, v3). All possible partial analyses at v2 and v3 are pairwise merged at
(v2, v3) (again, only one such analysis is displayed). We proceed by contracting the edge
from v1 to (v2, v3), the edge from v4 to v5, and finally the multiple edges from (v1, v2, v3) to
(v4, v5), ending up with the final DAG in (d) consisting of a single node (v1, v2, v3, v4, v5).
In general, whenever we contract an edge e we also contract all parallel edges along with
it to avoid creating loops.

26

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

v1

v2

q1

q1

v3 v4

q2

q2

q3

q3

v5

q4

q4

q5

q5

(a)

v1

(v2, v3)

q1

q1

v4

q3

q3

v5

q4

q4

q5

q5

(b)

(v1, v2, v3)

v4

q3

q3

v5

q4

q4

q5

q5

(c)

(v1, v2, v3)
q3

q3

(v4, v5)

q4

q4

(d)

(v1, v2, v3, v4, v5)

(e)

Figure 12
Example run of the DAG parsing algorithm: (a) the starting DAG D; (b), (c), (d) intermediate
DAGs obtained after individual edge contraction; (e) final DAG consisting of a single node.

Just as DAG automata generalize traditional finite automata defined on strings, our
DAG parsing algorithm generalizes Algorithm 1. To see this, imagine applying our DAG
parsing algorithm to a DAG consisting of a single long chain of edges. If the edges are
contracted in order from left to right, our DAG parsing algorithm performs the same
computation as Algorithm 1, building partial analyses for longer and longer prefixes
of the chain. Of course, under some other ordering of the edges, a partial analysis may
correspond to a sub-chain of D which is not a prefix. As we will see below, the choice of
ordering does affect the overall computational complexity of the algorithm.

We note that the problem of summing over state assignments is an instance of the
general problem of weighted constraint satisfaction, where each edge in our input DAG
is a variable whose values are states of M, and each node in our DAG is a weighted
constraint, with weights specified by the transitions in the automaton. We can solve
this problem using general techniques for graphical models (Shafer and Shenoy 1990;

27

Computational Linguistics Volume xx, Number xx

Jensen, Lauritzen, and Olesen 1990); the algorithm above is an adaptation of the variable
elimination algorithm to our setting.

The pseudocode of our recognition algorithm for DAG automata is reported in
Algorithm 2. It uses some additional notation which we define here. For a node v of D,
let star(v) = in(v) ∪ out(v). In words, star(v) is the set of edges connecting v to its neighbor
nodes. In order to assign states to these edges, we use functions f : star(v)→ Q. For an
edge set I ⊆ star(v), we also write f |I to denote f restricted to I, and f [I] to denote the
multiset of all f (e) such that e ∈ I, i.e., if I = {e1, . . . , en} then f [I] = { f (e1), . . . , f (en)}.

Algorithm 2 Compute [[M]] (D) by summing up the weights of all runs of M on D.
for each node v do

for all f : star(v)→ Q do
α[v, f]← δ(〈 f [in(v)], lab(v), f [out(v)]〉)

for each edge e in order, s.t. e has not been deleted do
(u, v)← (src(e), tar(e))
I← star(u) ∩ star(v)
create new node z
in(z)← in(u) ∪ in(v) \ I
out(z)← out(u) ∪ out(v) \ I
for all h : star(z)→ Q do

α[z, h]← 0
for all f : star(u)→ Q do

for all g : star(v)→ Q s.t. f |I = g|I do
h = f ∪ g \ f |I
α[z, h]← α[z, h] ⊕ α[u, f] ⊗ α[v, g]

delete u, v, and all edges in I
one node v remains
return α[v, ∅]

The complexity of Algorithm 2 depends both on the structure of the input DAG and
the order in which we contract its edges. More precisely, the complexity of the optimal
edge ordering is determined by the treewidth (see Definition 2 in Section 3.1) of the line
graph of D.

Definition 4
The line graph of a graph D is the hypergraph LG(D) obtained as follows: each edge of
D becomes a node of LG(D); conversely, each node of D with incident edges e1, . . . , en
becomes a hyperedge of LG(D) attached to e1, . . . , en (in any order, as the order will not
affect any of the following).

Example 9
A simple example of a graph with four nodes and its corresponding line graph is shown
in Figure 13. Note that labels, edge directions, order of attached nodes of hyperedges,
and labels are irrelevant and therefore not shown.

Since we want to make use of the treewidth of a line graph, and line graphs
are hypergraphs (see Section 4.2), we extend the notion of tree decompositions to
hypergraphs in the obvious way: for every hyperedge e, there must be a bag of the
tree decomposition that contains all of the attached nodes of e. Note that the bags of the
tree decomposition of LG(D) contain nodes of LG(D), which correspond to edges of D.

28

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

◦

◦

◦

◦

◦
◦◦

Figure 13
A graph D (left) and its line graph LG(D) (right); as in Section 4.2 hyperedges of LG(D) are
drawn as squares connected by lines to their attached nodes (which are the edges of D).

To obtain an optimal edge ordering, first find an optimal tree decomposition, that
is, a tree decomposition with minimal width, which we call k. This takes time O(|E|k+2)
using the algorithm of Arnborg, Corneil, and Proskurowski (1987). We can also take
advantage of the various heuristics and approximation algorithms that are available for
treewidth (Gogate and Dechter 2004; Feige, Hajiaghayi, and Lee 2005); as mentioned
above (Section 2), these heuristics work extremely well on AMR.

Second, visit the bags bottom-up. For each bag b, contract the edges that are in b but
not in the parent of b. It can be shown (Rose 1970; Arnborg, Corneil, and Proskurowski
1987) that the maximum degree of any node created by an edge contraction is k. This
means that there are at most (k + 1) edges in star(u) ∪ star(v), and at most |Q|k+1 possible
state assignments to those edges in the innermost loop of the algorithm.

Then, because there are |ED| edges to contract, the overall running time of the
algorithm is

O

(
|ED| · |Q|tw(LG(D))+1

)
. (2)

Thus, recognition is polynomial in the number of states but exponential in the treewidth
of the line graph of the input graph. Holding these factors constant, recognition is linear
in the size of the input graph.

5.3 Learning

We briefly discuss here the problem of learning the weights of our DAG automata,
though this in itself is a broad topic worthy of further research. Throughout this section,
we assume that our semiring of weights K is the semiring of real numbers, with the
usual addition and multiplication operations.

We define a log-linear model on runs of M on some input DAG D as follows. Let
Φ : Θ→ Rd be a mapping from transitions to feature vectors. This extends naturally to
runs by summing over the transitions in the run:

Φ(ρ) def
=

∑
v∈VD

Φ(〈ρ(in(v)), lab(v), ρ(out(v))〉).

Let w ∈ Rd be a vector of feature weights, which are the parameters to be estimated.
Then we can parameterize δ in terms of the features and feature weights:

δ(t) = exp w ·Φ(t)

29

Computational Linguistics Volume xx, Number xx

so that

δ(ρ) = exp w ·Φ(ρ)

[[M]] (D) =
∑

run ρ on D

exp w ·Φ(ρ).

To obtain a probability model of runs of M on D, we simply renormalize the run weights:

pM(ρ | D) =
δ(ρ)

[[M]] (D)
.

Assume a set of training examples {(Di, ρi) | 1 ≤ i ≤ N}, where each example consists
of a DAG Di and an associated runρi. We can train the model by analogy with Conditional
Random Fields (CRFs), which are log-linear models on finite automata (Johnson et al.
1999; Lafferty, McCallum, and Pereira 2001). The training procedure is essentially
gradient ascent on the log-likelihood, which is

LL =

N∑
i=1

log pM(ρi | Di)

=

N∑
i=1

(
log δ(ρi) − log [[M]] (Di)

)
.

The gradient of LL is:

∂LL
∂w

=

N∑
i=1

(
∂
∂w

log δ(ρi) −
∂
∂w

log [[M]] (Di)
)

=

N∑
i=1

(
1

δ(ρi)
∂
∂w

δ(ρi) −
1

[[M]] (Di)
∂
∂w

[[M]] (Di)
)

=

N∑
i=1

 1
δ(ρi)

∂
∂w

δ(ρi) −
1

[[M]] (Di)

∑
ρ on Di

∂
∂w

δ(ρ)


=

N∑
i=1

Φ(ρi) −
∑
ρ on Di

δ(ρ)
[[M]] (Di)

Φ(ρ)

 since
∂δ(ρ)
∂w

= δ(ρ) Φ(ρ)

=

N∑
i=1

(
Φ(ρi) − Eρ|Di

[
Φ(ρ)

])
. (3)

Unfortunately, we cannot derive a closed-form solution for the zeros of (3). We
therefore use gradient ascent. In CRF training for finite automata, the expectation in (3)
is computed efficiently using the forward-backward algorithm; for DAG automata, the
expectation can be computed analogously. Algorithm 2 gives the bottom-up procedure
for computing a chart of inside weights. If we compute weights in the derivation forest
semiring (Goodman 1999), in which ⊗ creates an “and” node and ⊕ creates an “or”

30

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

node, the resulting and/or graph has the same structure as a CFG parse forest generated
by CKY, so we can simply run the inside-outside algorithm (Lari and Young 1990) on
it to obtain the desired expectations. Alternatively, we could compute weights in the
expectation semiring (Eisner 2002; Chiang 2012). Since the log-likelihood LL is concave
(Boyd and Vandenberghe 2004), gradient ascent is guaranteed to converge to the unique
global maximum.

We may also wish to learn a distribution over the DAGs themselves, for example in
order to provide a prior over semantic structures. A natural choice would be to adopt a
similar log-linear framework:

pM(D, ρ) =
δ(ρ)∑

D′
[[M]] (D′)

where δ(ρ) is a log-linear combination of weights and per-transition features as above.
Here, the normalization ranges over all possible DAGs. For some values of the weight
vector, this sum may diverge, as in weighted context-free grammars (Chi 1999), meaning
that the corresponding probability distribution is not defined. More importantly, esti-
mating the normalization constant is computationally difficult, whereas in the case of
weighted CFGs it can be estimated relatively easily with an iterative numerical algorithm
(Abney, McAllester, and Pereira 1999; Smith and Johnson 2007). A similar problem arises
in Exponential Random Graph Models (Frank and Strauss 1986); the most common
solution is to use Markov chain Monte Carlo (MCMC) methods (Snijders 2002). To train
a model over DAGs, we can perform gradient ascent on the log likelihood:

LL =
∑

i

log pM(ρi,Di)

∂LL
∂w

=
∑

i

Φ(ρi) − ED′,ρ[Φ(ρ)]

by using MCMC to estimate the second expectation.
Finally, we may wish to learn a distribution over DAGs by learning the states in an

unsupervised manner, either because it is not practical to annotate states by hand, or
because we wish to automatically find the set of states that best predicts the observed
DAGs. This corresponds to a latent variable CRF model (Quattoni, Collins, and Darrell
2004) with states as the hidden variables:

pM(D) =

∑
run ρ on D

δ(ρ)∑
D′

[[M]] (D′)

LL =
∑

i

log pM(Di)

∂LL
∂w

=
∑

i

(
Eρ|Di [Φ(ρ)] − ED′,ρ[Φ(ρ)]

)
.

31

Computational Linguistics Volume xx, Number xx

Here, the second expectation is again over all possible DAGs. We can use the derivation
forest semiring to compute the first expectation as with (3), and we can use MCMC
methods to estimate the second expectation. While gradient ascent methods are often
used with latent variable CRF models, it is important to note that the log likelihood is
not concave, meaning that local maxima are possible.

6. Binarization

Let M be a DAG automaton with set of states Q and let D be an input DAG with set
of edges ED. As we have seen in Section 5.2, the time complexity of Algorithm 2 is
O

(
|ED| · |Q|tw(LG(D))+1

)
, where tw(LG(D)) is the treewidth of the line graph LG(D). By

definition, tw(LG(D)) is at least the degree of nodes of D minus one, because every
node of degree k is turned into a hyperedge of size k that must be covered by some bag.
The treewidth of LG(D) can therefore be quite large. We can improve Algorithm 2 by
binarizing both the input DAG and, accordingly, the transitions of our DAG automaton.
In this section we develop specialized techniques for the binarization of DAGs and for
the binarization of transitions of DAG automata, and prove some relevant properties.
Our techniques will further be developed in Section 7 to process DAG languages with
unbounded node degree.

6.1 General idea

A binary DAG is one in which each node has at most two incoming edges and one
outgoing edge, or else one incoming edge and two outgoing edges. In order to produce
a binary DAG D′ from a source DAG D, we introduce a construction that replaces every
node of D with a treelet consisting of fresh nodes, and connects the edges of D to these
fresh nodes in such a way that the resulting DAG D′ is binary. Furthermore, D′ preserves
all of the information in D, in a way that will be specified later.

Our technique is a generalization of what is known from the theory of tree automata,
in particular unranked tree automata, where nodes of any rank are encoded by subtrees
entirely consisting of binary nodes; see Comon et al. (2002, Section 8.3) for details. We
introduce the idea underlying our DAG binarization technique by discussing a simple
example.

Example 10
Consider the DAG D shown in Figure 14(a). From D we construct a new binary DAG
D′, shown in Figure 14(b), using the following procedure. Let v be a node of D with label
σ and with node degree n. Node v is replaced in D′ by a binary treelet Tv with exactly
n leaf nodes that are labeled by σ. All of the remaining nodes of Tv are labeled by σ′:
these are internal nodes with one or two children. For instance, if v is the root node of D
labeled a, then Tv is the treelet at the top of D′ consisting of two binary nodes with label
a′ and three leaves with label a.

Since the leaves of Tv correspond one-to-one to the edges of D incident on v, they
can be used as “docking places” for the original edges. More precisely, each edge e in D
such that src(e) = v and tar(e) = v′ is used in D′ to connect some leaf of Tv to some leaf
of Tv′ . Note that, according to this construction, the edge set of D′ can be partitioned
into the set of fresh edges coming from the treelets and the set of edges coming from the
source DAG D; the latter are exactly those edges whose source nodes carry a label σ ∈ Σ,
and are drawn with thick lines in Figure 14(b).

32

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

a

b c d

e

(a)

a′

a a′

a a

b′

b

c′

c

d′

db c d

e′

e e′

e e

(b)

Figure 14
(a) Source DAG D and (b) binarized DAG D′. The edges in D and their counterparts in D′ are
drawn using thick lines.

Below, the specific topology of each treelet Tv will be obtained from a tree decom-
position of D. Since the leaves of Tv have only one parent and no child, the construction
yields a binary DAG.

Along with DAG binarization, we must also replace each transition t of the DAG
automaton with a set of “binary” transitions that process the nodes of the binarized
graph. The binary transitions have at most two states in the left-hand side and one state
in the right-hand side, or else at most one state in the left-hand side and two states in the
right-hand side. Again, we demonstrate the intuitive idea underlying the construction
by means of a simple example.

Example 11
Consider an unweighted transition t : {p, q} a

−→ {r, s} applied to a node v with label a in
a DAG D, as shown in the snapshot in Figure 15(a). Consider also the snapshot of the
binary DAG D′ in Figure 15(b), representing the treelet Tv obtained from v. We discuss
how to binarize t such that the resulting transitions can process Tv.

For the binary transitions we use the states p, q, r, s appearing in t, along with some
new states of the form (I,O), where I is a subset of the multiset in the left-hand side of t
and O is a subset of the multiset in the right-hand side of t. States p, q, r, s will be assigned

33

Computational Linguistics Volume xx, Number xx

.

a

.

p q

r s

(a)

a′

a a′

a′ a

a a

(∅, {r}) ({p, q}, {s})

(∅, {s})({p, q}, ∅)

({p}, ∅) ({q}, ∅)

. . .

. . .

p

r
. . .

. . .

s

q

(b)

Figure 15
(a) Snapshot of a node labeled a in some DAG D, with two incoming edges assigned states p and
q and two outgoing edges assigned states r and s. (b) Snapshot of the binary DAG D′ obtained
from D, showing the treelet associated with node in (a). As in Figure 14, we use thick lines for
edges of D and for their counterparts in D′, and we use thin lines for fresh edges in D′

to the edges of D′ that were also present in D, drawn with thick lines in Figure 15(b).
States of the form (I,O) will be assigned to the fresh edges of the treelet Tv.

Consider an edge e of Tv. Let T be the subtree of Tv whose root node is the target
node of e. Let also ST be the set of edges of D′ that are connected to the leaves of T, not
including edges internal to T. When viewed as edges from D, the edges inST are a subset
of the edges incident on v. Informally, the meaning of a state (I,O) being assigned to
edge e is that we expect to find the states in I on the edges withinST that are incoming at
v, and likewise we expect to find the states in O on the edges withinST that are outgoing
at v.

Let us discuss three among the several binary transitions obtained from t. Consider
the run represented in Figure 15(a). To support intuition, we view this run as a top-down
process. The transition

t1 : ∅ a′
−→ {(∅, {r}), ({p, q}, {s})}

is one of those which apply at the (binary) roots of treelets labeled with a′, implementing
the “guess” that the left subtree will provide the required outgoing edge that is assigned
the state r, and the right subtree will provide the required incoming edges that are
assigned the states p and q, and the required outgoing edge that is assigned the state s.

34

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

A second example is the transition

t2 : {({p, q}, {s})} a′
−→ {({p, q}, ∅), (∅, {s})}

which processes a node with an incoming edge that has been assigned the state
{({p, q}, {s})}. Transition t2 makes the guess that the expected incoming states {p, q} are
both realized at the left subtree, and that the expected outgoing state in {s} is realized at
the right subtree.

Finally, our third example is the transition

t3 : {({q}, ∅), q} a
−→ ∅

which processes two incoming edges and zero outgoing edges. This transition matches
the expectation, indicated by {q}, that there is an incoming edge with state q, and the
state actually encountered on the other incoming edge.

Now that we have seen an intuitive description of the procedures for binarizing
a DAG and for binarizing a DAG automaton, we can outline the improved version of
Algorithm 2:

1. For each transition in the input DAG automaton M, construct the corresponding
set of binary transitions to form a new automaton M′.

2. Binarize the input DAG D into DAG D′.
3. Run Algorithm 2 on the binarized DAG D′ with automaton M′.

Step 1 above is independent of the remaining steps, and can therefore be carried out
offline. In the remainder of this section, we discuss at length the process of binarizing a
DAG and that of binarizing a DAG automaton, and we present a computational analysis
of the improved algorithm.

6.2 DAG Binarization

Let D be some input DAG and let D′ be a binarized DAG derived from D. We have
already discussed in Section 2 how AMR structures have very small treewidth. For this
reason, in the following discussion we use as a term of comparison quantity tw(D), the
treewidth of D.

When processing D′, the running time of Algorithm 2 depends on tw(LG(D′)),
the treewidth of the line graph of D′, which in turn depends on the choice of the
binarization of D. There are several ways in which we can binarize D, resulting in
different values of tw(LG(D′)). However, a bad choice of binarization for D may result
in tw(LG(D′)) much larger than tw(D). Our objective should therefore be to binarize D in
such a way that tw(LG(D′)) is not much larger than tw(D). We provide an algorithm for
constructing D′ from a tree decomposition of D, and we show that tw(D′) ≤ tw(D) + 1
and tw(LG(D′)) ≤ 2(tw(D) + 1).

In what follows, we exclude from our DAG automata transitions of the form ∅ a
−→ ∅

which only accept DAGs consisting of a single isolated node. Clearly, this is an uncritical
assumption because DΣ contains only |Σ| of these DAGs. This assumption is similar to
the exclusion of the empty string from context-free languages when parsing with the
CKY algorithm that uses context-free grammars in Chomsky normal form (Aho and
Ullman 1972).

35

Computational Linguistics Volume xx, Number xx

Below we will have to refer to the components of different graphs and tree
decompositions. To disambiguate the notation, we will index the components of such an
object by the object in question. For example, the edge set of a DAG D will be referred to
as ED, the source of an edge e ∈ ED by srcD(e), and the set of bags of a tree decomposition
T by VT.

In this section we consider tree decompositions of DAGs that are in a special form
which we call binary. This has the advantage of greatly simplifying the binarization
construction. A tree decomposition T of a DAG D is binary if both of the following
conditions are metr every bag of T has at most two children;r each edge e ∈ ED is explicitly assigned to a unique leaf b of T.

More precisely, every leaf b of T is assigned an edge edgT(b) ∈ ED such that the content
of b consists of the two nodes this edge is incident upon. Formally, we have contT(b) =
{srcD(edgT(b)), tarD(edgT(b))}. Furthermore, we require that the mapping edgT is a bijection
between the leaves of T and the edges of D. In other words, every edge of D is introduced
by a unique leaf b of T. Note that, since edgT is a bijection, for every edge e ∈ ED we have
that edg−1

T (e) yields the unique leaf b of T such that edgT(b) = e. In Appendix A, Theorem 8,
we show that if a graph has a tree decomposition of width k, then there exists a binary
tree decomposition of the same graph also having width k.

Our method of binarization is illustrated in Figure 16 and explained in the follow-
ing.4 Let D ∈ DΣ. For every symbol σ ∈ Σ, we let σ′ be a fresh copy of σ. In the binarized
DAG, every node v ∈ VD will be represented by a treelet each of whose nodes is labeled by
σ or σ′. To define the binarized version of D, consider a binary tree decomposition T of D.
By the definition of tree decomposition, the subtree of T induced by {b ∈ VT | v ∈ contT(b)}
forms itself a (binary) tree. Let us denote this treelet by Tv. To distinguish between the
copies of b ∈ VT appearing in the different treelets Tv such that v ∈ contT(b), we let [v, b]
denote the copy of b in Tv. In DAG D of Figure 16, its nodes x, y,u, v are shown instead of
their node labels. In the tree decomposition T, the bags b are identified with their Gorn
addresses and the boxes show their contents.

Binarization replaces each node v ∈ VD by Tv. Formally, DT is the DAG obtained
from the union of all Tv, for v ∈ VD, by labeling the nodes and inserting the edges of D
as follows:r For every node [v, b] of Tv, labDT ([v, b]) = labD(v) if b is a leaf of T and labDT ([v, b]) =

labD(v)′ otherwise.r Let e ∈ ED with (srcD(e), tarD(e)) = (x, y) and b = edg−1
T (e). Then Tx and Ty contain the

leaves [x, b] and [y, b], respectively, and we set srcDT (e) = [x, b] and tarDT (e) = [y, b].

To avoid confusion, we note that, according to the second item above, the edges of D are
“reused” in DT (though of course with other source and target nodes) rather than taking
copies, as one would probably do in an implementation.

The construction is illustrated in the middle of Figure 16. (The figure does not show
node labels, however. For example, in the sub-DAG resulting from Tx, if labD(x) = σ then
the label of [x, ε], [x, 1], and [x, 2] is σ′ and the label of [x, 1.2] and [x, 2.2] is σ.)

Clearly, DT can be turned into D by contracting each sub-DAG Tv into a single node
(with the appropriate label). DT is binary because the Tv are treelets and each leaf [v, b]

4 The DAG D used in Figure 16 already happens to be binary, but this does not affect the construction.

36

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

D =

x

y

u v

T =

x, y,u
ε

x, y,u
1

x y
1.1

y u
1.2

x, y,u
2

y v
2.1

x u
2.2

Tx
[x, ε]

[x, 1]

[x, 1.1]

[x, 2]

[x, 2.2]

Ty
[y, ε]

[y, 1]

[y, 1.1] [y, 1.2]

[y, 2]

[y, 2.1]

Tv

[v, 2.1]

Tu
[u, ε]

[u, 1]

[u, 1.2]

[u, 2]

[u, 2.2]

DT (showing nodes instead of node labels)

T′ =

[x, ε]
[y, ε]
[u, ε]

[x, 1]
[y, 1]
[u, 1]

[x, 1.1]

[y, 1.1]

[y, 1.2]

[u, 1.2]

[x, 2]
[y, 2]
[u, 2]

[y, 2.1]

[v, 2.1]

[x, 2.2]

[u, 2.2]

T′′ =
[x, 2]
[y, 2]
[u, 2]

[y, 2]
[y, 2.1]

[y, 2.1]

[v, 2.1]

[x, 2]
[u, 2]

[u, 2.2]

[x, 2]
[x, 2.2]
[u, 2.2]

[x, 2.2]

[u, 2.2]

Figure 16
Binarization of a DAG D along a tree decomposition T, yielding DT. The bottom part illustrates
the construction of a tree decomposition of DT in the proof of Theorem 1.

37

Computational Linguistics Volume xx, Number xx

is attached to exactly one of the original edges e ∈ ED, namely to edgT(b). In particular,
DT does not have cycles.5

Note that, as DT depends on T, one of the effects of binarization is that DAGs
representing the same semantic information are not necessarily isomorphic anymore.
However, this is not a severe disadvantage because binarization is only a technical tool
that allows us to derive efficient algorithms and, in Section 7, transfer results from the
ranked case to the unranked one.

Theorem 1
For every DAG D and every binary tree decomposition T of D of width k ≥ 1, tw(DT) ≤
k + 1.

Proof. As a first step, consider the tree T′ which is identical to T, but with the content of
bag b ∈ VT = VT′ being given by contT′ (b) = {[v, b] | v ∈ contT(b)}. Intuitively, (the content
of bags of) T′ is obtained by overlaying the different copies Tv of T; see again Figure 16.
With this definition, T′ is not a tree decomposition of DT yet, but we note that |contT′ (b)| =
|contT(b)| for all b ∈ VT and that every edge e ∈ ED can be assigned to the bag b = edg−1

T′ (e)
because, in DT, e connects the two nodes in contT′ (b). Furthermore, every node [v, b] of
DT occurs in precisely one bag: [v, b] ∈ contT′ (b). Hence, T′ is a tree decomposition of
width k except for the fact that those edges of DT which are arcs of the treelets Tv are not
covered by any bags. For this, we shall add intermediate bags to T′ in order to construct
a valid tree decomposition T′′ of DT.

Consider an arc e ∈ ET with srcT(e) = b and tarT(e) = c. A treelet Tv contains a copy ev
of e if v ∈ contT(b) ∩ contT(c), and in this case we have srcTv (ev) = [v, b] and tarTv (ev) = [v, c].
Thus, {v1, . . . , v`} = contT(b) ∩ contT(c) is the set of nodes v such that the edges ev exist. To
make sure that each evi is covered by a bag of T′′ we insert, between c and b in T′, a rising
chain of ` bags b1, . . . , b`. In other words, b0 = c becomes the child of b1, which becomes
the child of b2, . . . to b`, which becomes the child of b`+1 = b. For i ∈ {1, . . . , `} define

contT′′ (bi) = contT′ (c) \ {[v1, c], . . . , [vi−1, c]} ∪ {[v1, b], . . . , [vi, b]}.

Intuitively, viewing b1, . . . , b` bottom up, the nodes [vi, b] are introduced while the [vi, c]
are forgotten, but with a delay of one. In Figure 16, this is illustrated for the right
subtree of T′. Now, bi covers evi , and |contT′′ (bi)| = |contT′ (c)| + 1 = |contT(c)| + 1 ≤ k + 2.
For b ∈ VT′ , we let contT′′ (b) = contT′ (b). By construction, for a given bag b ∈ VT, the bags
of T′′ which contain nodes of the form [v, b] form a connected subgraph of T′′. This
completes the proof. �

Theorem 2
For every DAG D and every binary tree decomposition T of D of width k ≥ 1,
tw(LG(DT)) ≤ 2(k + 1).

Proof. For a node [u, b] of DT (where u ∈ VD and b ∈ VT) which is not the root of treelet
Tu, let e(u, b) denote the arc of Tu (which is an edge of DT) whose target is [u, b]. As an
illustration, Figure 17 (top) shows the line graph of the binarized DAG DT in Figure 16.
The nodes of DT have become hyperedges drawn as boxes whereas the edges have
become nodes drawn as bullets. The node e(x, 1.1), for instance, is the one on top of the
hyperedge [x, 1.1].

5 DT would not even have cycles if D did, because every cycle would have to enter some Tv through one
leaf and exit it through another, which is impossible because Tv is a directed tree.

38

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

Consider a bag b of T and let DT(b) be the sub-DAG of DT induced by the treelet
nodes [v, c] such that c is a descendant of b (or b itself) and v ∈ contT(c). Let furthermore
LG(DT, b) be the subgraph of LG(DT) having as nodes the edges of DT(b) as well as all
edges e(v, b) with v ∈ contT(b), and as hyperedges the nodes of DT(b). As an example,
Figure 17 (middle) indicates LG(DT, 1) by means of thick lines.

In a bottom-up manner, starting at the leaves b of T, we construct a tree decom-
position Tb of LG(DT, b) of width at most 2(k + 1) such that the root bag of Tb contains
{e(v, b) | v ∈ contT(b)}. (Recall that the bags of Tb should contain the edges of DT, because
they are the nodes of LG(DT).)

If b is a leaf and contT(b) = {v1, v2}, then LG(DT, b) contains the edge e of D covered
by b (i.e., the one incident on v1 and v2), as well as e(v1, b) and e(v2, b). Thus, we let Tb
consist of a leaf containing {e, e(v1, b), e(v2, b)} and a root containing {e(v1, b), e(v2, b)}. (If
[vi, b] is the root of Tvi , such as [v, 2.1] in Figure 16, e(vi, b) does not exist and is omitted
from the bags.) Clearly, Tb is as claimed because k ≥ 1.

Now suppose that b is not a leaf and assume that it has two children c1, c2, because
this is the interesting case. Combine the inductively computed tree decompositions Tc1

and Tc2 into a single tree T0 by adding a root bag b0 whose contents are the union of the
contents of the root bags of Tc1 and Tc2 . Then T0 is a tree decomposition of the union G
of LG(DT, c1) and LG(DT, c2) of width 2(k + 1) whose root b0 contains the edges e(v, ci)
for all v ∈ contT(ci) and i = 1, 2. If b is the root of T, this completes the construction since
then T0 is also a tree decomposition ofLG(DT). This is because G isLG(DT) without the
hyperedges [v, b], which are covered by b0 as [v, b] is only connected to [v, c1] and [v, c2]
in Tv (provided that the latter exist). For example, in Figure 17, these are the hyperedges
[x, ε], [y, ε], and [u, ε], which are covered by {e(x, 1), e(x, 2), e(y, 1), e(y, 2), e(u, 1), e(u, 2)}.

Thus, assume finally that b is not the root of T. If contT(b) = {v1, . . . , v`} then b0 contains
the (at most) two outgoing edges e1

i = e(vi, c1) and e2
i = e(vi, c2) of [vi, b], for i = 1, . . . , `.

(Again, if vi < contT(c j) then e j
i does not exist and can be disregarded.) The edges e1

i and e2
i

are connected to ei = e(vi, b) by the ternary hyperedge [vi, b] in LG(DT, b) (or by a binary
hyperedge if only one of e1

i , e
2
i exists). This hyperedge must be covered by a bag. As

an example, consider [y, 1] in Figure 17 (bottom). Its outgoing edges are e(y, 1.1) and
e(y, 1.2), and [y, 1] is the hyperedge that connects them to e(y, 1). The situation for [x, 1]
and [u, 1] is similar, even though these have only one outgoing edge each, and are thus
binary hyperedges in LG(DT).

The bag b0 contains all of e1
1, e

2
1, . . . , e

1
` , e

2
` which exist. Hence, to cover [v1, b], . . . , [v`, b],

we can proceed in a way similar to the completion of the tree decomposition T′′ in the

39

Computational Linguistics Volume xx, Number xx

[x, ε]

[x, 1]

[x, 1.1]

•

•

[x, 2]

[x, 2.2]

•

•

[y, ε]

[y, 1]

[y, 1.1]

•

[y, 1.2]

•

•

[y, 2]

[y, 2.1]

•

•

[v, 2.1]

[u, ε]

[u, 1]

[u, 1.2]

•

•

[u, 2]

[u, 2.2]

•

•

[x, ε]

[x, 1]

[x, 1.1]

•

•

[x, 2]

[x, 2.2]

•

•

[y, ε]

[y, 1]

[y, 1.1]

•

[y, 1.2]

•

•

[y, 2]

[y, 2.1]

•

•

[v, 2.1]

[u, ε]

[u, 1]

[u, 1.2]

•

•

[u, 2]

[u, 2.2]

•

•

Figure 17
The line graph of the binarized DAG DT of Figure 16

preceding proof by adding, on top of b0, a chain of bags as follows:

e1 . . . e`

e1 . . . e`−1 e` e1
`

e2
`

e1 e2 e1
2

e2
2

e1
3 e2

3 . . . e1
` e2

`

e1 e1
1

e2
1

e1
2 e2

2 . . . e1
` e2

`

e1
1 e2

1 . . . e1
` e2

`

This completes the construction of Tb. Since ` ≤ k + 1, the largest bag added contains
2` + 1 ≤ 2(k + 1) + 1 edges of LG(DT, b) (i.e., the width of Tb is at most 2(k + 1)) and the
root contains e1, . . . , e`, as claimed. �

40

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

6.3 Transition Binarization

We now describe how to construct the binarized DAG automaton M′. Let M be the source
DAG automaton, with state set Q. The set of states of M′ is defined as Q′ = Q ∪Qio, where
each state in Qio is an ordered pair (I,O) of multisets over Q. These states will be assigned
to the edges which, in a binarized DAG, DT, stem from the treelets Tv, as opposed to
the original edges of D. The interpretation of assigning (I,O) to an edge e belonging to
Tv (i.e., an edge whose source node carries a label of the form σ′) is that we are in the
process of simulating some transition M applied to v, and that the subtree of Tv rooted
at tarDT (e) collects those incoming and outgoing edges of the original node v that need
to be assigned the states in I and O, respectively.

Following this intuition, the transitions of M′ are specified as follows. Consider a
transition I σ

−→ O of the original DAG automaton M. The roots of DT with label σ′ are
handled by the following transitions of M′:

1. ∅ σ′
−→ {(I,O)} (these transitions process unary roots of treelets).

2. ∅ σ′
−→ {(I1,O1), (I2,O2)} for all I1, I2,O1,O2 such that I1] I2 = I and O1]O2 = O (these

transitions process binary roots of treelets).

Note that the unions I1] I2 and O1]O2 in the second item above (and similarly in the
second one below) are multiset unions. Thus, no states are “lost” if I1 and I2 or O1 and
O2 overlap. The transitions for binary roots can be omitted if we change the treelets by
adding a unary root above every binary root.

Second, for nodes labeled σ′ which are not roots, and all I′ ⊆ I and O′ ⊆ O, we use
the following transitions:

3. {(I′,O′)} σ
′

−→ {(I′,O′)} (these transitions simply skip unary nodes).

4. {(I′,O′)} σ
′

−→ {(I1,O1), (I2,O2)} for all I1, I2,O1,O2 such that I1] I2 = I′ and O1]O2 =
O′ (these transitions split I′ and O′ at binary nodes).

Finally, we let M′ contain the transitions:

5. {p, ({p}, ∅)} σ−→ ∅ and {(∅, {q})} σ−→ {q} for all p ∈ I and all q ∈ O (these transitions process
leaf bags of a treelet, matching the individual state at the edge of D incoming or
outgoing at the leaf bag).

6. {p} σ−→ ∅ if I = {p} and O = ∅ and ∅ σ
−→ {q} if I = ∅ and O = {q} (these transitions handle

the special case of treelets consisting of a single node).

As a slight optimization, the reader may have noticed that the state (∅, ∅) is actually
useless and can therefore be discarded, together with all transitions in which it appears.

To see that M′ works as intended, consider a DAG D ∈ DΣ, a binary tree decompo-
sition T of D, and the binarized DAG DT. Given an accepting run ρ of M on D, we can
build an accepting run ρ′ of M′ on DT, as follows. For all e ∈ ED, we let ρ′(e) = ρ(e). It
remains to assign appropriate states to the edges of the treelets Tv for v ∈ VD. Consider
such a node v and let {p1, . . . , pm}

σ
−→ {q1, . . . , qn} be the transition of M applied to v,

i.e., ({p1, . . . , pm}, {q1, . . . , qn}) = (ρ(inD(v)), ρ(outD(v))). For each edge e′ of Tv such that
tarTv (e′) is a leaf u of Tv, consider the unique edge e ∈ ED which is incident on u in DT.
Let ρ′(e′) = ({ρ(e)}, ∅) if tarDT (e) = u (which means that e ∈ inD(v)) and ρ′(e′) = (∅, {ρ(e)})
otherwise. It follows that ρ′ assigns ({p1}, ∅), . . . , ({pm}, ∅), (∅, {q1}), . . . , (∅, {qn}) to the
m + n edges of Tv that target the leaves of Tv, and that the corresponding transitions

41

Computational Linguistics Volume xx, Number xx

{pi, ({pi}, ∅)}
σ
−→ ∅ and {(∅, {q j})}

σ
−→ {q j} exist in M′. Every other edge e′ of Tv points to

a σ′-labeled unary or binary node of Tv. If outTv (tarDT (e′)) = {e1}, let ρ′(e′) = ρ′(e1). If
outTv (tarDT (e′)) = {e1, e2} with ρ′(ei) = (Ii,Oi) for i = 1, 2, we set ρ′(e′) = (I1] I2,O1]O2).
By items 1–4 in the construction of M′ above, the corresponding transitions are in M′,
which means that ρ is accepting.

Conversely, suppose that ρ′ is a run of M′ on DT and consider one of its treelets
Tv whose root is labeled σ′. By the transitions in items 1–4, together with the fact that
only transitions of the form {p, ({p}, ∅)} σ−→ ∅ or {(∅, {q})} σ−→ {q} apply to the leaves of Tv,
it follows that there is a transition {p1, . . . , pm}

σ
−→ {q1, . . . , qn} in M such that ρ′ assigns

the states ({p1}, ∅), . . . , ({pm}, ∅), (∅, {q1}), . . . , (∅, {qn}) to the m + n edges of Tv that target the
leaves of Tv. In turn, this means that ρ′(inD(v)) = {p1, . . . , pm} and ρ′(outD(v)) = {q1, . . . , qn},
because the edges in inD(v) and outD(v) are those whose targets and sources, respectively,
are the leaves of Tv in DT. Consequently, the restriction of ρ′ to ED is a run of M on D.

The argument above yields the following theorem.

Theorem 3
For every DAG D ∈ DΣ and every binary tree decomposition of D, M′ accepts DT if and
only if M accepts D.

6.4 Computational Analysis

We derive here an upper bound on the running time of the improved version of
Algorithm 2. Recall that the binarized automaton M′ has state set Q′ = Q ∪Qio, where
Q is the state set of the source automaton M, and Qio is the set of new states of the
form (I,O) added by the binarization construction. We start by deriving an upper bound
on |Qio|.

As already discussed, each state (I,O) ∈ Qio refers to some transition t of M, with
multisets I and O representing instances of states from t that still need to be assigned.
Let us focus for now on I, and let us assume that m is the maximum size of the left-hand
side of a transition of M. We can represent I by providing a count, for each state q ∈ Q, of
the occurrences of q in I. In this way, a number between 0 and m needs to be stored for
each q. Since the left-hand side of t contains at most |Q| distinguishable states, the total
number of possible values for I is the total number of possible choices with repetition of
m elements from set Q. This number is usually written as ((|Q|m)) and amounts to

(
|Q|+m−1

m
)
.

To simplify our formulas below, we bound
(
|Q|+m−1

m
)

from above by (m + 1)|Q|. We observe
that this is not a tight bound, since the worst case of m and |Q| cannot be both realized
at the same time. We will discuss a tighter bound later.

Similarly to the case of multiset I, if n is the maximum size of of the right-hand side
of a transition of M, we can derive an upper bound of (n + 1)|Q| for the total number of
possible values for O. Putting everything together we have

|Qio| ≤ (m + 1)|Q|(n + 1)|Q|. (4)

Let D be some source DAG, and let D′ be the binarized DAG obtained from D
through our construction in Section 6.2. Recall that Algorithm 2, when run on D, has a
time complexity of

O

(
|ED| · |Q|tw(LG(D))+1

)
, (5)

42

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

where tw(LG(D)) is the treewidth of the line graph LG(D). From Theorem 2 we know
that tw(LG(D′)) ≤ 2(tw(D) + 1). Combining these facts and our upper bound on |Qio|we
have that, when given as input the DAG D′ and the binarized automaton M′, Algorithm 2
runs in time

O

(
|ED′ |(|Q| + (m + 1)|Q|(n + 1)|Q|)2tw(D)+3

)
. (6)

In what follows, we compare the two running times in (5) and (6). We start our
analysis by looking into the input DAG automaton M. We have already remarked that
tw(LG(D)) + 1 is at least the degree of nodes of D because every node of degree k in D
is turned into a hyperedge of size k that must be covered by some bag. Thus we have

tw(LG(D)) + 1 ≥ m + n .

While the original algorithm was exponential in the number of edges participating in
M’s transitions, the binarized algorithm is only polynomial in this number.

We now hold the automaton M fixed, and analyze the running time of the two
algorithms in terms of the properties of the input DAG D. In this way, the running time
for the original algorithm is O

(
|ED|c

tw(LG(D))+1
1

)
, and the running time for the binarized

algorithm is O
(
|ED′ |c

2tw(D)+3
2

)
, for some constants c1 and c2.

We start by comparing quantities |ED| and |ED′ |. The binarized DAG D′ can be
preprocessed to remove any unary nodes in a treelet Tv in linear time. This leaves
2(n − 1) internal edges in each treelet Tv derived from a vertex v in D having degree n.
This implies that |ED′ | < 5|ED|, because for each edge (u, v) ∈ ED, ED′ contains a copy of
(u, v), two edges internal to Tu, and two edges internal to Tv. Thus,

|ED′ | = O (|ED|) .

We are now left with the comparison of the two terms ctw(LG(D))+1
1 and c2tw(D)+3

2 . The
binarized algorithm depends on tw(D) rather than tw(LG(D)). In general, tw(LG(D))
may be larger than tw(D) by an arbitrary amount. To see this, consider a star graph with
one central node attached to n leaves. While the treewidth is 1, the treewidth of the line
graph is n.

In the other direction, we can derive a lower bound on tw(LG(D)) in terms of tw(D)
as follows. A tree decomposition of D can be produced from a tree decomposition T of
LG(D) by replacing each node of LG(D) in T with the corresponding two nodes of D.
This leads to the relation

tw(LG(D)) + 1 ≥
1
2

(tw(D) + 1).

Thus, while the exponent in the running time of the binarized algorithm may be larger
than the exponent in the original algorithm, it must be within a constant factor.

As already observed, our upper bound on |Qio| is not very tight, since our worst
case hypotheses cannot be realized all at the same time. Consider then the maximum
number of distinguishable states appearing in the left-hand side or in the right-hand
side of a transition of M, which we denote as mQ. Let also µ be the maximum number of
occurrences of an individual state appearing in the left-hand side or in the right-hand
side of a transition of M. While we have mQ ≤ |Q| and µ ≤ max{m,n}, we cannot have

43

Computational Linguistics Volume xx, Number xx

mQ = |Q| and µ = max{m,n} both at the same time. Using the above quantities, we can
rewrite our upper bound on Qio as (µ + 1)2mQ .

To summarize, the binarized algorithm is particularly beneficial for automata having
transitions with large degree and small numbers of states, or else for automata with small
values of mQ and µ. In these cases, the time savings over the unbinarized algorithm can
be exponentially large.

7. Extended DAG Automata

In a natural language setting, we may want to model DAGs in which the incoming degree
of a node is not bounded by any constant. This is useful in the semantic representation
of sentences with coreference relations, in which some concept is shared among several
predicates. Similarly, the outgoing degree of our DAGs should not be bounded by a
constant, allowing us to add to a given predicate a number of optional modifiers which
can grow with the length of the sentence.

As already discussed in Section 3.3, Quernheim and Knight (2012) exploit some
ordering on the incoming edges at each node and introduce implicit rules that process
these edges in several steps, making it possible to accept nodes of unbounded in-degree.
This approach allows the incoming edges of a node to have states which form any
semilinear set — for example, an equal number of edges in state q and in state r. This
does not seem to be motivated in the perspective of natural language semantics.

As an alternative, we propose a milder extension of the DAG automata in Definition 3
that is analogous to the definition of extended context-free grammars, also called regular
right part grammars (LaLonde 1977). In extended context-free grammars, the right-hand
side of each production is a regular expression denoting a set of strings of nonterminal
and terminal symbols. Similarly, in our extended DAG automata the left-hand side and
the right-hand side of a transition can be a regular expression of a restricted type.

7.1 Regular and recognizable languages of multisets

Let Q be the state set used by some DAG automaton which we do not further specify
yet. Below, we view Q as the input alphabet of a device that is used to recognize
the collections of incoming or outgoing states of a transition of our DAG automaton.
Since these collections are multisets rather than strings, we must first introduce some
machinery for the denotation or recognition of regular languages of multisets.

7.1.1 Multisets and languages of multisets. Recall from Section 3.1 thatM(Q) denotes
the collection of all (finite) multisets over Q. If µ1, µ2 ∈ M(Q), we write µ1] µ2 for the
multiset union of µ1 and µ2, which just adds the counts from µ1 and the counts from µ2.

A language L of multisets is a subset of M(Q). If 〈K,⊕,⊗, 0, 1〉 is a (commutative)
semiring, aK-weighted (or simply weighted) language of multisets additionally assigns
a weight from K to each multiset in the language. More formally, in this case L is a
function L : M(Q)→ K that maps every multiset µ ∈ M(Q) to its weight L(µ) ∈ K. The
weight L(µ) = 0 indicates that µ is not in the language at all.

The union of two languages L1 ∪ L2 is defined as usual; in the weighted case, if
µ is in both languages, its weights are added. The concatenation of two languages is

44

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

L1L2 = {µ1] µ2 | µ1 ∈ L1, µ2 ∈ L2}; in the weighted case, L = L1L2 is given by

L(µ) =
⊕

µ=µ1]µ2

L1(µ1) ⊗ L2(µ2).

For a (weighted) language L of multisets and an integer n, we let Ln = {∅} if n = 0 and
Ln = LLn−1 if n > 0. Finally, the Kleene star is defined as L∗ =

⋃
i≥0 Li.

Define a unary language to be a language that only uses one symbol; that is, a
language L ⊆ M({q}) for some symbol q ∈ Q. Next, we give two equivalent characteriza-
tions of a class of regular (or recognizable) languages of multisets, analogous to regular
expressions and finite automata for languages of strings.

7.1.2 C-regular expressions. The set of c-regular expressions α for multisets over
alphabet Q (cf. Ochmański 1985) is defined inductively as follows, together with the
semantics [[α]] of these expressions:

1. ε is a c-regular expression, and [[ε]] = {∅}.
2. If q ∈ Q, then q is a c-regular expression, and

[[
q
]]

= {{q}}.
3. If α1 and α2 are c-regular expressions, then α1 ∪ α2 is a c-regular expression, and

[[α1 ∪ α2]] = [[α1]] ∪ [[α2]].
4. If α1 and α2 are c-regular expressions, then α1α2 is a c-regular expression, and

[[α1α2]] = [[α1]] [[α2]].
5. Ifα is a c-regular expression such that [[α]] is unary, thenα∗ is a c-regular expression,

and [[α∗]] = [[α]]∗.
6. No expressions but those which can be constructed according to the previous items

are c-regular expressions.

Sometimes we write qn in place of the c-regular expression q · · · q, where q is repeated n
times for some integer n.

To mention some examples, let q, r ∈ Q.r qr is a c-regular expression and
[[

qr
]]

= {{q, r}}.r q(qq)∗ is a c-regular expression and
[[

q(qq)∗
]]

is the language of all multisets
consisting of an odd number of q’s.r The set

[[
qr

]]∗ =
⋃

i≥0
[[

qr
]]i is the language of all multisets with an equal number

of q’s and r’s. We emphasize that (qr)∗ is not a valid c-regular expression for this
language, because the starred subexpression involves mentions of more than one
state. It should be clear that the language cannot be expressed by means of a c-
regular expression, because such an expression would have to contain at least two
starred subexpressions, one containing only qs and one containing only rs, which
necessarily allows for multisets containing different numbers of qs and rs.

The definition of c-regular expressions can be extended to weighted c-regular expres-
sions (Allauzen and Mohri 2006; Droste and Gastin 1999). The semantics of a weighted
c-regular expression α over Q with weights inK is then a function [[α]] : M(Q)→ K. We
have already specified how to combine the weights for the union and the concatenation
operators. Then it suffices to add the following conditions, which newly introduce
weights into a c-regular expression:6

6 Droste and Gastin (1999) talk about weighted mc-rational languages, where the m stands for an additional
constraint needed in their more general case. In our case, c-regular and mc-regular are equivalent.

45

Computational Linguistics Volume xx, Number xx

DAG automaton Multiset automaton
state m-state

transition m-transition
M A (automaton)
Q Ξ (state set)
Σ Q (input alphabet)
∆ τ (transitions)

Table 2
Terminology and notational conventions used for multisets automata and DAG automata.

1. The weight of ∅ in [[ε]] = {∅} and that of {q} in
[[

q
]]

= {{q}} is 1. In more formal
functional notation, [[ε]] (∅) =

[[
q
]]

({q}) = 1, and [[ε]] (µ) =
[[

q
]]

(µ′) = 0 for all µ , ∅
and µ′ , {q}.

2. If α is a (weighted) c-regular expression and k ∈ K, then kα is a weighted
c-regular expression. The weighted language [[kα]] is just [[α]] with all of its
weights multiplied by k: [[kα]] (µ) = k ⊗ [[α]] (µ) for all µ ∈ M(Q). (When writing
regular expressions that are not fully parenthesized, this operation has the same
precedence as concatenation.)

We note that expressions of the form kα are not the only ones which create weights other
than 1 (depending, of course, on the definition of the operations of the semiring K). For
example,

[[
q ∪ q

]]
assigns the weight 1 ⊕ 1 to {q} (and 0 to every other multiset).

Multiset languages generated by c-regular expressions will be called regular multiset
languages, and similarly for the weighted case.

7.1.3 Multiset finite automata. In this section we introduce weighted finite automata
that recognize multisets. Later on, the use of finite automata for multisets might create
several clashes with our notion of (extended) DAG automata. To avoid this, we introduce
right away in Table 2 our naming and notational conventions used to distinguish
between multiset automata and DAG automata. When referring to multiset automata,
for instance, we always use the terms m-state and m-transition, while the terms state
and transition are used for DAG automata. Note also that we are overloading symbol Q,
which is used to denote the state set of a DAG automaton as well as the input alphabet
of a multiset automaton. As already explained, this is because we use multiset automata
to recognize the collections of incoming or outgoing states of a transition of the DAG
automaton.

We assume below that a multiset µ ∈ M(Q) is represented as a sequence of all the
elements of µ, with repetitions, in any possible order. In this way we can use standard
string automata to process multisets. A weighted finite automaton has the same form as
a weighted finite automaton for strings (Fülöp and Kuich 2009). The difference is that
the order in which the elements of the multiset are read by the automaton must not affect
the computed weight.

Definition 5
A weighted finite automaton for multisets, or m-automaton for short, is defined as a
tuple A = (Ξ,Q, τ, s, ρ), where

1. Ξ is a set of m-states,

46

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

2. Q is a finite input alphabet,
3. τ : Ξ ×Q × Ξ→ K is the m-transition function, satisfying the following condition:

for all m-states i, k ∈ Ξ and for all alphabet symbols q, r ∈ Q

⊕
j∈Ξ

τ(i, q, j)τ(j, r, k) =
⊕

j∈Ξ

τ(i, r, j)τ(j, q, k) (7)

4. s ∈ Ξ is the initial m-state, and
5. ρ : Ξ→ K maps m-states to final weights (where a state j ∈ Ξ is called final if
ρ(j) , 0).

As a notational convention, in what follows we always assume Ξ = {1, . . . , d}, for
some d ≥ 1. Condition (7) in Definition 5 states that, when we move from i to j by
processing symbols q and r, the resulting total weight does not depend on the order in
which q and r are read. It should be clear that (7) is a sufficient condition for the desired
property that an m-automaton assigns the same weight to all possible permutations
of a given sequence (see below for a precise definition of the weight of a sequence).
However, (7) is not a necessary condition for this property; it is not difficult to provide
a counter-example to show this; however, we do not further pursue this issue here.

Let us now formally define the semantics [[A]] of an m-automaton as a mapping from
multisets to weights inK. Let µ be a multiset over Q with n elements, n ≥ 0. We arrange
the elements of µ into a string c = q1q2 · · · qn, choosing the order of symbols arbitrarily.
Now, we define [[A]] (µ) to be [[A]] (c), where [[A]] (c) is given as usual for weighted
finite automata on strings. To make this explicit, let a run of A on c be any sequence
ρc = i0i1 · · · in of m-states in Ξ such that i0 = s. We extend the m-transition function τ to
runs by viewing ρc as a sequence of n transitions of A on c, and by taking the product of
weights of these transitions and the final weight for in:

[[A]] (ρc) =

 n⊗
h=1

τ(ih−1, qh, ih)

 ⊗ ρ(in).

Accordingly, the weight of c under A is defined as [[A]] (c) =
⊕

ρc
[[A]] (ρc), where ρc

ranges over all runs of A on c. Finally, as mentioned, set [[A]] (µ) = [[A]] (c). Using condition
(7) in Definition 5, it is not difficult to show that [[A]] (µ) is unique, that is, this quantity
does not depend on the specific order of the symbols in µ used to create c.

Example 12
As an example, consider the language represented by the weighted c-regular expression
(qq)∗(rr)∗. This is the language of all multisets containing an even number of q’s and
an even number of r’s, where each multiset has the weight 1. The corresponding m-
automaton A is shown below. Here, an edge from i to j labeled by q/w means that
τ(i, q, j) = w, and a missing edge indicates that τ(i, q, j) = 0. The final weight of all the
states of A is 0 except for state 1, whose final weight is 1.

47

Computational Linguistics Volume xx, Number xx

1

2

3

4

q/1 q/1

r/1

r/1

q/1 q/1

r/1

r/1

It is easy to verify that condition (7) holds for the above m-automaton. Consider for
instance the multiset µ = {q, q, r, r}. We have that, for any ordering c of the elements of µ,
one run relative to c has weight 1 and all remaining runs have weight of 0. We thus have
[[A]] (µ) = 1.

Multiset (weighted) languages generated by (weighted) m-automata will be called
recognizable multiset (weighted) languages.

7.1.4 Equivalence of c-regular expressions and m-automata. The relationship between
(restrictions of) regular expressions and finite automata on trace monoids was inves-
tigated by Ochmański (1985) and extended by Droste and Gastin (1999) to weighted
regular expressions and finite automata. These results, applied to multisets, the simplest
example of trace monoids, imply that weighted c-regular expressions and weighted
m-automata are equivalent. Since the equivalence proof is much easier for this case, we
include it here for completeness. For this, let us make a short detour to recall the technique
for turning an ordinary regular expression (i.e., on strings) into a finite automaton
originally proposed by McNaughton and Yamada (1960). (For regular expressions and
finite automata on strings, we use the same notation as introduced above for the multiset
case, only changing their semantics in the obvious way.)

Theorem 4 (McNaughton-Yamada)
Every string-based regular expression α can be converted into an equivalent finite
automaton A such that:

1. A has no ε transitions, and
2. the initial state of A has no incoming transitions.

Proof. The construction proceeds by induction on the structure of the regular expression:

(a) If α = ε then A consists of a single initial and final state.
(b) If α = q, q ∈ Q, then A consists of the following two states (initial and final,

respectively):

q

(c) If α = β ∪ γ, then convert β and γ to automata A1 and A2, respectively. Let s1 and
s2 be the initial states of A1 and A2, respectively. Then merge s1 and s2 into a single
new initial state, which is a final state if either s1 or s2 was.

(d) If α = βγ, then convert β and γ to automata A1 and A2, respectively. Then for each
final state f of A1 and for each transition s2

q
−→ j, where s2 is the initial state of A2,

48

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

add a transition f
q
−→ j. State f continues to be a final state if and only if s2 was.

Then remove s2.
(e) If α = β∗, then convert β to an automaton A1. Then for each final state f of A1 and

for each transition s1
q
−→ j, where s1 is the initial state of A1, add a transition f

q
−→ j.

Finally, add s1 to the set of final states.

�

Still discussing the string case, the preceding theorem can easily be extended to
weighted regular expressions and weighted finite automata by augmenting the cases of
the construction above as follows:

(a) The unique state of A gets the final weight 1.
(b) The transition of A gets the weight 1 and so does the final state, while the initial

state gets the weight 0.
(c) When merging s1 and s2 into a single state in the construction of A for β ∪ γ, their

final weights are summed up. This is correct because these states have no incoming
transitions.7

(d) Every newly added transition f
q
−→ j created in A gets the product of the final weight

of f in A1 and the weight of s2
q
−→ j in A2. The final weight of f is the product of the

final weights of f and s2.
(e) Similarly to the previous case, the weight of f

q
−→ j is the product of the final weight

of f and the weight of s1
q
−→ j in A1. The final weight of s1 becomes 1.

(f) Finally, to convert an expression α = kβ (k ∈ K), just take the automaton obtained
for β and multiply all final weights by k.

Let us now return to the case of c-regular expressions and m-automata. We will need
the notion of size for (weighted) c-regular expressions and m-automata. The size |α| of a
c-regular expression α is the number of occurrences of nullary symbols (εs and alphabet
symbols) in it. The size |A| of an m-automaton A is its number of states.

For the equivalence of weighted c-regular expressions and weighted m-automata,
note first that if we restrict attention to unary languages, then there is no relevant
difference between weighted c-regular expressions and weighted regular expressions
on strings, or between weighted m-automata and weighted finite automata on strings.
This is because commuting symbols in a string over a unary alphabet does not change
anything. Hence weighted c-regular expressions and weighted m-automata are clearly
equivalent in the unary case.

In particular, it is possible to convert a unary weighted c-regular expression α to an
equivalent weighted m-automaton A(α), using the McNaughton-Yamada construction
recalled above. By an easy induction following the construction in Theorem 4, the size
of A(α) will then be at most |α| + 1.

For treating the general case, the property in Theorem 4 that the initial state has no
incoming transitions is quite useful. We will call weighted m-automata satisfying this
requirement non-reentrant.

We will make use of the following lemma.

7 Both here and in the remaining items all weights and final weights not explicitly mentioned carry over
from A1 and A2, respectively.

49

Computational Linguistics Volume xx, Number xx

Lemma 1
Let L1 and L2 be multiset languages recognizable by non-reentrant weighted m-
automata.

1. L1 ∪ L2 is recognizable by a non-reentrant weighted m-automaton.
2. If L1, L2 use disjoint sets of symbols, then L1L2 is recognizable by a non-reentrant

weighted m-automaton.

Proof. For the first statement, if A1 and A2 recognize L1 and L2, respectively, just use
the McNaughton-Yamada construction for the union operator. The resulting weighted
m-automaton satisfies the commutativity requirement (7) because each of the individual
automata does.

For the second statement, let now A1 = (S1,Q1, τ1, s1, ρ1) and A2 = (S2,Q2, τ2, s2, ρ2)
recognize L1 and L2, respectively, where Q1 ∩Q2 = ∅. Then the shuffle product (Hopcroft
and Ullman 1979, p. 142) of A1 and A2 is the automaton that simulates A1 and A2
together, feeding each input symbol to either machine but not both. More formally,
A = (S1 × S2,Q1 ∪Q2, τ, (s1, s2), ρ), where:

τ((i1, i2), q, (j1, i2)) = τ1(i1, q, j1) q ∈ Q1

τ((i1, i2), q, (i1, j2)) = τ2(i2, q, j2) q ∈ Q2

and ρ(i1, i2) = ρ1(i1)ρ2(i2) for all (i1, i2) ∈ S1 × S2. Clearly, A recognizes the multisets of
L1L2 in any order, and it is non-reentrant if both of A1 and A2 are. �

Theorem 5
Every weighted c-regular expression α with |α| ≤ n can be converted into an equivalent
non-reentrant weighted m-automaton A(α) with |A(α)| ≤ 2n.

Proof. First, we show that any weighted c-regular expression α can be rewritten in the
form

α′ =
⋃
i∈I

∏
q∈Q

αiq

for a suitable index set I, where each αiq only uses the alphabet {q}. We show this by
induction on the structure of α. Throughout the proof, we write α ≡ α′ if [[α]] = [[α′]].

If α = ε, α = q or α = β∗, then α is trivially in the desired form. Now, assume as
induction hypothesis that β and γ are in the desired form.r If α = β ∪ γ, then

α =
⋃
i∈I

∏
q∈Q

βiq ∪
⋃
j∈J

∏
q∈Q

γ jq

which is in the desired form.

50

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

r If α = βγ, then we can rewrite α to the desired form since

α =

⋃
i∈I

∏
q∈Q

βiq


⋃

j∈J

∏
q∈Q

γ jq


≡

⋃
i∈I

⋃
j∈J

∏
q∈Q

βiq

∏
q∈Q

γ jq (by distributivity of concatenation over union)

≡

⋃
i∈I

⋃
j∈J

∏
q∈Q

βiqγ jq (by commutativity of concatenation)

which is in the desired form.r If α = kβ for a k ∈ K, choose a state q0 ∈ Q. Then

α = k

⋃
i∈I

∏
q∈Q

βiq


≡

⋃
i∈I

k

∏
q∈Q

βiq

 (by distributivity of multiplication over addition)

≡

⋃
i∈I

(kβiq0)
∏

q∈Q\{q0}

βiq

Second, we convert an expression in the above form to a non-reentrant weighted
m-automaton as follows:r For each αiq, convert it into an automaton A(αiq) using the McNaughton-Yamada

construction.r For each i, form the shuffle product of the A(αiq), according to the second statement
of Lemma 1.r Finally, use the first statement of Lemma 1 to obtain an automaton A(α).

The size bound |A(α)| ≤ 2|α| can be shown by induction on |α|.r If α = ε, since we use the McNaughton-Yamada construction, we have |A(α)| = 1 <
2|α|.r If α = q, since we use the McNaughton-Yamada construction, we have |A(α)| = 2 ≤
2|α|.r If α = β∗, then |A(α)| = |A(β)| ≤ 2|β| = 2|α|, again by the McNaughton-Yamada con-
struction.r If α = kβ for k ∈ K, then |A(α)| = |A(β)| ≤ 2|β| = 2|α|, by our extension of the
McNaughton-Yamada construction to the weighted case.r If α = β ∪ γ, then

|A(α)| = |A(β)| + |A(γ)| − 1 < 2|β| + 2|γ| ≤ 2|β| · 2|γ| = 2|α|.

51

Computational Linguistics Volume xx, Number xx

r If α = βγ, and β ≡
⋃

i
∏

q βiq and γ ≡
⋃

j
∏

q γ jq, then

|A(α)| =
∑

i

∑
j

∏
q

(|A(βiq)| + |A(γ jq)|)

≤

∑
i

∑
j

∏
q

|A(βiq)| · |A(γ jq)|

=

∑
i

∏
q

|A(βiq)|


∑

j

∏
q

|A(γ jq)|


= |A(β)| · |A(γ)|

≤ 2|β|2|γ| = 2|α|.

�

It is also possible to convert a weighted m-automaton to an equivalent weighted
c-regular expression. Even though we do not use this result here, we mention it briefly
for completeness.

Theorem 6
Any weighted m-automaton can be converted into an equivalent weighted c-regular
expression.

Proof. Given a weighted m-automaton A, view it as a weighted string automaton and
intersect it with an ordinary string automaton recognizing the language q∗1 · · · q

∗

|Q|. The
resulting automaton A′ is a weighted string automaton such that

[[A′]] (u) =

{
[[A]] (u) if u ∈ q∗1 · · · q

∗

|Q|
0 otherwise.

Now use the standard state elimination algorithm (for the weighted case) to convert
A′ into a regular expression (which will then necessarily be a weighted c-regular
expression). �

7.2 Extended weighted DAG automata

In this section we introduce a definition that extends the DAG automata of Section 3. We
start with an overview of the basic idea. In our extended DAG automata, the left-hand
side and the right-hand side of a transition are weighted c-regular expressions α and β
defining (the weights of) acceptable combinations of states at the incoming and at the
outgoing edges, respectively, of the node to be processed. These c-regular expressions
are therefore defined over the alphabet Q, that is, the state set of the extended DAG
automaton.

Note that a transition in an extended DAG automaton has a potentially infinite set of
instantiations {q1, . . . , qm}

σ
−→ {r1, . . . , rn}, where a transition instantiation is defined as a

transition of the DAG automata of Section 3. The weight of such a transition instantiation
is defined as the product of the weights assigned by α and β to {q1, . . . , qm} and {r1, . . . , rn},
respectively. Using the definition of run for a DAG D that we introduced in Section 3.1,
the weight of a run on D is the product of the weights of all instantiated transitions of

52

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

the run. In the unweighted case, this means that D is accepted by the extended DAG
automaton if and only if there exists an assignment of states to the edges of D such that,
for each node v of D with label σ, there is some extended transition α σ

−→ β such that the
multiset of states at the incoming edges of v matches α and, similarly, the multiset of
states at the outgoing edges matches β.

Definition 6
An extended weighted DAG automaton is a tuple M = (Σ,Q,∆,K), where

1. Σ, Q andK are defined as in the case of weighted DAG automata
2. ∆ is a transition relation consisting in a finite set of triples of the form t = 〈α, σ, β〉,

where σ ∈ Σ and α, β are K-weighted c-regular expressions over Q. We also write
t in the form α

σ
−→ β and call it an extended transition.

For a precise definition of the semantics of extended DAG automata, recall that
a run has been defined in Section 3.1 as an assignment of states of the automaton to
the edges of a DAG. Consider a run ρ on a DAG D = (V,E, lab, src, tar). Let v ∈ V with
lab(v) = σ, and let l and r be the multisets of states on its incoming and outgoing edges,
respectively, under ρ. This gives rise to an unweighted transition instance t = (l σ

−→ r).
Every extended transition α σ

−→ β in ∆ contributes [[α]] (l) ⊗
[[
β
]]

(r) to the weight of t. We
denote the resulting weight of t by wρ(v), i.e.,

wρ(v) =
⊕

(α
σ
−→β)∈∆

[[α]] (l) ⊗
[[
β
]]

(r).

Now, as mentioned above, the weight of ρ is obtained by taking the product of all the
wρ(v), over all v ∈ V, and the total weight of D is the sum of the weights of all runs on D:

[[M]] (D) =
⊕

run ρ on D

⊗
v∈V

wρ(v).

We now argue that, if the support of [[α]] and
[[
β
]]

is finite for all transitions 〈α, σ, β〉
of an extended DAG automaton, then the automaton is equivalent to an ordinary DAG
automaton. (The support of a weighted c-regular expression α over Q is the set of

all µ ∈ M(Q) such that [[α]] (µ) , 0.) To turn a transition l
σ/w
−−→ r of an ordinary DAG

automaton into an equivalent extended transition α σ
−→ β, let α′ be a sequence with all the

elements of multiset l, in any order, and define α = wα′. Furthermore, let β be defined
as a sequence with all the elements of multiset r, in any order. In this way we have that,
for all multisets m ∈ M(Q),

[[α]] (m) =

{
w if m = l
0 otherwise and

[[
β
]]

(m) =

{
1 if m = r
0 otherwise.

Conversely, for every extended DAG automaton M there exists a non-extended DAG
automaton M′ over Σ such that [[M′]] (D) = [[M]] (D) for every DAG D. For this, just
define the transition function δ of M′ similarly to wρ above: for every symbol σ ∈ Σ and

53

Computational Linguistics Volume xx, Number xx

Transitions:

ε
want
−−−→ qwant-arg0qwant-arg1q∗want-mod

qwant-arg0
ARG0
−−−−→ qperson

qwant-arg1
ARG1
−−−−→ qpred

qpred
believe
−−−−−→ qbelieve-arg0qbelieve-arg1q∗believe-mod

qbelieve-arg0
ARG0
−−−−→ qperson

qbelieve-arg1
ARG1
−−−−→ qperson

qpersonq∗person
John
−−−→ ε

qpersonq∗person
Mary
−−−→ ε

qpersonq∗person
Sue
−−→ ε

Some of the accepted AMRs:
want

ARG1

believe

ARG1

John

ARG0

Mary

ARG0

John wants Mary to believe him

want

ARG1

believe

ARG1

Sue

ARG0

Mary

ARG0

John

John wants Mary to believe him

want

ARG1

believe

mod

today

ARG1

Sue

ARG0

Mary

ARG0

John

John wants Mary to believe Sue today

Figure 18
Extended rules for AMRs. The Kleene star in the expressions for input and output state multisets
means that a state can occur zero or more times.

all multisets l, r ∈ M(Q),

δ(l, σ, r) =
⊕

(α
σ
−→β)∈∆

[[α]] (l) ⊗
[[
β
]]

(r).

Since any c-regular expression appearing in an extended transition of ∆ has finite
support, function δ is finite, as desired.

Example 13
An extended DAG automaton that models AMR structures with unbounded node degree
is specified in Figure 18. The extended transitions are based on the (non-extended)
transitions in Figure 7, and make use of the Kleene star operator of c-regular expressions.
More specifically, each predicate can take zero or more modifiers, labeled mod, allowing
sentences such as “John wants Mary to believe Sue”, “John wants Mary to believe Sue
today”, etc. Similarly, entities including John, Mary, and Sue can be generated from one
or more states labeled qperson, allowing an arbitrary number of instances of coreference.

54

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

σ

σ0,1

σ2,1

σ2,1

σ2,1

σ1,1

σ1,2

σ1,2

σ1,0

Figure 19
A node of in-degree 3 and out-degree 2, and the corresponding sub-DAG created by binarization

7.3 Properties

We now extend the properties studied for unweighted non-extended DAG automata
to the (also unweighted) extended case. Thus, from this point onwards up until the
start of Section 7.4, all DAG automata and extended DAG automata are assumed to
be unweighted. Consequently, also the m-automata A = (Ξ,Q, τ, s, ρ) appearing in this
section are unweighted. We therefore view the transition function τ as a set of transitions
〈ξ, q, ξ′〉 rather than as a mapping from all possible such transitions to the domain
{true, false} of the Boolean semiring.

As a basis for most of the results of this section, we use a binarization approach
similar to Section 6, though somewhat simpler because we do not want to optimize
parsing and thus do not need to use tree decompositions.

Let M = (Σ,Q,∆,K) be an extended DAG automaton. We binarize (unranked) DAGs
over Σ as follows. Let Σ′ = {σm,n | σ ∈ Σ} for m,n ∈ {0, 1, 2}. The idea underlying the
binarization of a DAG D is to replace every σ-labeled node v of in-degree m and out-
degree n by a “vertical” chain of m + n + 3 copies of σ of the form

σ0,1 σ2,1 · · · σ2,1︸ ︷︷ ︸
m times

σ1,1 σ1,2 · · · σ1,2︸ ︷︷ ︸
n times

σ1,0,

where each σ2,1 is assigned one of the incoming edges of v, and vice versa for σ1,2 with
respect to the outgoing edges of v. Figure 19 shows an example where (m,n) = (3, 2). Note
that nodes of in-degree 0 are turned into chains that start with σ0,1σ1,1 at the top. Similarly,
nodes of out-degree 0 are turned into chains that end in σ1,1σ1,0 at the bottom. Different
orderings of the incoming and outgoing edges yield potentially different binarizations.
Thus, every DAG D over Σ gives rise to a finite set B(D) of binarized DAGs over Σ′.
It is now straightforward to turn M into a non-extended DAG automaton M′ such that

55

Computational Linguistics Volume xx, Number xx

[[M′]] =
⋃

D∈[[M]] B(D). For this, note that the sub-DAGs of the form shown in Figure 19
contain m + n + 2 additional edges – those on the vertical spine – and m + n edges
stemming from the original DAG. In a run of M′, the latter are assigned states in Q
whereas the former are assigned states of the m-automata that implement the transitions
of M.

Consider such a transition 〈α, σ, β〉 and let A = (Ξ,Q, τ, s, ρ) and A′ = (Ξ′,Q, τ′, s′, ρ′)
with Ξ ∩ Ξ′ = ∅ be m-automata equivalent to α and β, respectively. Then M′ contains the
transitionsr ∅ σ0,1

−−→ s (this assigns the initial state of A to the top-most edge of the spine),r {ξ, q} σ2,1
−−→ {ξ′} for all ξ ∈ Ξ, q ∈ Q, and 〈ξ, q, ξ′〉 ∈ τ (this “reads” q on an incoming

edge in state ξ, assigning the resulting state ξ′ to the next edge on the spine),r {ξ} σ1,1
−−→ {s′} for all final states ξ of A (this allows A′ to “cross” the middle of the

spine and continue to work on the outgoing edges) and, similarly to the preceding
items,r {ξ} σ1,2
−−→ {ξ′, q} for all ξ ∈ Ξ′, q ∈ Q, and 〈ξ, q, ξ′〉 ∈ τ′ (similarly to the second item,

but “reading” q on an outgoing edge) andr {ξ} σ1,0
−−→ ∅ for all final states ξ of A′ (similarly to the first item).

It should be clear that, indeed, [[M′]] =
⋃

D∈[[M]] B(D). As a consequence, we can extend
three results from non-extended DAG automata to extended ones: the emptiness and
finiteness problems are decidable and the path languages are regular. (The decidability
of the finiteness problem was shown in (Blum and Drewes 2016) for the non-extended
case.)

These results are summarized in the next theorem.

Theorem 7
For unweighted extended DAG automata

1. the emptiness problem is decidable,
2. the finiteness problem is decidable, and
3. the path language is regular.

If the transitions of the input automata of the emptiness and finiteness problems are
specified by means of m-automata (rather than c-regular expressions), then the decision
algorithms run in polynomial time.

Proof. The first two statements follow directly from the fact that a DAG language is
empty (finite) if and only if its binarized counterpart is empty (finite, respectively).
Furthermore, if the m-automata that specify the transitions of M are given, then the
DAG automaton M′ discussed above can be obtained from M in polynomial time.

To see that the path languages are regular, consider some D ∈ [[M]] and D′ ∈ B(D).
Intuitively, every path in D is represented by one in D′ such that, whenever the original
path passes a node, the corresponding path in D′ enters the chain in Figure 19 through
one of the edges coming from the right and leaves it through one of the outgoing edges
going to the right. However, in D′ a path can start (and end) at any such chain, since
each contains a root (and a leaf), even if the node it represents is an internal node of
D. Fortunately, the desired paths can easily be singled out, because a chain represents a
root if it starts with σ0,1σ1,1 and a leaf if it ends with σ1,1σ1,0.

This amounts to saying that a string w ∈ Σ∗ is a path in D if and only if there is a
path w′ in D′ that satisfies the following:

56

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

(a) w′ has a prefix of the form σ0,1σ1,1,
(b) w′ has a suffix of the form σ1,1σ1,0, and
(c) w is obtained from w′ by applying the homomorphism that replaces each σ1,1 by σ

and erases all other symbols.

Thus, since the path language of [[M′]] is regular, so is that of [[M]], because it is
obtained from the former by intersection with two regular languages and applying
a homomorphism. �

Let us now consider the intersection of a hyperedge replacement language with
[[M]]. Assume for simplicity that the given HRG G is “normalized” in the sense that
every right-hand side either contains no terminal edges at all, or consists only of the
nodes in the left-hand side and terminal edges. We sketch briefly how G can be turned
into a HRG G′ that generates [[G]] ∩ [[M]], hoping that the interested reader will be able
to work out the details by herself.

Similarly to Section 4.2, the idea is to use a Bar-Hillel-like construction. However,
the construction of Section 4.2 has to be generalized slightly because now the degree of
nodes in the graphs in [[M]] is not a priori bounded anymore.

Recall that in the previous case we annotated each tentacle of a nonterminal
hyperedge with two multisets of states. Intuitively, if v is the node the tentacle points
to, then this annotation “guesses” the states on incoming and outgoing edges that this
nonterminal will attach to v. In the extended version, suppose the label of v is σ and there
is a transition 〈α, σ, β〉, where A = (Ξ,Q, τ, s, ρ) and A′ = (Ξ′,Q, τ′, s′, ρ′) are m-automata
that implement α and β, respectively. Then the annotation of the tentacle will consist
of two pairs of states, ((ξ1, ξ2), (ξ′1, ξ

′

2)) ∈ Ξ2
× Ξ′2, representing the “guess” that the

derivation of this nonterminal hyperedge will eventually attach incoming and outgoing
edges to the node that can be assigned states from Q which take A and A′ from ξ1 to ξ2
and from ξ′1 to ξ′2, respectively.

To see how this can be done, consider first a nonterminal rule of the original HRG,
and assume that it replaces the nonterminal hyperedge in such a way that, in the
right-hand side of the rule, two new nonterminal hyperedges have tentacles to the
corresponding node. Then the resulting HRG will contain a version of the rule in which
these tentacles carry annotations ((ξ1, ξ), (ξ′1, ξ

′)) and ((ξ, ξ2), (ξ′, ξ′2)), for all possible
choices of ξ ∈ Ξ and ξ′ ∈ Ξ′. Similarly, if the right-hand side contains a node which is
not in the left-hand side, and that node is attached to, say, a single tentacle, then this
tentacle would be annotated with some ((s, ξ), (s′, ξ′)) such that ξ and ξ′ are final states
of A and A′, respectively.

Finally, the terminal rules verify the consistency of the nondeterministic guesses.
Suppose the original HRG contains a terminal rule L ::= R for the nonterminal in
question. For each annotated version L′ of L, the modified HRG contains the rule L′ ::= R
if there exists an assignment of states in Q to the edges in R which is consistent with the
annotation of (tentacles in) L′. For example, if the annotation of one of the tentacles is
((ξ1, ξ2), (ξ′1, ξ

′

2)) and the incoming and outgoing edges of the corresponding node in R
are assigned the multisets of states Qin and Qout, then it must be the case that Qin takes
A from ξ1 to ξ2 and Qout takes A′ from ξ′1 to ξ′2.

As mentioned, we leave the details of the construction to the reader. The resulting
HRG generates the language [[G]] ∩ [[M]], thus showing that the class of hyperedge
replacement languages is closed under intersection with extended DAG automata.

57

Computational Linguistics Volume xx, Number xx

7.4 Recognition

In this section we present two parsing algorithms for extended DAG automata. The
first algorithm is a reduction to the recognition problem of Section 5 for (non-extended)
DAG automata, and demonstrates the close relationship between these two problems.
The reduction is based on the binarization method presented in Section 6, and involves
constructing a binarized DAG D′ on the basis of a tree decomposition of the input graph
D. The second algorithm we present operates directly on this tree decomposition, and
can be implemented without using Algorithm 2 as a subroutine.

7.4.1 Reduction to Non-extended Recognition. Let M be an extended DAG automaton,
and let D be an input DAG. Informally, our reduction consists of the following steps:r encode D into a binary DAG D′;r transform M into a binary, non-extended DAG automaton M′;r run M′ on D′ using Algorithm 2.

The binarization of D is done on the basis of a tree decomposition of D, using the
techniques presented in Section 6. The automaton M′ is also constructed using techniques
similar to those presented in Section 6, as described in detail below.

Let Q be the state set of M and let QA = Q ∪Q′, where Q′ = {q′ | q ∈ Q} is a set of fresh
copies of the states in Q. We compile all the transitions on an input symbol σ ∈ Σ into
a single m-automaton Aσ over QA, using the states in Q and Q′ to distinguish between
incoming and outgoing edges. Suppose that 〈α1, σ, β1〉, . . . , 〈αn, σ, βn〉 are the transitions of
M onσ. Let β′`, 1 ≤ ` ≤ n, be obtained from β` by replacing each q ∈ Q with its copy q′ ∈ Q′.
Now, let Aσ = (Ξσ,QA, τσ, sσ, ρσ) be an m-automaton such that [[Aσ]] =

[[⋃n
`=1(α`β′`)

]]
.

Recall from Section 6 that all edges of D are copied into D′ and that these copied
edges are all attached to the leaf nodes of the treelets in D′. The remaining edges of D′,
that is, those edges that are newly added in the binarization of D, are called D′-auxiliary.

States in M′ are symbols in Q or else pairs of states from the m-automata Aσ. States
q ∈ Q are used by M′ at edges copied from D. Pairs of states from Aσ are used by M′ at
the D′-auxiliary edges. More specifically, consider a node v of D with lab(v) = σ, and the
corresponding treelet Tv in D′. Let e be some D′-auxiliary edge in Tv with target node
u, and let E be the set of all edges copied from D that are attached to the leaves of the
sub-treelet of Tv rooted at node u; see Figure 20. A pair (i, j) with i, j ∈ Ξσ is used by M′ at
e to indicate that Aσ can process the multiset of symbols from QA assigned to the edges
from E by starting in state i and ending in state j.

We now specify in detail the transitions of M′, which correspond one-to-one to the
rules defined in Section 6.3. Let σ ∈ Σ be an input symbol of M. The first two rules below
apply at the root of a treelet Tv derived from a vertex v of D labeled with σ, and stipulate
initial and final states of some computation in Aσ:

∀ i ∈ Ξσ ∅
σ′/ρσ(i)
−−−−−→ {(sσ, i)}; (8)

∀ i, j ∈ Ξσ ∅
σ′/ρσ(j)
−−−−−→ {(sσ, i), (i, j)}. (9)

The next two rules apply at nodes that are internal to a treelet Tv. The unary rule
does nothing, simply skipping the node, while the binary rule concatenates two sub-

58

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

Tv

• u

e

• • •
. . .
•

E

Figure 20
Set of edges E copied from D and attached to the leaves of the sub-tree of treelet Tv rooted at
node u.

computations in Aσ:

∀ i, j ∈ Ξσ {(i, j)}
σ′/1
−−−→ {(i, j)}; (10)

∀ i, j, k ∈ Ξσ {(i, k)}
σ′/1
−−−→ {(i, j), (j, k)}; (11)

Finally, we need transitions to process leaf nodes at the treelets in D′, where we need
to simulate transitions of Aσ that process edges copied from the original DAG D. Recall
that these copied edges are labeled with states in Q, whereas in Aσ states from Q′ are
indicative of outgoing edges. Thus, we use the following transitions:

∀ q ∈ Q, i, j ∈ Ξσ {(i, j), q}
σ/τσ(i,q, j)
−−−−−−→ ∅ (12)

∀ q ∈ Q, i, j ∈ Ξσ {(i, j)}
σ/τσ(i,q′, j)
−−−−−−−→ {q} (13)

The following transitions handle the special case of a treelet consisting of a single node:

∀ q ∈ Q, i ∈ Ξσ {q}
σ/τσ(sσ,q,i)ρσ(i)
−−−−−−−−−−→ ∅ (14)

∀ q ∈ Q, i ∈ Ξσ ∅
σ/τσ(sσ,q′,i)ρσ(i)
−−−−−−−−−−−→ {q} (15)

Once M′ has been constructed from M, we can process each input DAG D by
converting it into a binary DAG D′ and then by running M′ on D′ using Algorithm 2.

59

Computational Linguistics Volume xx, Number xx

Computational Analysis. Recall from Section 5 that Algorithm 2, when run on a non-
extended DAG automaton M and a ranked DAG D, has a time complexity of

O

(
|ED| · |Q|tw(LG(D))+1

)
,

where Q is the state set of M and tw(LG(D)) is the treewidth of the line graph of D.
An upper bound on the number of states of the binarized non-extended automaton

M′ just defined is |Q| + m2
|Σ|, where m = maxσ∈Σ |Ξσ|. This is because states are either

states of M or otherwise pairs of states of one of the m-automata Aσ. Furthermore, by
Theorem 2, tw(LG(D′)) ≤ 2(tw(D) + 1). The binarization construction ensures that |ED′ |

is O (|ED|). Combining these facts, we have that the running time of Algorithm 2 on the
binarized DAG D′ and the binarized automaton M′ is

O

(
|ED|(|Q| + m2

|Σ|)2tw(D)+3
)
. (16)

Thus, as with the algorithm of Section 6 for non-extended DAGs, the running time is
exponential in the treewidth of the input DAG, linear in the total size of the input DAG,
and, for a fixed treewidth, polynomial in the number of states of the extended automaton
and in the number of states of the largest m-automaton Aσ for the transitions on a single
input symbol σ.

7.4.2 Direct Recognition. We now present an alternative algorithm for processing D
according to the extended automaton M. The algorithm uses the same ideas as above,
but works directly on D and M, without any preprocessing (binarization). Thus the
alternative algorithm avoids the overhead of compiling (or computing on-the-fly) the
large number of (non-extended) rules defined in the previous subsection.

Let T be a tree decomposition of DAG D. Recall from Definition 2 that a node b
of T is called a bag, and cont(b), the label of b, is a set of nodes of D. In what follows,
we assume our tree decompositions are in a canonical form that has been introduced
by Cygan et al. (2011). Tree decomposition T is nice if every bag b of T satisfies one of
the following conditions.r b has no children and cont(b) = ∅.r b has one child b1, and b = b1 ∪ {v} for some node v < cont(b1). In this case, b is said

to introduce v.r b has one child b1, and b ∪ {v} = b1 for some node v < cont(b). In this case, b is said
to forget v.r b has one child b1 with b = b1, and b is additionally labeled with an edge e such that
src(e), tar(e) ∈ cont(b). In this case b is said to introduce e. For every edge e, exactly
one bag introduces e.r b has two children b1 and b2, and cont(b) = cont(b1) = cont(b2). In this case b is called
a join bag.

It can be shown from the procedure of Cygan et al. (2011) for constructing nice tree
decompositions that the number of bags in a nice tree decomposition of D is O (|ED|).

Similarly to Section 7.4.1, we compile all of transitions of M on an input symbol σ ∈ Σ
into a single m-automaton Aσ = (Ξσ,QA, τσ, sσ, ρσ). Let Ξ =

⋃
σ∈Σ Ξσ. In what follows,

given a bag b of T, we denote by Φ(b) the set of all functions φ : cont(b)→ Ξ × Ξ such
that, if v ∈ cont(b) with lab(v) = σ, then φ(v) ∈ Ξσ × Ξσ. In words, function φ assigns a
pair of states from Aσ to each node v of D in a bag b, where σ is the label of v. Similarly to

60

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

Section 7.4.1, the intended meaning of a pairφ(v) = (i, j) is as follows. Let v be some node
in cont(b) and let T′ be the subtree of T rooted at b. Let also E be the set of all edges of D
that are introduced by bags from T′. When processing the edges in E that are attached
to v, Aσ can begin in state i and end in state j. For compactness, we use the notation
v 7→ i j for the map φ : {v} → {(i, j)} such that φ(v) = (i, j). Let φ ∈ Φ(b) and consider a
node v of D (which may or may not be in cont(b)). We then write v 7→ i j, φ to denote the
function φ′ : cont(b) ∪ {v} → Ξ × Ξ such that φ′(u) = φ(u) for every u ∈ cont(b) \ {v}, and
φ′(v) = (i, j).

The recognition algorithm below processes the input DAG D by visiting its edges
in the order in which they appear in a bottom up walk through the tree decomposition
T, computing a partial analysis of M for D. It uses function φ to group into equivalence
classes all partial analyses that share the same assignment of pairs of states of the
appropriate Aσ to the nodes in cont(b), and it uses dynamic programming to compute
the overall weight of the computations in the same equivalence class.

The algorithm maintains a chart with entries chartb[φ] ∈ K, for each b and for each
φ ∈ Φ(b). Thus, if m is again the size of the largest Ξσ, chartb has at most m2|cont(b)|

entries and could be thought of as an order-2|cont(b)| tensor. Each entry chartb[φ] is the
total weight of derivations of the processed part of the graph where, if v ∈ cont(b) and
φ(v) = (i, j), the m-automaton processing the incident edges of v starts in state i and stops
in state j.

Algorithm 3 Direct DAG recognition based on extended automata.
1: for each bag b, bottom-up do
2: if b is a leaf then
3: chartb[∅] = 1
4: else if b introduces node v with lab(v) = σ then
5: for i ∈ Ξσ and φ ∈ Φ(b1) do
6: chartb[v 7→ ii, φ] = chartb1 [φ]
7: else if b introduces edge e pointing from v to v′, lab(v) = σ and lab(v′) = σ′ then
8: for i, k ∈ Ξσ, i′, k′ ∈ Ξσ′ and φ ∈ Φ(b) do

9:

chartb[v 7→ ik, v′ 7→ i′k′, φ]
=

⊕
q

⊕
j∈Ξσ, j′∈Ξσ′

chartb1 [v 7→ i j, v′ 7→ i′ j′, φ] ⊗ τσ(j, q, k) ⊗ τσ′ (j′, q′, k′)

10: else if b forgets node v with lab(v) = σ then
11: for φ ∈ Φ(b) do
12: chartb[φ] =

⊕
j

chartb1 [v 7→ sσ j, φ] ⊗ ρσ(j)

13: else if b is a join bag with cont(b) = {v1, . . . , v`} and lab(vp) = σp (1 ≤ p ≤ `) then
14: for i1, k1 ∈ Ξσ1 , . . . , i`, k` ∈ Ξσ` do

15:

chartb[v1 7→ i1k1, . . . , v` 7→ i`k`]
=

⊕
jp∈Ξσp

chartb1 [v1 7→ i1 j1, . . . , v` 7→ i` j`] ⊗ chartb2 [v1 7→ j1k1, . . . , v` 7→ j`k`]

Computational Analysis. The processing of a join bag in the algorithm takes time m3(tw(D)+1)

because it iterates over triples of states ih, jh, kh for each of the w nodes in the join bag,
where w can be as large as tw(D) + 1. The processing of a bag that introduces an edge

61

Computational Linguistics Volume xx, Number xx

involves iterating over m2(tw(D)−1) values of φ, m6 values of i, i′, j, j′, k, and k′, and |Q|
values of q, for a total time of |Q|m2(tw(D)+2). The other types of bags result in strictly
lower complexities, giving a total running time of:

O

(
|ED|(|Q|m2(tw(D)+2) + m3(tw(D)+1))

)
. (17)

This bound is slightly tighter than (16), though similar qualitatively: the running time is
exponential in the treewidth of the input DAG, linear in the total size of the input DAG,
and polynomial in the number of states of the extended automaton and the transition
automata.

8. Conclusion

We have aimed to develop a formalism for DAG automata that lends itself to efficient
algorithms for processing semantic graphs such as Abstract Meaning Representations.
In particular, motivated by the success of finite-state methods in natural language
processing, we have tried to develop a graph analog of standard finite-state automata
for strings. The resulting formalism, despite having a straightforward and intuitive
definition, differs from previously developed formalisms including those of Kamimura
and Slutzki (1981), Charatonik (1999), Priese (2007) and Quernheim and Knight (2012).
We have shown that our choice of definitions allows a number of desirable properties
to carry over from finite-state automata for strings, including the regularity of path
languages, the polynomial decidability of emptiness and finiteness, and the ability to
intersect with hyperedge replacement grammars, which can be viewed as a graph analog
of context-free grammars.

However, recognition in general for our formalism remains an NP-complete prob-
lem, a major difference from finite-state automata for strings. Motivated by the need
for practical algorithms, we study the complexity of this problem in detail. While most
previous theoretical work on graph automata deals with general complexity classes such
as decidability or NP-completeness, we develop more specific asymptotic complexity
results with respect to a number of parameters of the input problem. Our binarization
technique allows recognition in time exponential in the treewidth of the input graph. This
is a major improvement over the naïve strategy, which is exponential in the treewidth
of the line graph of the input graph, which itself is at least the degree of the input graph.
For semantic representation from the AMR Bank, the maximum treewidth is four, while
the maximum degree is 17. This indicates that the binarization technique is essential to
making recognition practical.

Finally, we show how to extend our formalism to DAGs of unbounded degree,
which is necessary for handling natural language phenomena such as coreference
and optional modifiers. We show that our algorithms and complexity results apply
essentially unchanged in this extended setting.

Real-world systems based on our formalism will have to address a number of
problems not touched upon in this article, including determining the appropriate set of
states and node labels for a particular application. Another avenue for future work is
the possibility of rules that process a larger fragment of the input DAG in one transition,
as with “extended” rules for tree automata (Maletti et al. 2009). Finally, while we have
studied recognition with DAG automata, the development of formalisms for transducers
between DAGs and either strings, trees, DAGs, or even general graphs, remains an
important area for future work.

62

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

Appendix A: Binary Tree Decomposition

We provide an explicit proof for the fact, mentioned in Section 6.2, that tree decom-
positions can efficiently be transformed into binary tree decompositions of the same
width.

Theorem 8
Every tree decomposition of a graph G without isolated nodes can in linear time be
transformed into a binary tree decomposition of G of the same width and of size linear
in the number of edges of G.

Proof. Let T be a tree decomposition of G of width k. As shown by Kloks (1994, Lemma
2.2.5) it may be assumed without loss of generality that the size of T is at most the number
of nodes of G. If a bag b has children b1, . . . , bk with k > 2, add a new bag b′, let b1 and b′

be the children of b, and b2, . . . , bk those of b′. Define cont(b′) = cont(b) ∩ (cont(b2) ∪ · · · ∪
cont(bk)). Clearly, the resulting tree T′ is still a tree decomposition of width k. Repeating
this step will eventually result in a tree decomposition in which every bag has at most
two children.

Next, assign to every edge e of G a unique bag b(e) such that {src(r), tar(e)} ⊆ cont(b(e)).
Any leaf b such that b , b(e) for all edges e can be removed from the tree, because
the nodes in cont(b) are not isolated and are thus contained in other bags. Doing this
repeatedly yields a tree decomposition which is a binary tree such that every leaf is of
the form b(e) for one or more edges e (but not all b(e) need to be leaves).

Finally, for every bag b such that there are (pairwise distinct) edges e1, . . . , e` with
b(e1) = · · · = b(e`) = b, add a comb whose spine consists of ` − 1 bags with the same
contents as b, and whose leaves are bags b1, . . . , b` with cont(bi) = {src(ei), tar(ei)}. Now
define edg(bi) = ei for i = 1, . . . , `. Obviously, the width of the tree decomposition stays
the same, and now the mapping b 7→ edg(b) is a bijection between the leaves of the tree
decomposition and the edges of G. We also have that cont(b) = {src(edg(b)), tar(edg(b))}
for every bag b which is a leaf, as required. To see that the size of the resulting tree
decomposition is linear in the number of edges of G it suffices to notice that the first step
doubles the size of T in the worst case, the second step reduces its size, and the third
step adds at most two bags for each edge of G. This completes the proof. �

Acknowledgments
We are grateful to the anonymous reviewers for their useful suggestions and to Sorcha Gilroy
and Parker Riley for comments on drafts of this article. The authors were funded in part by NSF
grant IIA-0530118 PIRE to the Fred Jelinek Memorial Workshop, by ARO grant
W911NF-10-1-0533, by the LINDAT/CLARIN project of the Ministry of Education, Youth and
Sports of the Czech Republic under projects LM2010013 and LM2015071, by NSF grant
IIS-1349902, and by the Italian Ministry of Education, Universities and Research (MIUR) under
project PRIN No. 2010LYA9RH_006.

References
Aalbersberg, IJsbrand J., Grzegorz Rozenberg, and Andrzej Ehrenfeucht. 1986. On the

membership problem for regular DNLC grammars. Discrete Applied Mathematics, 13:79–85.
Abend, Omri and Ari Rappoport. 2013. Universal conceptual cognitive annotation (UCCA). In

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 228–238, Sofia, Bulgaria.

Abney, Steven, David McAllester, and Fernando Pereira. 1999. Relating probabilistic grammars
and automata. In Proceedings of the 37th Annual Conference of the Association for Computational
Linguistics (ACL-99), pages 542–549, College Park, Maryland.

63

Computational Linguistics Volume xx, Number xx

Aho, Alfred V. and Jeffrey D. Ullman. 1972. The Theory of Parsing, Translation and Compiling,
volume 1. Prentice-Hall, Englewood Cliffs, NJ.

Allauzen, Cyril and Mehryar Mohri. 2006. A unified construction of the Glushkov, follow, and
Antimirov automata. In Mathematical Foundations of Computer Science 2006. Springer, pages
110–124.

Anantharaman, Siva, Paliath Narendran, and Michael Rusinowitch. 2005. Closure properties
and decision problems of DAG automata. Information Processing Letters, 94(5):231–240.

Arnborg, Stefen, Derek G. Corneil, and Andrzej Proskurowski. 1987. Complexity of finding
embeddings in a k-tree. SIAM Journal of Algebraic and Discrete Methods, 8:277–284.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,
Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract meaning
representation for sembanking. In Proceedings of the Linguistic Annotation Workshop, pages
178–186, Sofia, Bulgaria.

Bar-Hillel, Yehoshua, Micha Perles, and Eli Shamir. 1961. On formal properties of simple phrase
structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung,
14(2):143–172.

Bauderon, Michel and Bruno Courcelle. 1987. Graph expressions and graph rewriting.
Mathematical Systems Theory, 20:83–127.

Baum, Leonard E. 1972. An inequality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes. In Inequalities III: Proceedings of the
Third Symposium on Inequalities, pages 1–8, Academic Press, University of California, Los
Angeles.

Björklund, Henrik, Frank Drewes, and Petter Ericson. 2016. Between a rock and a hard place –
uniform parsing for hyperedge replacement DAG grammars. In Proceedings of the 10th
International Conference on Language and Automata Theory and Applications, volume 9618 of
Lecture Notes in Computer Science, pages 521–532, Prague.

Blum, Johannes. 2015. DAG automata – variants, languages and properties. Master’s thesis,
Umeå University.

Blum, Johannes and Frank Drewes. 2016. Properties of regular DAG languages. In Proceedings of
the 10th International Conference on Language and Automata Theory and Applications, volume 9618
of Lecture Notes in Computer Science, pages 427–438, Prague.

Böhmová, Alena, Jan Hajič, Eva Hajičová, and Barbora Hladká. 2003. The Prague Dependency
Treebank: A three-level annotation scenario. In A. Abeillé, editor, Treebanks: Building and Using
Parsed Corpora. Kluwer, pages 103–127.

Bossut, Francis, Max Dauchet, and Bruno Warin. 1988. Automata and rational expressions on
planar graphs. In Mathematical Foundations of Computer Science 1988, pages 190–200, Carlsbad,
Czechoslovakia.

Bossut, Francis, Max Dauchet, and Bruno Warin. 1995. A Kleene theorem for a class of planar
acyclic graphs. Information and Computation, 117(2):251–265.

Boyd, Stephen and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University
Press.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1991.
Word-sense disambiguation using statistical methods. In Proceedings of the 29th Annual Meeting
of the Association for Computational Linguistics (ACL-91), pages 264–270, Berkeley, CA.

Charatonik, Witold. 1999. Automata on DAG representations of finite trees. Technical report
MPI-I-1999-2-001, Max Planck Institute for Informatics, Saarbrücken, Germany.

Charniak, Eugene. 1997. Statistical parsing with a context-free grammar and word statistics. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative
Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, pages 598–603, Providence,
Rhode Island.

Chi, Zhiyi. 1999. Statistical properties of probabilistic context-free grammars. Computational
Linguistics, 25:131–160.

Chiang, David. 2012. Hope and fear for discriminative training of statistical translation models.
Journal of Machine Learning Research, 13(1):1159–1187.

Chiang, David, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge replacement grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (ACL-13), pages 924–932, Sofia,
Bulgaria.

64

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

Collins, Michael. 1997. Three generative, lexicalised models for statistical parsing. In Proceedings
of the 35th Annual Meeting of the Association for Computational Linguistics, pages 16–23,
Association for Computational Linguistics, Madrid, Spain.

Collins, Michael and James Brooks. 1995. Prepositional phrase attachment through a backed-off
model. In Proc. Third Workshop on Very Large Corpora, pages 27–38, Cambridge, MA.

Comon, Hubert, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison,
and Marc Tommasi. 2002. Tree Automata Techniques and Applications. Internet publication
available at http://www.grappa.univ-lille3.fr/tata.

Courcelle, Bruno. 1990. The monadic second–order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation, 85:12–75.

Cygan, Marek, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij, and
Jakub Onufry Wojtaszczyk. 2011. Solving connectivity problems parameterized by treewidth
in single exponential time. ArXiv:1103.0534.

Drewes, Frank, Hans-Jörg Kreowski, and Annegret Habel. 1997. Hyperedge replacement graph
grammars. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars and Computing by
Graph Transformation. World Scientific, pages 95–162.

Drewes, Frank and Jérôme Leroux. 2015. Structurally cyclic Petri nets. Logical Methods in
Computer Science, 11:1–9.

Droste, Manfred and Stefan Dück. 2015. Weighted automata and logics on graphs. In Proceedings
of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS 2015),
Part I, volume 9234 of Lecture Notes in Computer Science, pages 192–204, Milan, Italy.

Droste, Manfred and Paul Gastin. 1999. The Kleene-Schützenberger theorem for formal power
series in partially commuting variables. Information and Computation, 153:47–80.

Eisner, Jason. 2002. Parameter estimation for probabilistic finite-state transducers. In Proceedings
of the 40th Annual Conference of the Association for Computational Linguistics (ACL-02), pages 1–8,
Philadelphia.

Esparza, Javier and Mogens Nielsen. 1994. Decidability issues for Petri nets – a survey.
Elektronische Informationsverarbeitung und Kybernetik, 30:143–160.

Feige, Uriel, MohammadTaghi Hajiaghayi, and James R. Lee. 2005. Improved approximation
algorithms for minimum-weight vertex separators. In STOC ’05: Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of Computing, pages 563–572, Baltimore, MD.

Flanigan, Jeffrey, Chris Dyer, Noah A. Smith, and Jaime Carbonell. 2016. Generation from
abstract meaning representation using tree transducers. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 731–739, San Diego, California.

Flanigan, Jeffrey, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A. Smith. 2014. A
discriminative graph-based parser for the abstract meaning representation. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (ACL-14), pages
1426–1436, Baltimore, Maryland.

Frank, Ove and David Strauss. 1986. Markov graphs. Journal of the American Statistical
Association, 81(395):832–842.

Frick, Markus, Martin Grohe, and Christoph Koch. 2003. Query evaluation on compressed trees
(extended abstract). In Proceedings of the 18th Annual IEEE Symposium on Logic in Computer
Science (LICS 2003), pages 188–197, IEEE Computer Society, Ottawa, Ontario.

Fujiyoshi, Akio. 2010. Recognition of directed acyclic graphs by spanning tree automata.
Theoretical Computer Science, 411(38–39):3493–3506.

Fülöp, Zoltán and Werner Kuich. 2009. Weighted tree automata and tree transducers. In Werner
Kuich, Manfred Droste, and Heiko Vogler, editors, Handbook of Weighted Automata. Springer,
chapter 3, pages 69–104.

Gildea, Daniel and Daniel Jurafsky. 2000. Automatic labeling of semantic roles. In Proceedings of
the 38th Annual Conference of the Association for Computational Linguistics (ACL-00), pages
512–520, Hong Kong.

Gogate, Vibhav and Rina Dechter. 2004. A complete anytime algorithm for treewidth. In
Uncertainty in Artificial Intelligence (UAI), pages 201–208, Banff.

Goodman, Joshua. 1999. Semiring parsing. Computational Linguistics, 25(4):573–605.
Habel, Annegret. 1992. Hyperedge Replacement: Grammars and Languages, volume 643 of Lecture

Notes in Computer Science. Springer.
Habel, Annegret and Hans-Jörg Kreowski. 1987. May we introduce to you: Hyperedge

replacement. In Proceedings of the Third International Workshop on Graph Grammars and Their

65

Computational Linguistics Volume xx, Number xx

Application to Computer Science, volume 291 of Lecture Notes in Computer Science, pages
15–26, Springer, Warrenton, Virginia.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA.

Hovy, Eduard, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel. 2006.
Ontonotes: The 90% solution. In Proceedings of the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers, pages 57–60, New York City, USA.

Jensen, Finn V., Steffen L. Lauritzen, and Kristian G. Olesen. 1990. Bayesian updating in causal
probabilistic networks by local computations. Computational Statistics Quarterly, 4:269–282.

Johnson, Mark, Stuart Geman, Stephen Canon, Zhiyi Chi, and Stefan Riezler. 1999. Estimators
for stochastic “unification-based” grammars. In Proceedings of the 37th Annual Conference of the
Association for Computational Linguistics (ACL-99), pages 535–541, College Park, Maryland.

Kamimura, Tsutomu and Giora Slutzki. 1981. Parallel and two-way automata on directed
ordered acyclic graphs. Information and Control, 49:10–51.

Kaminski, Michael and Shlomit S. Pinter. 1992. Finite automata on directed graphs. Journal of
Computer and System Sciences, 44:425–446.

Kaplan, Ronald M. and Joan Bresnan. 1982. Lexical-Functional Grammar: A formal system for
grammatical representation. In Joan Bresnan, editor, The Mental Representation of Grammatical
Relations. MIT Press, Cambridge, MA, pages 173–281.

Kloks, Ton. 1994. Treewidth. Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer.

Lafferty, John, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Machine Learning:
Proceedings of the Eighteenth International Conference (ICML 2001), Stanford, California.

LaLonde, Wilf R. 1977. Regular right part grammars and their parsers. Communications of the
Association for Computing Machinery, 20(10):731–741.

Lange, Klaus-Jörn and Emo Welzl. 1987. String grammars with disconnecting or a basic root of
the difficulty in graph grammar parsing. Discrete Applied Mathematics, 16:17–30.

Lari, Kamran and Steve J. Young. 1990. The estimation of stochastic context-free grammars using
the Inside-Outside algorithm. Computer Speech and Language, 4:35–56.

Lautemann, Clemens. 1990. The complexity of graph languages generated by hyperedge
replacement. Acta Informatica, 27:399–421.

Li, Xiang, Thien Huu Nguyen, Kai Cao, and Ralph Grishman. 2015. Improving event detection
with abstract meaning representation. In Proceedings of the First Workshop on Computing News
Storylines, pages 11–15, Beijing, China.

Liu, Fei, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A. Smith. 2015. Toward
abstractive summarization using semantic representations. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1077–1086, Denver, Colorado.

Lohrey, Markus and Sebastian Maneth. 2006. The complexity of tree automata and XPath on
grammar-compressed trees. Theoretical Computer Science, 363:196–210.

Maletti, Andreas, Jonathan Graehl, Mark Hopkins, and Kevin Knight. 2009. The power of
extended top-down tree transducers. SIAM Journal on Computing, 39(2):410–430.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large
annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

May, Jonathan. 2016. Semeval-2016 task 8: Meaning representation parsing. In Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016), pages 1063–1073, San Diego,
California.

McNaughton, Robert and Hisao Yamada. 1960. Regular expressions and state graphs for
automata. IRE Transactions on Electronic Computers, EC-9:39–47.

Mooney, Raymond J. 2007. Learning for semantic parsing. In Computational Linguistics and
Intelligent Text Processing: Proceedings of the 8th International Conference (CICLing 2007), pages
311–324, Springer: Berlin, Germany, Mexico City, Mexico. Invited paper.

Ochmański, Edward. 1985. Regular behaviour of concurrent systems. Bulletin of the European
Association for Theoretical Computer Science, 27:56–67.

Oepen, Stephan, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinkova, Dan
Flickinger, Jan Hajic, and Zdenka Uresova. 2015. Semeval 2015 Task 18: Broad-coverage
semantic dependency parsing. In Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), pages 915–926, Denver, Colorado.

66

Chiang, Drewes, Gildea, Lopez, and Satta Weighted DAG Automata for Semantic Graphs

Oepen, Stephan, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajic,
Angelina Ivanova, and Yi Zhang. 2014. Semeval 2014 task 8: Broad-coverage semantic
dependency parsing. In Proceedings of the 8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 63–72, Dublin, Ireland.

Oepen, Stephan and Jan Tore Lønning. 2006. Discriminant-based MRS banking. In International
Conference on Language Resources and Evaluation (LREC), pages 1250–1255, Genoa.

Pan, Xiaoman, Taylor Cassidy, Ulf Hermjakob, Heng Ji, and Kevin Knight. 2015. Unsupervised
entity linking with abstract meaning representation. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1130–1139, Denver, Colorado.

Peng, Xiaochang, Linfeng Song, and Daniel Gildea. 2015. A synchronous hyperedge replacement
grammar based approach for AMR parsing. In Proceedings of the Nineteenth Conference on
Computational Natural Language Learning, pages 32–41, Beijing, China.

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate, compact,
and interpretable tree annotation. In Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,
pages 433–440, Sydney, Australia.

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar. University of
Chicago Press, Chicago.

Potthoff, Andreas, Sebastian Seibert, and Wolfgang Thomas. 1994. Nondeterminism versus
determinism of finite automata over directed acyclic graphs. Bulletin of the Belgian
Mathematical Society – Simon Stevin, 1:285–298.

Priese, Lutz. 2007. Finite automata on unranked and unordered DAGs. In Proceedings of the 11th
International Conference on Developments in Language Theory (DLT 2007), volume 4588 of Lecture
Notes in Computer Science, pages 346–360, Turku.

Quattoni, Ariadna, Michael Collins, and Trevor Darrell. 2004. Conditional random fields for
object recognition. In Advances in Neural Information Processing Systems (NIPS-17), pages
1097–1104, MIT Press.

Quernheim, Daniel and Kevin Knight. 2012. Towards probabilistic acceptors and transducers for
feature structures. In Proceedings of the Sixth Workshop on Syntax, Semantics and Structure in
Statistical Translation (SSST), pages 76–85, Jeju, Korea.

Ramshaw, Lance and Mitch Marcus. 1995. Text chunking using transformation-based learning.
In Proceedings of the Third Workshop on Very Large Corpora, pages 82–94, Cambridge, MA.

Ratnaparkhi, Adwait. 1996. A maximum entropy model for part-of-speech tagging. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 133–142, Philadelphia.

Reutenauer, Christophe. 1990. The Mathematics of Petri Nets. Prentice-Hall.
Rose, Donald J. 1970. Triangulated graphs and the elimination process. Journal of Mathematical

Analysis and Applications, 32(3):597–609.
Salvati, Sylvain. 2014. MIX is a 2-MCFL and the word problem in Z2 is solved by a third-order

collapsible pushdown automaton. Journal of Computer and System Sciences, 81:1252–1277.
Shafer, Glenn R. and Prakash P. Shenoy. 1990. Probability propagation. Annals of Mathematics and

Artificial Intelligence, 2:327–353.
Shieber, Stuart M. 1986. An Introduction to Unification-Based Approaches to Grammar. CSLI

Publications, Stanford.
Smith, Noah A. and Mark Johnson. 2007. Weighted and probabilistic context-free grammars are

equally expressive. Computational Linguistics, 33(4):477–491.
Snijders, Tom A. B. 2002. Markov chain Monte Carlo estimation of exponential random graph

models. Journal of Social Structure, 3(2):1–40.
Soon, Wee Meng, Hwee Tou Ng, and Daniel Chung Long Lim. 2001. A machine learning

approach to coreference resolution of noun phrases. Computational Linguistics, 27(4):521–544.
Thomas, Wolfgang. 1991. On logics, tilings, and automata. In Proceedings of the 18th International

Colloquium on Automata, Languages and Programming, pages 441–454, Madrid.
Thomas, Wolfgang. 1996. Elements of an automata theory over partial orders. In Proceedings of

the DIMACS Workshop on Partial Order Methods in Verification, volume 29 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 25–40, Princeton, NJ.

Vijay-Shanker, K., David J. Weir, and Aravind K. Joshi. 1987. Characterizing structural
descriptions produced by various grammatical formalisms. In Proceedings of the 25th Annual
Conference of the Association for Computational Linguistics (ACL-87), pages 104–111, Stanford, CA.

67

Computational Linguistics Volume xx, Number xx

Wang, Chuan, Nianwen Xue, and Sameer Pradhan. 2015a. Boosting transition-based AMR
parsing with refined actions and auxiliary analyzers. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 857–862, Beijing, China.

Wang, Chuan, Nianwen Xue, and Sameer Pradhan. 2015b. A transition-based algorithm for AMR
parsing. In Proceedings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 366–375, Denver, Colorado.

68

69

