
Synchronous Context-Free Grammars
and Optimal Parsing Strategies

Daniel Gildea∗
University of Rochester

Giorgio Satta∗∗
Università di Padova

The complexity of parsing with Synchronous Context-Free Grammars is polynomial in the
sentence length for a fixed grammar, but the degree of the polynomial depends on the grammar.
Specifically, the degree depends on the length of rules, the permutations represented by the
rules, and the parsing strategy adopted to decompose the recognition of a rule into smaller
steps. We address the problem of finding the best parsing strategy for a rule, in terms of space
and time complexity. We show that it is NP-hard to find the binary strategy with the lowest
space complexity. We also show that any algorithm for finding the strategy with the lowest time
complexity would imply improved approximation algorithms for finding the treewidth of general
graphs.

1. Introduction

Synchronous Context-Free Grammars (SCFGs) generalize Context-Free Grammars
(CFGs) to generate two strings simultaneously. The formalism dates from the early
days of automata theory; it was developed under the name Syntax-Direct Translation
Schemata to model compilers for programming languages (Lewis and Stearns 1968; Aho
and Ullman 1969). SCFGs are widely used today to model the patterns of re-ordering
between natural languages, and they form the basis of many state-of-art statistical
machine translation systems (Chiang 2007).

Despite the fact that SCFGs are a very natural extension of CFGs, and that the
parsing problem for CFGs is rather well-understood nowadays, our knowledge of the
parsing problem for SCFGs is quite limited, with many questions still left unanswered.
In this article we tackle one of these open problems.

Unlike CFGs, SCFGs do not admit any canonical form in which rules are bounded
in length (Aho and Ullman 1972), as for instance in the well-known Chomsky normal
form for CFGs. A consequence of this fact is that the computational complexity of
parsing with SCFG depends on the grammar. More precisely, for a fixed SCFG, parsing
is polynomial in the length of the string. The degree of the polynomial depends on the
length of the grammar’s rules, the re-ordering patterns represented by these rules, as
well as the strategy used to parse each rule. The complexity of finding the best parsing
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strategy for a fixed SCFG rule has remained open. This article shows that it is NP-hard to
find the binary parsing strategy having the lowest space complexity. We also consider
the problem of finding the parsing strategy with the lowest time complexity, and we
show that it would require progress on long-standing open problems in graph theory
either to find a polynomial algorithm or to show NP-hardness.

The parsing complexity of SCFG rules increases with the increase of the number of
nonterminals in the rule itself. Practical machine translation systems usually confine
themselves to binary rules, that is, rules having no more than two right-hand side
nonterminals, because of the complexity issues and because binary rules seem to be
adequate empirically (Huang et al. 2009). Longer rules are of theoretical interest due
to the naturalness and generality of the SCFG formalism. Longer rules may also be of
practical interest as machine translation systems improve.

For a fixed SCFG, complexity can be reduced by factoring the parsing of a grammar
rule into a sequence of smaller steps, which we refer to as a parsing strategy. Each step
of a parsing strategy collects nonterminals from the right-hand side of an SCFG rule into
a subset, indicating that a portion of the SCFG rule has been matched to a subsequence
of the two input strings, as we explain precisely in Section 2. A parsing strategy is
binary if it combines two subsets of nonterminals at each step to create a new subset.
We consider the two problems of finding the binary parsing strategy with optimal time
and space complexity. For time complexity, there is no benefit to considering parsing
strategies that combine more than two subsets at a time. For space complexity, the
lowest complexity can be achieved with no factorization whatsoever; however, con-
sidering binary parsing strategies can provide an important trade-off between time and
space complexity. Our results generalize those of Crescenzi et al. (2015), who show NP-
completeness for decision problems related to both time and space complexity for linear
parsing strategies, which are defined to be strategies that add one nonterminal at a time.

Our approach constructs a graph from the permutation of nonterminals in a given
SCFG rule, and relates the parsing problem to properties of the graph. Our results for
space complexity are based on the graph theoretic concept of carving width, whose
decision problem is NP-complete for general graphs. Section 3 relates the space com-
plexity of the SCFG parsing problem to the carving width of a graph constructed from
the SCFG rule. In Section 4, we show that any polynomial time algorithm for optimizing
the space complexity of binary SCFG parsing strategies would imply a polynomial
time algorithm for carving width of general graphs. Our results for time complexity
are based on the graph theoretic concept of treewidth. In Section 5, we show that any
polynomial time algorithm for the decision problem of the time complexity of binary
SCFG strategies would imply a polynomial time constant-factor approximation algo-
rithm for the treewidth of general graphs. In the other direction, NP-completeness of the
decision problem of the time complexity for SCFG would imply the NP-completeness of
treewidth of general graphs of degree six. These are both long-standing open problems
in graph theory.
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2. Synchronous Context-Free Grammars and Parsing Strategies

In this section we informally introduce the notion of synchronous context-free grammar
and define the computational problem that we investigate in this article. We assume
the reader to be familiar with the notion of context-free grammar, and only briefly
summarize the adopted notation. Throughout this article, for any positive integer n we
write [n] to denote the set {1, . . . , n}.

2.1 Synchronous Context-Free Grammars

As usual, a CFG has a finite set of rules having the general form A→ α, where A is
a nonterminal symbol to be rewritten and α is a string of nonterminal and terminal
symbols. A synchronous context-free grammar is a rewriting system based on a finite
set of so-called synchronous rules. Each synchronous rule has the general form [A1 →
α1, A2 → α2], where A1 → α1 and A2 → α2 are CFG rules. By convention, we refer to
A1 → α1 and A2 → α2 as the Chinese and English components of the synchronous rule,
respectively. Furthermore, α1, α2 must be synchronous strings. This means that there
exists a bijection between the occurrences of nonterminals in α1 and the occurrences of
nonterminals in α2, and that this bijection is explicitly provided by the synchronous rule.
Nonterminal occurrences that correspond under the given bijection are called linked
nonterminal occurrences, or just linked nonterminals when no ambiguity arises. We
assume that linked nonterminals always have the same label.

As a simple example, consider the synchronous rule

[A→ aA 1 bB 2 d, A→ bB 2 cA 1 ] ,

where A, B are nonterminal symbols and a, b, c, d are terminal symbols. We have indi-
cated the bijection associated with the synchronous rule by annotating the nonterminal
occurrences with natural numbers, with the intended meaning that linked nonterminals
get the same number. We refer to this number as a nonterminal’s index.

The bijection associated with a synchronous rule plays a major role in the derivation
of a pair of strings by the SCFG. In fact, in an SCFG we can only apply a synchronous
rule to linked nonterminals. To illustrate this, we use our running example and consider
the synchronous strings [A 1 , A 1 ]. We can construct a derivation by applying our
synchronous rule to the linked nonterminals, written

[A 1 , A 1 ]⇒ [aA 2 bB 3 d, bB 3 cA 2 ] .

Note that we have renamed the indices in the synchronous rule, to make them disjoint
from the indices already in use in the synchronous string to be rewritten. Although this
is unnecessary in this first derivation step, this strategy will always be adopted, to avoid
conflicts in more complex derivations. We can move on with our derivation by applying
once more our synchronous rule to rewrite the linked A nonterminals, obtaining

[A 1 , A 1 ]⇒ [aA 2 bB 3 d, bB 3 cA 2 ]⇒ [aaA 4 bB 5 dbB 3 d, bB 3 cbB 5 cA 4 ] .
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In the derivation above, the renaming of the indices is crucial, to avoid conflicts.
Let S be a special nonterminal of our SCFG, which we call the starting nonterminal.

Using the above notion of derivation, one can start from [S 1 , S 1 ] and attempt to derive
a pair of strings [u, v] entirely composed of terminal symbols. Whenever this is possible,
we say that [u, v] is in the translation generated by the SCFG, meaning that v is one of
the possible translations of u.

Example 1
Consider the following list of synchronous rules, where symbols si are rule labels to be
used later as references

s1 : [S→ A 1 B 2 , S→ B 2 A 1 ] ,
s2 : [A→ aA 1 b, A→ bA 1 a] ,
s3 : [A→ ab, A→ ba] ,
s4 : [B→ cB 1 d, B→ dB 1 c] ,
s5 : [B→ cd, B→ dc] .

What follows is a valid derivation of the SCFG, obtained by rewriting at each step the
linked nonterminals with the Chinese component occurring at the left-most position in
the sentential form

[S 1 , S 1 ] ⇒s1 [A 2 B 3 , B 3 A 2 ]

⇒s2 [aA 4 bB 3 , B 3 bA 4 a]

⇒s2 [aaA 5 bbB 3 , B 3 bbA 5 aa]

⇒s3 [aaabbbB 3 , B 3 bbbaaa]

⇒s4 [aaabbbcB 6 d, dB 6 cbbbaaa]

⇒s5 [aaabbbccdd, ddccbbbaaa] .

It is not difficult to see that the given SCFG provides the translation
{[apbpcqdq, dqcqbpap] | p, q ≥ 1}.

One can also associate SCFG derivations with parse trees, in a way very similar to
what we do with CFG derivations. More precisely, an SCFG derivation is represented
as a pair of parse trees, each generating one component in the derived string pair.
Furthermore, linked nonterminals in the SCFG derivation are annotated in the parse
trees, to indicate the place of application of some synchronous rule.

Example 2
The SCFG derivation for string pair [aaabbbccdd, ddccbbbaaa] in Example 1 is associated
with the following tree pair
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S 1

A 2 B 3

a A 4 b

a A 5 b

a b

c B 6 d

c d

S 1

B 3 A 2

d B 6 c

d c

b A 4 a

b A 5 a

d c

One common view of SCFGs is that each synchronous rule implements a permuta-
tion of the (occurrences of the) nonterminal symbols in the two rule components. More
precisely, the nonterminals in the right-hand side of the Chinese rule component are
re-used in the right-hand side of the English component, but with a different ordering,
as defined by the bijection associated with the rule. This reordering is at the core of the
translation schema implemented by the SCFG. We will often use the permutation view
of a synchronous rule in later sections.

As already mentioned, we assume that linked nonterminals in a synchronous rule
have the same label. In natural language processing applications, this is by far the most
common assumption, but one might also drop this requirement. The results presented
in this article do not rest on such a restriction.

2.2 Parsing Strategies

The recognition and the parsing problems for SCFGs are natural generalizations of the
same problems defined for CFGs. Given an SCFG of interest, in the recognition problem,
one has to decide whether an input pair [u, v] can be generated. In addition, for the
parsing problem one has to construct a parse forest, in some compact representation,
with all tree pairs that the SCFG produces when generating [u, v]. When dynamic
programming techniques are used, it turns out that recognition and parsing algorithms
are closely related, since the elementary steps that are performed during recognition can
be memoized and later used to construct the desired parse forest.

Despite the similarity between CFGs and SCFGs, it turns out that there is a consid-
erable gap in the space and time complexity for recognition and parsing based on these
two classes. More specifically, for a fixed CFG, we can solve the recognition problem
in time cubic in the length of the input string, using standard dynamic programming
techniques. In contrast, for a fixed SCFG we can still recognize the input pair [u, v] in
polynomial time, but the degree of the polynomial depends on the specific structure of
the synchronous rules of the grammar, and can be much larger than in the CFG case.
A similar scenario also holds for the space complexity. The reason for the above gap is
informally explained in what follows.

In the investigation of the recognition problem for CFGs and SCFGs, a crucial notion
is the one of parsing strategy. Recognition algorithms can be seen as sequences of ele-
mentary computational steps, in which two parse trees that generate non-overlapping
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B 8

B 7

B 6

B 5

B 4

B 3

B 2

B 1

A

Figure 1
Graphical representation of the permutation associated with synchronous rule s of equation (1).

portions of the input are combined into a larger parse tree, according to the rules of the
grammar. We call parsing strategy any general prescription indicating the exact order
in which these elementary steps should be carried out. Generally speaking, parsing
strategies represent the order in which each parsing tree of the input is constructed.

For the CFG case, let us consider the standard top-down chart parsing algorithm
of Kay (1980). The algorithm adopts a parsing strategy that visits the nonterminals in
the right-hand side of a rule one at a time and in a left-to-right order, combining the
associated parse trees accordingly. Parse trees are then compacted into so-called chart
edges, which record the two endpoints of the generated substring along with other
grammar information. Chart parsing can be generalized to SCFGs. However, in the
latter case parse trees no longer generate single substrings: they rather generate tuples
with several substrings. This can be ascribed to the added component in synchronous
rules and to the re-ordering of the nonterminals across the two components.

Let us call fan-out the number of substrings generated by a parse tree (this notion
will be formally defined later). It is well-known among parsing practitioners that the
fan-out affects the number of stored edges for a given input string, and is directly con-
nected to the space and time performance of the algorithm. A binary parsing strategy
of fan-out ϕ has space complexity O(n2ϕ) and time complexity at most O(n3ϕ) where
n is the sentence length (Seki et al. 1991; Gildea 2010). If we adopt the appropriate
parsing strategy, we can reduce the fan-out, resulting in asymptotic improvement in
the space and time complexity of our algorithm. To illustrate this claim we discuss a
simple example.

Example 3
Consider the synchronous rule

s : [A→ B 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 ,

A→ B 5 B 7 B 3 B 1 B 8 B 6 B 2 B 4 ] . (1)
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n7

n6

n4

n2

B 8B 7

B 6

B 5

n5

n3

n1

B 4B 3

B 2

B 1

Figure 2
A bidirectional parsing strategy for rule s of equation (1).

The permutation associated with this rule is schematically visualized in Figure 1.
A naïve parsing strategy for rule s would be to collect the nonterminals B k one at

a time and in ascending order of k. For instance, at the first step we combine B 1 and
B 2 , constructing a parse tree with fan-out three, as seen from Figure 1. The worst case is
attested when we construct the parse tree consisting of occurrences B 1 , . . . , B 5 , which
has a fan-out of four.

Alternatively, we could explore more flexible parsing strategies. An example is
depicted in Figure 2, where each elementary step is represented as an internal node
of a tree. This time, at the first step (node n1) we combine B 3 and B 4 , as depicted in
Figure 3(a). At the second step (node n3), we combine the result of node n1 and B 2 ,
again constructing a parse tree with fan-out three, as depicted in Figure 3(b), and so
on. This strategy is non-linear, since it might combine parses containing more than one
nonterminal occurrence each; see Figure 3(c). From Figure 1 it is not difficult to check
that at each node nk the constructed parse has fan-out bounded by three. We therefore
conclude that our second strategy is more efficient than the left-to-right one.

The above example shows that the maximum fan-out needed to parse a syn-
chronous rule depends on the adopted parsing strategy. In order to optimize the com-
putational resources of a parsing algorithm, we need to search for a parsing strategy
that minimizes the maximum fan-out of the intermediate parse trees. The problem that
we investigate in this article is therefore the one of finding optimal parsing strategies
for synchronous rules, where in this context optimal means with a value of the maximal
fan-out as small as possible.

2.3 Fan-out and Parsing Optimization

In this section we provide a mathematical definition for the concepts that we have
informally introduced in the previous section. We need to do so in order to be able
to precisely define the computational problem that is investigated in this article.

Assume a synchronous context-free rule s with r ≥ 2 linked nonterminals. We need
to address occurrences of nonterminal symbols within s. We write 〈1, i〉 to represent the
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(a)
B 4

B 3

n1

(b)
B 2

n1

n3

(c) n5

n6

A

Figure 3
First step (a), second step (b), and last step (c) of the parsing strategy in Figure 2.

i-th occurrence (from left to right) in the right-hand side of the Chinese component of
s. Similarly, 〈2, i〉 represents the i-th occurrence in the right-hand side of the English
component of s. Each pair 〈h, i〉, h ∈ [2] and i ∈ [r] is called an occurrence.

We assume without loss of generality that the nonterminals of the Chinese compo-
nent are indexed sequentially. That is, the index of 〈1, i〉 is i. Let π be the permutation
over set [r] implemented by s, meaning that 〈2, i〉 is annotated with index π(i), and
therefore is co-indexed with 〈1, π(i)〉. As an example, in rule (1) we have r = 8 and
π(1) = 5, π(2) = 7, π(3) = 3, etc. Under this convention, each pair (〈1, π(i)〉, 〈2, i〉)
and, equivalently, each pair (〈1, i〉, 〈2, π−1(i)〉), i ∈ [r], is called a linked pair.

A parsing strategy for s is a rooted, binary tree τs with r leaves, where each leaf is
a linked pair (〈1, π(i)〉, 〈2, i〉). As already explained, the intended meaning is that each
internal node of τs represents the operation of combining the linked pairs below the left
node with the linked pairs below the right node. These operations must be performed
in a bottom-up fashion.

Let n be an internal node of τs, and let τn be the subtree of τs rooted at n. We write
y(n) to denote the set of all occurrences 〈h, i〉 appearing in the linked pair of some leaf
of τn. We say that occurrence 〈h, i〉 ∈ y(n) is a right boundary of n if i = r or if i < r and
〈h, i + 1〉 6∈ y(n). Symmetrically, we say that 〈h, i〉 ∈ y(n) is a left boundary if i = 1 or
if i > 1 and 〈h, i − 1〉 6∈ y(n). Note that the occurrences 〈1, 1〉 and 〈2, 1〉 are always left
boundaries, and 〈1, r〉 and 〈2, r〉 are always right boundaries. We let bd(n) be the total
number of right and left boundaries in y(n).

Intuitively, the number of boundaries in y(n) provides the number of endpoints of
the substrings in the rule components of s that are spanned by the occurrences in y(n).
Dividing this total number by two provides the number of substrings spanned by the
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occurrences in y(n). We therefore define the fan-out at node n as

fo(n) =
1
2

bd(n) . (2)

As discussed in Section 2.2, the largest fan-out over all internal nodes of a parsing
strategy provides space and time bounds for a dynamic programming parsing algo-
rithm adopting that strategy. Given an input synchronous rule s, we wish to find the
parsing strategy that minimizes quantity

min
τ

max
n

fo(n) , (3)

where τ ranges over all possible parsing strategies for s, and n ranges over all possible
nodes of τ. One of the two main results in this article is that this optimization problem
is NP-hard.

3. Cyclic Permutation Multigraphs and Carving Width

In this section, we relate the fan-out of parsing strategies for an SCFG rule to the
properties of a specific graph derived from the rule’s permutation.

We begin by introducing some basic terminology. A multiset is a set where there can
be several occurrences of a given element. We use ] as the merge operation defined for
multisets: this operation preserves the number of occurrences of the merged multisets.
As usual, we denote an undirected graph as a pair G = (V, E) where V is a finite set
of vertices and E is a set of edges, with each edge consisting of an unordered pair
of vertices. A multigraph is a graph that uses a multiset of edges. This means that a
multigraph can have several occurrences of an edge impinging on a pair of vertices.

A cyclic permutation multigraph is a multigraph G = (V, A ] B) such that both
PA = (V, A) and PB = (V, B) are Hamiltonian cycles, that is, cycles that visit all the
vertices in V exactly once. In the following, the edges in A will be called red and the
edges in B will be called green. Our definition is based on the permutation multigraphs
of Crescenzi et al. (2015), which differ in that they consist of two acyclic Hamiltonian
paths.

In this article, we use cyclic permutation multigraphs to encode synchronous rules.
Let s be a synchronous rule with r ≥ 2 linked pairs. Let also (〈1, 0〉, 〈2, 0〉) be a special
linked pair representing the left-hand side nonterminal of s. We construct the cyclic per-
mutation multigraph Ms, representing s, as follows. The linked pairs (〈1, π(i)〉, 〈2, i〉),
i ∈ [r], along with (〈1, 0〉, 〈2, 0〉), form the vertices of Ms. The red cycle of Ms begins
with (〈1, 0〉, 〈2, 0〉), then follows the order in which nonterminals occur in the Chinese
component of s, and finally returns to (〈1, 0〉, 〈2, 0〉). Similarly, the green cycle of Ms
begins and ends with (〈1, 0〉, 〈2, 0〉), and follows the order in which nonterminals occur
in the English component.

In the other direction, given any cyclic permutation multigraph, we can derive
a corresponding SCFG rule by, first, choosing an arbitrary vertex as representing the
left-hand side nonterminal, and then following the red cycle to obtain the sequence of
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(〈1, 1〉, 〈2, 4〉) 〈1, 2〉, 〈2, 7〉) (〈1, 3〉, 〈2, 3〉) (〈1, 4〉, 〈2, 8〉) (〈1, 5〉, 〈2, 1〉) (〈1, 6〉, 〈2, 6〉) (〈1, 7〉, 〈2, 2〉) (〈1, 8〉, 〈2, 5〉)(〈1, 0〉, 〈2, 0〉)

Figure 4
The cyclic permutation multigraph corresponding to the SCFG rule s of equation (1). In this
figure and all subsequent figures, green edges are shown with dashed lines.

Chinese nonterminals, and finally following the green cycle to obtain the sequence of
English nonterminals.

Example 4
Consider the SCFG rule s of equation (1) in Example 3. Figure 4 shows the cyclic
permutation multigraph associated with s. The red path starts at (〈1, 0〉, 〈2, 0〉), followed
by the vertices in the order of the Chinese nonterminals of the rule, that is, (〈1, 1〉, 〈2, 4〉),
(〈1, 2〉, 〈2, 7〉), (〈1, 3〉, 〈2, 3〉), . . ., (〈1, 8〉, 〈2, 5〉). The green path starts at (〈1, 0〉, 〈2, 0〉),
followed by the vertices in the order of the English nonterminals, that is, (〈1, 5〉, 〈2, 1〉),
(〈1, 7〉, 〈2, 2〉), (〈1, 3〉, 〈2, 3〉), . . ., (〈1, 4〉, 〈2, 8〉).

An important property of Ms is that every edge connects two linked pairs that
share a boundary in either the Chinese component of the rule (red edge) or in the
English component (green edge). Note that, as a special case, we consider the linked pair
(〈1, 0〉, 〈2, 0〉) as sharing two left boundaries with the linked pairs (〈1, 1〉, 〈2, π−1(1)〉)
and (〈1, π(1)〉, 〈2, 1〉), and as sharing two right boundaries with the linked pairs
(〈1, r〉, 〈2, π−1(r)〉) and (〈1, π(r)〉, 〈2, r〉).

Consider any set S of linked pairs from Ms such that (〈1, 0〉, 〈2, 0〉) 6∈ S. Let S be the
complement set of S, that is, S is the set of linked pairs from Ms not in S. It is not difficult
to see that the multiset of edges connecting S and S corresponds to the set of boundaries
of any parse tree associated with the linked pairs in S. We can apply this property to
parsing strategies, which we have previously defined as rooted binary trees, in order to
count the boundaries that are open after completing some parsing step represented by
an internal node n, which we have defined as bd(n). Consider for instance the parsing
strategy shown in Figure 2, and consider the internal node n3. At this node we have
collected nonterminals B 2 , B 3 and B 4 , and we have bd(n3) = 6. If we consider the set
S with the corresponding linked pairs (〈1, 2〉, 〈2, 7〉), (〈1, 3〉, 〈2, 3〉), and (〈1, 4〉, 〈2, 8〉),
we can see that the number of edges of the multigraph that connect S with S is six,
that is, exactly the value of bd(n3). In order to express the above observations in a
mathematical way, we need to introduce the notions of tree layout, width, and carving
width, which we borrow from graph theory.
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2 3 4

1

(a)

1 2 3 4

(b)

Figure 5
(a) Graph G. (b) Tree layout T of G; G’s edges are routed along T’s arcs and are represented as
dashed lines.

A tree layout T of a graph G is an undirected binary branching tree having one
vertex of G at each leaf. To avoid confusion, in what follows we use the term node
when referring to vertices of layout trees and we use the term arc when referring to
edges of layout trees. Edges of G are routed along the arcs of T. A simple example is
provided in Figure 5, showing a graph G and a tree layout T of G.

Informally, the width of an arc of T is the number of edges from G that are routed
through that arc. We define this notion more precisely in what follows. We start with
some auxiliary notation. Let V be the set of vertices of G and let S be any subset of V.
The edge boundary of S in V, written ∂V(S), is the set of edges of G that connect vertices
in S and vertices in the complement set S = V \ S. Let a be an arc in a tree layout T of
G, and let T1 and T2 be the two components of the graph obtained by removing a from
T. Let also L(T1) be the subset of V appearing at the leaves of T1. The width of a in T is
the number of edges in G that cross between T1 and T2

wdG,T(a) = |∂V(L(T1))| . (4)

The maximum width among all of the arcs of T is the carving width of T. The carving
width of T in Figure 5 is 3. The carving width of G is the minimum carving width over
all possible tree layouts of G

wd(G) = min
T

max
a

wdG,T(a) . (5)

Deciding whether the carving width of arbitrary graphs is less than or equal to a
given integer is an NP-complete problem (Seymour and Thomas 1994). Throughout
this article, we extend to multigraphs all of the above notions of tree layout, width, and
carving width, in the obvious way. Since graphs are a subset of multigraphs, carving
width of multigraphs is also an NP-complete problem.

We can now apply the notion of tree layout to parsing strategies for SCFG rules, and
show an important property that relates the notions of fan-out (equivalently, boundary
count) and carving width. Let s be an SCFG rule with r linked pairs. Recall that a parsing
strategy for s is a rooted binary tree where each leaf node is a linked pair representing
some nonterminal from the right-hand side of s. We attach to the root of our parsing
strategy an additional leaf node, representing the special linked pair (〈1, 0〉, 〈2, 0〉). The
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(〈1, 0〉, 〈2, 0〉)

n7

n5

n3

n1

n6

n4

n2

(〈1, 1〉, 〈2, 4〉)

〈1, 2〉, 〈2, 7〉)

(〈1, 3〉, 〈2, 3〉) (〈1, 4〉, 〈2, 8〉)

(〈1, 5〉, 〈2, 1〉)

(〈1, 6〉, 〈2, 6〉)

(〈1, 7〉, 〈2, 2〉) (〈1, 8〉, 〈2, 5〉)

Figure 6
A tree layout of the cyclic permutation multigraph of Figure 4 obtained from the parsing
strategy in Figure 2.

resulting tree has r + 1 leaves, and can therefore be used as a tree layout for the cyclic
permutation multigraph Ms encoding s. Furthermore, each internal node of the tree
layout is associated with a parsing step.

Example 5
Consider the SCFG rule s in (1) and the associated cyclic permutation multigraph Ms
shown in Figure 4. Consider also the parsing strategy τs for s shown in Figure 2. By
attaching the linked pair (〈1, 0〉, 〈2, 0〉) to the root node of τs, we can derive a tree layout
T for Ms, which is shown in Figure 6. Observe that every linked pair (vertex) of Ms,
including the special linked pair (〈1, 0〉, 〈2, 0〉), is placed at some leaf node of T, and the
edges of Ms are routed along arcs of T. Let a be an arc of T and let n be the node below
a, with respect to the root node. Observe how edges that are routed along a correspond
to boundaries that are open at the associated step n of the parsing strategy τs.

The next lemma summarizes the connection between carving width and fan-out.

Lemma 1
The minimum fan-out of any parsing strategy of an SCFG rule s is half of the carving
width of the cyclic permutation multigraph constructed from s.

Proof
Let Ms be the cyclic permutation multigraph derived from s. Consider a parsing strategy
τs for s. We construct a tree layout TMs ,τs of Ms from the strategy τs by attaching a new
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leaf node for the left-hand side nonterminal to the root of τs. Each vertex of the cyclic
permutation multigraph is placed at the corresponding leaf of the tree layout. When
the two nonterminals sharing a given boundary are combined, the edge representing
the boundary is routed along the two arcs below the node for this combination. The
edges representing the left-most and right-most boundaries of the rule’s Chinese and
English components are routed through the node for the parsing strategy’s root, because
they must continue through the root to reach the leaf representing the left-hand side
nonterminal. At each arc a of TMs ,τs , the right-hand side of equation (4) corresponds to
the right-hand side of equation (2), and thus half the carving width of TMs ,τs is equal to
the fan-out of τs.

In the other direction, let TMs be a tree layout of Ms. A parsing strategy τs can be
constructed from TMs by removing the leaf node of TMs corresponding to the left-hand
side of s, and choosing the adjacent node as the parsing strategy’s root. As above, the
fan-out of τs is half the carving width of TMs . The minimum fan-out over all strategies
is also the minimum carving width over all tree layouts. �

4. Carving Width of Cyclic Permutation Multigraphs

In this section, we reduce the problem of carving width of general graphs to the problem
of carving width of cyclic permutation multigraphs, defined in Section 3. This reduction
involves constructing a cyclic permutation multigraph from an input graph as outlined
in Section 4.1. The details of the construction are given in Section 4.2, and the proof of
NP-completeness for carving width of the resulting multigraphs is given in Section 4.3.
This result is then used in Section 4.4 to show that finding a space-optimal binary
parsing strategy for an SCFG rule is an NP-hard problem.

4.1 General idea

Suppose that we are given an instance of the general carving width problem, consisting
of a graph G and a positive integer k, where we have to decide whether the carving
width of G is less than or equal to k. We identify the vertices of G with positive
integers in [n], where n ≥ 2 is the number of vertices of G. Our reduction consists in
the construction of a cyclic permutation multigraph M such that the carving width of
M is equal to 4k if and only if the carving width of G is equal to k.

The main idea underlying our construction is that each vertex i of G is associated
with a gadget in M consisting of two components. The first component is a grid-like
graph Xi of 2di rows and 2di columns, where di is the degree of vertex i in G. The second
component is a grid-like graph Gi of 4k rows and 4k columns. Besides the edges of the
grids Xi and Gi, M also includes some extra edges, called interconnection edges. For
each i ∈ [n], there are some interconnection edges connecting Gi and Xi. Furthermore,
for each edge (i, j) of G, there are interconnection edges connecting components Xi and
Xj.

Interconnection edges serve two main purposes. First, they are used to connect the
red and green paths within M, so that M satisfies the definition of cyclic permutation
multigraph. Second, the connections between component pairs Xi and Xj mimic the
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X1

G1

X2

G2

X3

G3

X4

G4

Figure 7
A tree layout TM of cyclic permutation multigraph M (shown later in Figure 11) derived from
the tree layout T of Figure 5.

structure of the source graph G, as will be explained in more detail later. This second
condition guarantees that an optimal tree layout TM of M can be obtained from an
optimal tree layout T of G, by placing each Xi and Gi component under the leaf node
of T that is associated with vertex i of G. A simple example of the construction is
schematically depicted in Figure 7.

4.2 Construction

In this section, we define precisely the grid-like graphs Xi and Gi, for each vertex i of the
source graph G, and outline the overall structure of the cyclic permutation multigraph
M constructed from G.

4.2.1 Depth-first traversal. To be used later in our construction, we need to define a
special ordering of the edges of G. We do this here by constructing a path through
G that starts at an arbitrary vertex and visits each edge exactly twice. We adapt the
standard procedure for depth-first traversal of an undirected graph. More precisely,
whenever we reach a vertex i, we continue our path by arbitrarily choosing an edge
(i, j) that has not already been visited, and move to j. If all of the edges at i have already
been visited, we backtrack to previous vertices of our path, until we reach edges that
have not already been visited. The path construction stops when we reach the starting
vertex and all of the edges of G have been visited. Algorithm 1 provides a recursive
procedure for the incremental construction of the path, assuming that the path is a
global variable initialized as the empty sequence of vertices. A simple example is also
shown in Figure 8.

Let m be the number of edges of G. It is not difficult to show that the path produced
by Algorithm 1 is a sequence 〈i1, . . . , i2m+1〉 of vertices from G satisfying both of the
following properties.r For each edge (i, j) of G, there is a unique k ∈ [2m] such that ik = i and

ik+1 = j, and there is a unique h ∈ [2m] such that ih = j and ih+1 = i.
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Algorithm 1 Procedure for depth-first traversal of G starting at i
1: procedure DFS(i)
2: append i to path
3: if each edge (i, j) has already been visited then
4: return
5: for each edge (i, j) not already visited (in arbitrary order) do
6: DFS(j)
7: append i to path

8: return

2 1 4

5 3 7

6

Figure 8
The path constructed by Algorithm 1 starting at vertex 1 of the displayed graph is
〈1, 2, 5, 2, 1, 3, 6, 3, 7, 4, 1, 4, 7, 3, 1〉.

r For each j ∈ [n] we have |{k : k ≤ 2m, ik = j}| = dj. (Recall that dj is the
degree of vertex j in G.)

The first bullet above says that each edge of G is traversed exactly twice, the first time in
one direction and the second time in the opposite direction. The second bullet is a direct
consequence of the first bullet. The above properties will be used in the specification of
cyclic permutation multigraph M.

4.2.2 Component Xi. The graph component Xi, i ∈ [n], embeds a square grid with 2di
rows and 2di columns. In addition to the edges of the grid, Xi also contains a set of
interconnection edges that connect Xi to component Gi (specified later) and that connect
Xi to all components Xj such that (i, j) is an edge of G. This is schematically depicted in
Figure 9. (A complete example for components Xi and Gi will be presented later.)

More precisely, let x(i)m,n be the vertex in the m-th row and n-th column of Xi.

Similarly, let g(i)m,n be the vertex in the m-th row and n-th column of Gi.
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α
(i)
1

α
(i)
2

...

α
(i)
2di

β
(i)
1 β

(i)
2

· · ·
β
(i)
2di

To Gi

To Gi

To Xj

To Xj

Figure 9
Grid Xi corresponding to vertex i of G with di = 3. Interconnection edges from the left column
and top row reach grids Xj for vertices j that are neighbors of i in G.

r For each p ∈ [2di − 1], Xi has an interconnection edge α
(i)
p = (x(i)p,2di

, g(i)p,1).

Furthermore, Xi has an interconnection edge α
(i)
2di

= (x(i)2di ,2di
, g(i)2k,1).r Symmetrically, for each q ∈ [2di − 1], Xi has an interconnection edge

β
(i)
q = (x(i)2di ,q

, g(i)1,q). Furthermore, Xi has an interconnection edge

β
(i)
2di

= (x(i)2di ,2di
, g(i)1,2k).

Overall, the above specification provides 4di edges connecting Xi and Gi. As will be
discussed later, 2di of these edges belong to the red path and 2di belong to the green
path.

For the connections between gadget Xi and other gadgets Xj, our strategy is more
involved, since we need to reproduce the topology of G and, at the same time, we need
to construct a red and a green path within M. For each vertex j that is a neighbor of
vertex i in G, we add two red edges between the left column of Xi and the left column
of Xj, and two green edges between the top row of Xi and the top row of Xj; see again
Figure 9. Crucial to our construction, the order in which we visit the neighbors of i is
induced from the depth-first traversal of G specified by Algorithm 1 in Section 4.2.1.
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Let γ = 〈i1, . . . , i2m+1〉 be the path produced by Algorithm 1 when given vertex 1 as
input, so that i1 = i2m+1 = 1. We use a function dfγ(i, k), for i ∈ [n] and k ∈ [2m], that
counts the number of interconnection edges already established for the left column
(equivalently, for the top row) of Xi, at step k of the depth-first traversal, that is, right
before the k-th edge (ik, ik+1) of γ is processed. In this way, dfγ(i, k) + 1 is the the next
available position in the left column (equivalently, top row) of Xi when visiting the k-th
edge of γ.

For technical reasons, grid X1 needs a special treatment: the last edge (i2m, i2m+1)

in γ is used to enter grid X1 for the first time, and is therefore placed at vertex x(1)1,1 .
Therefore all other edges of γ that are placed at X1 need to be shifted by one position.
This means that we have to increase our count dfγ(i, k) by one unit when i = 1 and
k < 2m, and we have to treat the case of i = 1 and k = 2m in a special way.

Formally, for i ∈ [n] and k ∈ [2m], we define

dfγ(i, k) =


|{k′ : k′ < k, i ∈ {ik′ , ik′+1}}|, if i > 1;
|{k′ : k′ < k, i ∈ {ik′ , ik′+1}}|+ 1, if i = 1, k < 2m;
1, if i = 1; k = 2m.

We are now ready to specify the interconnection edges for Xi. Recall from Sec-
tion 4.2.1 that, for an edge (i, j) of G, there exists a unique k such that ik = i and ik+1 = j
in γ, and there exists a unique k′ such that ik′ = j and ik′+1 = i.

r For each edge (i, j) of G, let k be as above. Xi has an interconnection edge
(x(i)dfγ(i,k)+1,1, x(j)

dfγ(j,k)+1,1). Symmetrically, Xi has an interconnection edge

(x(i)1,dfγ(i,k)+1, x(j)
1,dfγ(j,k)+1).r For each edge (i, j) of G, let k′ be as above. Xi has an interconnection edge

(x(i)dfγ(i,k′)+1,1, x(j)
dfγ(j,k′)+1,1). Symmetrically, Xi has an interconnection edge

(x(i)1,dfγ(i,k′)+1, x(j)
1,dfγ(j,k′)+1).

Informally, the above specification means that for each edge (i, j) of G we have four
interconnection edges between Xi and Xj: two edges from when the depth-first traversal
first explores the edge from i to j, and two edges from when the depth-first traversal
travels back from j to i. This amounts to 4di interconnection edges for grid Xi.

4.2.3 Component Gi. We now turn to (multi)graph Gi, i ∈ [n], which embeds a square
grid with 4k rows and 4k columns; here k is the positive integer in the input instance of
the carving width problem in our reduction, see Section 4.1. We have already introduced
interconnection edges α

(i)
p and β

(i)
q for Gi in Section 4.2.2. In addition to these edges,

we need to double some occurrences of the edges internal to the grid Gi, in order to
connect the red and green paths within M. We remind the reader that M is defined as a
multigraph, therefore we can introduce multiple edges joining the same pair of vertices
of Gi. As will be discussed in detail later, our construction always assigns different colors
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α
(i)
1

α
(i)
2

...

α
(i)
2di

β
(i)
1 β

(i)
2

· · · β
(i)
2di

Figure 10
Grid gadget Gi corresponding to vertex i. We assume di = 3 and k = 5. The red path is drawn
using a heavy red line; the green path is drawn using a dashed, heavy green line. The red path
visits Gi one row at a time. The only exception is at row 2k: after reaching the middle of that row,
the red path switches to row (2k + 1). The path comes back to row 2k only after having
completed the lower half of Gi. The green path follows a symmetrical pattern in visiting Gi one
column at a time, with a switch in the middle of column 2k.

(red or green) to two edges joining the same pair of vertices. An overall picture of Gi is
schematically presented in Figure 10 for di = 3 and k = 5.

We first provide the specification of the red edges of Gi.

r For each p ∈ [2k], we double edge (g(i)2p−1,4k, g(i)2p,4k).r For each p with di ≤ p ≤ k− 1, we double edge (g(i)2p,1, g(i)2p+1,1).r For each p with k + 1 ≤ p ≤ 2k− 1, we double edge (g(i)2p,1, g(i)2p+1,1).
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G1

X1

G2

X2

G3

X3

G4

X4

Figure 11
Cyclic permutation multigraph M constructed from the example graph G shown in Figure 5
with k = 4 and depth-first traversal path γ = 〈1, 2, 3, 4, 3, 1, 3, 2, 1〉. Edges are routed according to
the high-level tree layout of Figure 7.

r We add edge (g(i)2k+1,1, g(i)4k,1).

The set of edges specified above form the red extra edges of Gi. Symmetrically, for each
red extra edge (g(i)p,q, g(i)p′ ,q′) above, we also add a green extra edge (g(i)q,p, g(i)q′ ,p′) to Gi, that
is, the new edge has row and column reversed for both endpoints.

Example 6
We now provide an example that uses the specifications in this and the previous section.
Consider the graph G in Figure 5, and let k = 4. Assume the depth-first traversal of G
that produces the vertex path γ = 〈1, 2, 3, 4, 3, 1, 3, 2, 1〉. From G, k, and γ we construct
the cyclic permutation multigraph M shown in Figure 11.

Let us focus on vertex 3 in G, and the associated components X3 and G3 in M. Since
d3 = 3, X3 has size 6× 6. Since vertex 3 is connected to vertices 1, 2, and 4 in G, grid
X3 has two red and two green interconnection edges to each of the components X1, X2,
and X4. Consider now all the edges of G impinging on vertex 3. These edges are visited
twice by γ, in the order (2, 3), (3, 4), (4, 3), (3, 1), (1, 3), (3, 2). Accordingly, when visiting
the first column of X3 from top to bottom, we touch upon the red interconnection edges
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for grids X2, X4, X4, X1, X1, and X2. Exactly the same order is found for the green
interconnection edges, when visiting the first row of X3 from left to right.

Grid G3 has size 4k × 4k, that is, 16 × 16. This is also the size of any other grid
Gi in M. We have 2d3 = 6 red interconnection edges connecting G3 and X3; these are
the α

(3)
p edges of Section 4.2.2, for p ∈ [6]. Each edge α

(3)
p , p ∈ [5], impinges on vertex

g(3)p,1 , and edge α
(3)
6 impinges on vertex g(3)8,1 . A symmetrical pattern is seen for the green

interconnection edges β
(3)
q , q ∈ [6], connecting G3 and X3.

4.2.4 Cyclic permutation multigraph M. To summarize the previous sections, the cyclic
permutation multigraph M contains components Xi and Gi for each i ∈ [n], where n
is the number of vertices of the source graph G. Besides the edges of the grid-like
components Xi and Gi, M also contains some interconnection edges. More precisely,
for each vertex i of G, M contains 2di red edges α

(i)
p and 2di green edges β

(i)
q connecting

Xi and Gi. Furthermore, for each edge (i, j) of G, M contains two red edges and two
green edges connecting Xi and Xj.

We still need to show that M is a cyclic permutation multigraph, that is, all the edges
mentioned above form a red Hamiltonian cycle and a green Hamiltonian cycle over the
vertices of M. We start by observing that, within each component Gi, these two cycles
are symmetric, in the sense that the green Hamiltonian cycle can be obtained from the
red Hamiltonian cycle by switching the first and the second indices of each vertex in an
edge. In other words, within Gi the green Hamiltonian cycle can be obtained from the
red Hamiltonian cycle by a rotation along the axis from vertex g(i)1,1 to vertex g(i)4k,4k. This
is also apparent from Figure 10. A similar observation holds for the components Xi, as
apparent from Figure 9, and for the interconnection edges. For this reason, we outline
below only the red Hamiltonian cycle of M.

The red cycle of M starts and ends at vertex g(1)1,1 in G1. The cycle follows a depth-
first traversal of G specified by Algorithm 1 in section 4.2.1. Each time the depth-first
traversal visits node i of G, the red cycle travels across one row of Xi from left to right,
then passes through Gi, and then travels across the next row in Xi from right to left,
before proceeding to the gadget for the next vertex of G in the depth-first traversal.
Exactly how the red cycle travels through Gi differs for the first di − 1 times that Gi is
visited and the final time; see Figure 10. The first di − 1 times that Gi is visited, the red
cycle travels from left to right across one row, descends to the next row, and traverses it
from the right to left. On the final trip into Gi, the cycle visits all the remaining rows as
follows. It travels left to right across row 2(di− 1) + 1 of Gi, then zig zags across the next
2k − 2(di − 1)− 1 rows in the upper half of Gi. Upon reaching vertex g(i)2k,2k+1, coming

from its right and proceeding to the left, the red cycle moves to g(i)2k+1,2k+1 using an edge
internal to the grid. This choice is designed to ensure, for reasons that will become clear
later, that none of the extra edges added to the grid underlying Gi crosses between the
grid’s four quadrants.

Next, the red cycle travels from vertex g(i)2k+1,2k+1 toward the right to reach g(i)2k+1,4k,
and then zig zags across the next 2k − 1 rows of the lower half of Gi. Upon reaching
vertex g(i)4k,1, the red cycle jumps to vertex g(i)2k+1,1 using a single extra edge. It then travels
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Figure 12
Subtree layout for grid Gi, assuming di = k = 3. The subtree layout is drawn using a thick black
line. A dotted thin black line shows the division of grid Gi into four quadrants.

toward the right to reach g(i)2k+1,2k, moves to g(i)2k,2k using an edge internal to the grid, and

finally proceeds toward the left to reach g(i)2k,1. This completes the last traversal of Gi by
the red cycle.

From g(i)2k,1 the red cycle leaves Gi and enters Xi at vertex x(i)2di ,2di
. It then travels across

the bottom row of Xi to reach vertex x(i)2di ,1
, and then proceeds to visit the gadget Xj for

the next vertex j of G in the depth-first traversal, as already mentioned.
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4.3 NP-completeness

The main result in this section shows that deciding whether the carving width of a
cyclic permutation multigraph is less than or equal to a given integer is an NP-complete
problem. We develop this result by means of several intermediate lemmas, reducing
from the carving width decision problem for a general graph. Throughout this section,
we assume that G, k, and M are defined as in the previous sections.

Lemma 2
Within a tree layout TM of M, we can organize all vertices of Gi, for any i ∈ [n], into
a (connected) subtree TGi of TM in such a way that there is an upper bound of 4k for
the width of any arc internal to TGi and for the width of any arc connecting TGi to the
remaining nodes of TM.

Proof
It has been shown by Kozawa, Otachi, and Yamazaki (2010) that the carving width of an
m×m grid with m even is m. We adapt here their construction to show the statement of
the lemma.

The subtree TGi is built by dividing the grid Gi into four quadrants of size 2k× 2k,
shown by black, dotted lines in Figure 12. Consider first the upper left quadrant. We
build a linear subtree TUL by adding vertices of this quadrant one at a time in column
major order. More specifically, we add columns of the quadrant from left to right, and
we add vertices within each column from top to bottom, as shown Figure 12. We use
symmetrical constructions for the bottom left quadrant, the bottom right quadrant,
and the upper right quadrant of Gi, resulting in the linear trees TBL, TBR, and TUR,
respectively. The top-most nodes of the linear trees TUL and TBL are connected to a new
node nL; similarly, the top-most nodes of TUR and TBR are connected to a new node nR,
and nL and nR are connected together. This completes the specification of the tree layout
TGi . Finally, an extra edge is used to connect the bottom-most internal node of TUL to
the remaining nodes of the tree layout TM. See again Figure 12.

We now prove an upper bound of 4k for the width of any arc internal to TUL and for
the width of any arc connecting TUL to the remaining nodes of TM. The binary tree TUL
has 4k2 leaf nodes and 4k2 internal nodes. Let us name the internal nodes of TUL from
bottom to top, using integers in [4k2] in increasing order. Since the width of TUL does
not decrease at the increase of di, in what follows we consider the worst case of di = k.

Observe that the arc connecting internal node 1 to the remaining nodes of TM routes
4k edges of Gi, namely the interconnection edges of Gi that lead to Xi. When we move to
arc (1, 2) of TUL, we lose the two interconnection edges impinging on vertex g(i)1,1 of Gi,

but those edges are replaced by two new internal edges of Gi, namely edges (g(i)1,1, g(i)2,1)

and (g(i)1,1, g(i)1,2). Therefore arc (1, 2) of TUL still routes 4k edges of Gi. Climbing up tree
TUL at arcs (2, 3), (3, 4), and so on, shows exactly the same pattern, with two edges
impinging on the newly added vertex of Gi replaced by two new edges of Gi impinging
on the same vertex. This process goes on until we reach the arc that connects node 4k2

(the top-most node of TUL) to node nL. This arc routes the 4k edges of the upper left
quadrant that reach the upper right quadrant and the the lower left quadrant.

22



Gildea and Satta Synchronous Context-Free Grammars and Optimal Parsing Strategies

To conclude our proof, we observe that the upper left quadrant embeds any of the
three remaining quadrants of Gi. Since the trees TBL, TBR and TUR are symmetrical to
TUL, the former trees must also have an upper bound of 4k on the width of their internal
arcs as well as on the width of the arcs connecting these trees to the remaining nodes of
TM. Finally, we observe that the arc connecting nodes nL and nR also routes 4k edges of
Gi, namely the edges from the two left quadrants to the two right quadrants. �

In the case of di = k, the grid component Xi is the same as the the top left quadrant
of Gi. Therefore, the analysis provided in the proof of Lemma 2 can also be used to prove
the next lemma.

Lemma 3
Within a tree layout TM of M, we can organize all vertices of Xi, for any i ∈ [n], into a
subtree TXi of TM in such a way that there is an upper bound of 4k for the width of any
arc internal to TXi and for the width of any arc connecting TXi to the remaining nodes
of TM.

The tree layout for Xi is a long chain, isomorphic to the tree layout of the upper
left quadrant of Gi in Figure 12. In what follows, we refer to the node of the layout
immediately above x(i)1,1 as top-most, and the node immediately above x(i)2di ,2di

as bottom-
most. We can now prove the correctness of our reduction for one direction.

Lemma 4
If G has a tree layout T of carving width k, then M has a tree layout TM of carving
width 4k.

Proof
Each leaf node of T is associated with a vertex i of G. The main idea of this proof is
to construct a tree layout TM by using T as the top level of TM, and by attaching a
tree layout for each grid Xi and Gi under the node of T associated with vertex i. As an
example, for the cyclic permutation multigraph M of Figure 11 this will provide the tree
layout schematically depicted in Figure 7.

For each i ∈ [n], we use the tree layout T(Gi) from Lemma 2 and connect it to the
tree layout T(Xi) from Lemma 3. The connection arc is created from the bottom-most
internal node of subtree TUL of T(Gi), to the top-most node of T(Xi). The tree layout
T(Xi) is in turn connected to the tree layout T for G. The connection is established by
merging the bottom-most internal node of T(Xi) and the leaf node of T associated with
vertex i of G.

From Lemma 2 and Lemma 3, we have that any of the trees T(Gi) and T(Xi) have
width at most 4k. The edges of M that are routed through the arc connecting T(Gi) to
T(Xi) are exactly the 4di ≤ 4k interconnection edges between Gi and Xi. The edges of
M routed through the connection between T(Xi) and T are the 4di ≤ 4k interconnection
edges between Xi and all the Xj for j a neighbor of vertex i in G. Finally, the top-level
subtree T within TM also has carving width at most 4k. To see this, observe that for each
edge (i, j) routed by an arc a of the tree layout T of G, the same arc a in (the copy of) T
used as a subtree of the tree layout TM routes two red and two green edges connecting
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components Xi and Xj of M. Since the carving width of the tree layout T of G is k, we
conclude that the carving width of the tree layout T within TM is 4k. �

We now deal with the other direction in the correctness of our reduction. We must
show that, if M has a tree layout of carving width 4k, then G has a tree layout of carving
width k. This will be Lemma 8, for which we will need to develop a few intermediate
lemmas. We introduce our first intermediate lemma by means of a simple example.

Example 7
Consider the tree layout of grid Gi, i ∈ [n], that has been depicted in Figure 12 as a
subtree of a tree layout TM of M. Let a be the arc that connects the bottom right quadrant
of the grid to the remainder of the layout. Using the notation in the proof of Lemma 2,
arc a can be written as (nR, nBR), with nBR the top-most node of linear tree TBR. Observe
that there are 4k edges of M routed through arc a (in Figure 12 we have k = 3). These are
the 2k red edges that connect the bottom right quadrant with the bottom left quadrant
of Gi, and the 2k green edges that connect the bottom right quadrant with the top right
quadrant. These 4k edges of M are all internal to grid Gi, meaning that they connect
vertices within Gi. Finally, observe the subtree rooted at node nBR contains 4k2 vertices
from Gi.

The special properties of arc a that we have mentioned above are not dependent on
the choice of the tree layout TM. In fact the next lemma shows that, for every choice of
a tree layout of M having carving width 4k, and for every grid Gi in M, i ∈ [n], there
always exists an arc that satisfies the properties of Example 7. Intuitively, this happens
because the vertices in a grid have a relatively high degree of interconnections, and
when we pick up a sufficiently large set of vertices of a grid Gi, we have a large number
of edges connecting the vertices in our set to the remaining vertices of Gi. This in turn
means that, in any tree layout TM, any subtree Ti containing a sufficiently large set of
vertices of Gi must route a large number of edges from Gi through the arc a that connects
Ti to the rest of TM. If TM has bounded carving width, the edges routed through arc a
saturate the width of this arc, making it impossible for other vertices not from Gi to be
placed within T. In other words, there is always some core set of vertices from Gi that
is placed in some subtree of a tree layout of M, and this subtree must exclude vertices
from other grids.

Lemma 5
Let TM be a tree layout of M having carving width 4k. For each vertex i of G, there exists
an arc ai of TM satisfying all of the following properties.

(i) The width of ai is 4k.
(ii) The edges of M routed through ai are all internal to grid Gi.

(iii) One of the two subtrees obtained by removing ai from TM contains only vertices
internal to Gi; we call this the subtree below ai.

(iv) The subtree below ai contains at least 4k2 vertices from Gi.
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a
T1 T2

T′1

T′′1

Figure 13
Definition of balanced arc a of TM for some grid Gi. Trees T1 and T2 are the two subtrees of TM
obtained by removing a from TM.

Proof
For a subtree T of TM, let Li(T) be the number of vertices of Gi that are at the leaves
of T. Consider an arc a of TM, and let T1 and T2 be the two subtrees of TM obtained by
removing a from TM; this is exemplified in Figure 13. We say that a is balanced for Gi if
the choice of a minimizes |Li(T1)− Li(T2)|.

The following argument is a standard one, see for instance Kozawa, Otachi, and
Yamazaki (2010, Lemma 3.1). Assume that a is a balanced arc in TM. Let |Gi| = (4k)2 be
the number of vertices of Gi. Without loss of generality, we assume that Li(T1) ≥ Li(T2).
Since |Gi| = Li(T1) + Li(T2), this implies Li(T2) ≤ 1

2 |Gi|. Since |Gi| ≥ 16, we must have
Li(T1) > 1, otherwise a would not be balanced. Then the root of T1 must have two
children, rooting subtrees T′1 and T′′1 of T1; see again Figure 13. We must have Li(T′1) ≤
Li(T2) and Li(T′′1 ) ≤ Li(T2), otherwise a would not be balanced. This in turn implies
Li(T2) ≥ 1

3 |Gi|. To summarize the above inequalities, we have

1
3
|Gi| ≤ Li(T2) ≤

1
2
|Gi| . (6)

For each vertex i of G, we now choose ai in the statement of the lemma to be a
balanced arc for Gi. In the following discussion we focus on an arbitrary choice of i ∈ [n],
and again we let T1 and T2 be the two subtrees of TM obtained by removing ai from TM,
with Li(T1) ≥ Li(T2), so that we can use (6).

Let S be a grid of size 4k × 4k, that is, a square grid with |Gi| nodes. It is known
that, for any choice of s nodes from S with 1

3 |Gi| ≤ s ≤ 1
2 |Gi|, there are at least 4k edges

of S connecting the chosen nodes to nodes in the complement set. For this claim, see
for instance Ahlswede and Bezrukov (1995) or Rolim, Sýkora, and Vrt’o (1995). This
claim must also be true for the edges internal to Gi, since Gi embeds the grid S. From (6)
we then have that at least 4k edges internal to Gi are routed through ai. Furthermore,
since TM has carving width 4k, the width of ai cannot exceed 4k. We then conclude that
conditions (i) and (ii) are both satisfied.

Let Ni be the set of vertices of M that are not vertices of Gi. It is easy to see from the
specification in Section 4.2 that the sub-multigraph of M induced by Ni is connected.
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(This is the very reason why we introduced the components Xi in our construction of
M.) This implies that for any pair of vertices in Ni, there exists a path in M connecting
the two vertices that is entirely composed of edges that are not internal to Gi. If both
T1 and T2 have some vertex from Ni, there would be an edge not internal to Gi routed
through ai, in contrast to condition (ii). We therefore conclude that one among T1 and
T2 contains only vertices internal to Gi, satisfying condition (iii). This subtree is called
the subtree below ai.

From (6) and by our choice of T1, we have 1
3 |Gi| ≤ Li(T2) ≤ Li(T1). Furthermore,

4k2 < 1
3 |Gi|, and hence both T1 and T2 have at least 4k2 vertices from Gi. Regardless of

which of T1 or T2 is below ai, we conclude that condition (iv) is satisfied. �
Consider a square grid Q of size 4k× 4k, and let d be some fixed integer with d ∈ [k].

Assume that 2d vertices in the left-most column of Q and 2d vertices in the top-most row
of Q have been selected as connector vertices. Observe that the number of connector
vertices in Q is either 4d − 1 or 4d, depending on whether the vertex at the top-left
corner of Q is selected twice or not. Let S be any subset of the vertices of Q. Recall from
Section 3 that the edge boundary of S in Q, written ∂Q(S), is the set of edges of Q that
connect vertices in S and vertices in S, the complement set of S.

Lemma 6
Let Q be a square grid of size 4k × 4k and let d ∈ [k]. Assume 2d connector vertices in
the left-most column and 2d connector vertices in the top-most row of Q. Let also S be
a set of vertices of Q such that |S| ≥ 4k2 and S does not contain any connector vertex.
Then |∂Q(S)| ≥ 4d.

Proof
We distinguish three cases below, depending on whether the set S contains any entire
column and/or any entire row of Q.

Case 1: S contains at least one entire column of Q and at least one entire row
of Q. (This part of the proof is adapted from Kozawa, Otachi, and Yamazaki (2010,
Propositions 4.4, 4.5, and 4.7).) Let r be the number of rows of Q that have at least one
vertex in S. Within each such row there must be a vertex not in S, since at least one entire
column of Q is not in S. This means that at least one edge of this row is in the set ∂Q(S),
for a total of r edges in ∂Q(S). A similar argument applies to the number of columns c
of Q that have at least one vertex in S.

Since rows and columns have disjoint sets of edges, we have |∂Q(S)| ≥ r + c. It is
well known that the arithmetic mean (r + c)/2 is always larger than or equal to the
geometric mean

√
rc. Since rc ≥ |S|, we can write |∂Q(S)| ≥ 2

√
rc ≥ 2

√
|S| ≥ 2

√
4k2 =

4k ≥ 4d.
Case 2: S contains at least one entire column of Q but no entire row, or else S contains

at least one entire row of Q but no entire column. In the first case we have r = 4k and,
as explained in Case 1, 4k ≥ 4d edges in the set ∂Q(S). Symmetrically, in the second case
we have c = 4k and thus 4k ≥ 4d edges in ∂Q(S).

Case 3: S does not contain any entire column of Q, nor any entire row of Q. In this
case each row of Q has at least one vertex in S. Since the connector vertices are all
contained in the set S, each of the 2d rows of Q that have a connector vertex contributes
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Figure 14
Paths starting with the red edges routed through arc ai of TM. These paths and the paths in
Figure 15 do not share any of their edges.

at least one edge to the set ∂Q(S). A symmetrical argument applies to the 2d columns
of Q that have a connector vertex. Again, since the rows and the columns of Q have
disjoint edges, we conclude that |∂Q(S)| ≥ 4d. �

Let TM be any tree layout of M with carving width 4k. In Lemma 5 we have
associated each vertex i of G with an arc ai of TM having some specific properties.
Similarly, our next lemma associates each edge (i, j) of G with a set of four paths in
TM. These paths are routed through ai and through aj, and do not share any of their
edges. Using this property, we will later be able (in Lemma 8) to derive the carving
width of G from the carving width of M. We use a simple example below to illustrate
the special paths we are looking for.

Example 8
Consider once more the grid Gi and its subtree layout depicted in Figure 12, where we
have di = k = 3. We report Gi in Figures 14 and 15, where for convenience we have
ignored the associated tree layout. As in Example 7, consider the arc in the linear layout
that connects the bottom right quadrant of Gi to the remainder of the layout. Here we
denote this arc as ai. There are di = 3 neighbors of i in G, and we need to associate 4
paths with each neighbor, for a total of 12 paths routed through ai. In what follows we
focus our attention on the first segment of each of these 12 paths, more precisely, the
segment of these paths that starts at an edge of M routed through ai and ends at some
edge of M that leaves Gi to reach grid Xi.

In Figure 14 we outline the first segment of 6 paths of M routed through arc ai,
starting with the red edges that connect the bottom right quadrant with the bottom left
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Figure 15
Paths starting with the green edges routed through arc ai of TM. These paths and the paths in
Figure 14 do not share any of their edges.

quadrant of Gi. These paths reach the 6 vertices in the left-most column of Gi that are
connected with the grid Xi and will eventually reach the grids Xj and Gj, for each vertex
j that is a neighbor of i in G. Similarly, in Figure 15 we outline 6 more paths of M routed
through arc ai, starting with the green edges that connect the bottom right quadrant
with the top right quadrant of Gi. These paths reach the 6 vertices in the top-most row
of Gi that will eventually reach the grids Xj and Gj for each neighbor j of i.

Finally, observe that these 12 paths routed through ai share some of their vertices in
the top left quadrant of Gi but do not share any of their edges. To see this, consider the
diagonal of the top left quadrant from the bottom left corner to the upper right corner.
Notice then that the paths in Figure 14 use the vertical edges of Gi below the diagonal,
while the paths in Figure 15 use the horizontal edges below the diagonal. Similarly,
the paths in Figure 14 use the horizontal edges above the diagonal, while the paths in
Figure 15 use the vertical edges above the diagonal.

The next lemma generalizes the previous example, showing that for any tree layout
TM we can associate each edge (i, j) of G with a set of four paths in TM that are edge
disjoint. We need to introduce some auxiliary notation. Let TM and ai, i ∈ [n], be defined
as in Lemma 5. Consider an arc (i, j) in the source graph G. A path in M is called an
(i, j)-path for TM if it starts at a vertex inside the subtree below ai (see Lemma 5(iii) for
the definition of this subtree) and it ends at a vertex inside the subtree below aj. We also
say that two paths in M are edge disjoint if they do not share any edge (they might
however share some vertex).
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Lemma 7
Let TM be a tree layout of M having carving width 4k. There exists a set P of paths in M
satisfying both of the following properties.

(i) For every edge (i, j) in the source graph G, P contains four (i, j)-paths for TM.
(ii) Every two paths in P are edge-disjoint.

Proof
We call connector edges the edges of M that are not internal to any component Gi, i ∈
[n]. We also call connector vertices those vertices of Gi, i ∈ [n], that have an impinging
connector edge. In this way, each Gi has 4di − 1 connector vertices. These are placed in
the left-most column of Gi and in the top-most row of Gi. We claim that, for each i ∈ [n],
the connector vertices of Gi must all be outside of the subtree of TM below ai. To see
this, let us assume that some connector vertex of Gi is found inside the tree below ai.
Since connector vertices are connected to vertices outside of Gi, there would be a vertex
not internal to Gi inside the tree below ai, against Lemma 5(iii), or else there would be a
connector edge routed through ai, against Lemma 5(ii). We therefore conclude that the
connector vertices of Gi must all be outside of the tree below ai.

The idea underlying the proof is to define each (i, j)-path in P as the concatenation
of three sub-paths, called segments, specified as follows.r The first segment starts with an edge routed through arc ai. By definition,

one of the two end vertices of such an edge is inside the subtree below ai,
and this is also the starting vertex of the segment. Furthermore, the
segment only uses edges that are internal to Gi, and ends with a connector
vertex of Gi.r The second segment only uses connector edges, and ends with a connector
vertex of Gj.r The third segment only uses edges internal to Gj, and ends with an edge
routed through arc aj. The end vertex of such an edge that is inside the
subtree below aj is the end vertex of the segment.

From now on, we focus on a specific vertex i of G and prove the existence of 4di edge
disjoint (i, j)-paths for vertices j that are neighbors of i in G. We do this by separately
specifying the three segments of the paths.

First segment. From Lemma 5(ii), there are 4k edges internal to Gi that are routed
through arc ai. We know that k ≥ di, since the carving width of a graph is always at
least its degree. Thus we start our segments with any choice of 4di disjoint edges routed
through arc ai. We now show that these edges can be extended to 4di segments that
reach the 4di − 1 connector vertices of Gi, without sharing any of their edges. We do this
by reducing our problem to a network flow problem.

If we assume that edges of Gi have flow capacity of one, each segment corresponds
to a flow through Gi having capacity one. The existence of 4di edge disjoint segments
is then equivalent to the existence of a flow of capacity 4di from the subtree below ai to
the 4di − 1 connector vertices of Gi. Let V(Gi) be the set of vertices of Gi. The max-flow
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min-cut theorem states that the above flow can be realized if and only if any cut of Gi
with the source vertices on one side and the target vertices on the other side has capacity
not less than 4di.

In our specific case, consider the square grid Q underlying component Gi. Let S ⊆
V(Gi) be a vertex set including all the vertices in the subtree below ai and excluding all
the 4di − 1 connector vertices of Gi. If we can show the relation

|∂Q(S)| ≥ 4di (7)

for any choice of S as above, then we have proved the existence of the desired 4di edge
disjoint segments.

In order to prove (7), we observe that the set of vertices in the subtree below ai
has size greater than or equal to 4k2, by Lemma 5(iv). Furthermore, observe that there
are 2di connector vertices of Gi in the left-most column of Q as well as 2di connector
vertices in the top-most row. Under these conditions, we can apply Lemma 6 to the grid
Q, with d = di ≤ k, and derive (7). We then conclude that there exist 4di edge disjoint
first segments starting at vertices in the subtree below ai, as desired.

Second segment. As already observed in Section 4.2.2, for every connector vertex
in the left-most column of Gi there is a red segment to some connector vertex in the
left-most column of Gj, where j is some neighbor of i in G. Symmetrically, for every
connector vertex in the top-most row of Gi there is a green segment to some connector
vertex in the top-most row of some Gj. This provides a total of 4di segments. These
segments are all edge disjoint, by construction of the components Xh, h ∈ [n], and by
construction of the interconnection edges.

Third segment. We observe that the third segment of an (i, j)-path is the reversal of
the first segment of a (j, i)-path. Therefore we can use our argument above for the first
segments to show the existence of 4di edge disjoint third segments ending at a vertex in
the subtree below aj.

To summarize, for each i ∈ [n] we have shown the existence of 4di edge disjoint
(i, j)-paths for vertices j that are neighbors of i in G, to be added to set P . To complete
the proof, we observe that two paths in P having disjoint start vertices must have edge
disjoint first segments, since these segments are defined for edges that are internal to
different components Gi. A similar argument applies to the third segments of paths
having disjoint end vertices. �

Lemma 8
If M has a tree layout TM of width at most 4k, then G has a tree layout T of width at
most k.

Proof
For each i ∈ [n], let arc ai and the subtree below ai be defined as in Lemma 5. We denote
by r(ai) the root of the subtree below ai. The tree layout T of G is constructed from TM
as follows.r For each i ∈ [n], we prune from TM the subtree below ai, that is, we

remove from TM all the arcs of this subtree and all of its nodes but r(ai).
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r For every i, j ∈ [n] with i 6= j, consider the unique path in TM that joins
nodes r(ai) and r(aj). We remove from TM all nodes that are not in any
such path, along with the arcs impinging on the removed nodes.r For any of the remaining nodes of TM with degree 2, we remove the node
and ‘merge’ the impinging arcs into a new arc.

Observe that T has exactly n leaves, represented by the nodes r(ai), i ∈ [n]. We then
place each vertex i of G at node r(ai). We show below that this tree layout of G has
width no larger than k.

Let a be an arbitrary arc of T. Let aM be the arc of TM equal to a, if aM has been
preserved in the construction of T; otherwise, let aM be an arbitrary arc of TM that has
been merged into a (in the third bullet of the construction). Assume that wa is the width
of a. According to the definition of width of an arc, there are exactly wa edges (i, j) in G
such that the paths in T joining nodes r(ai) and r(aj) share arc a. We denote by Sa this
set of edges.

Lemma 7 states that, for each edge (i, j) ∈ Sa, there are 4 (i, j)-paths through M, for
a total of 4wa paths through M that are pairwise edge-disjoint. From the construction
of T, we know that arc aM must be in the path within TM joining nodes r(ai) and r(aj).
If we remove aM from TM, nodes r(ai) and r(aj) are no longer connected, since paths
are unique in a tree. This implies that, in the tree layout TM, our 4wa paths through
M associated with the edges in Sa must all be routed through arc aM. Because these
paths are pairwise edge-disjoint, we conclude that there must be 4wa distinct edges of
M routed through aM. Since in our tree layout the width of aM is at most 4k, we can
write 4wa ≤ 4k and hence wa ≤ k. Since arc a was chosen arbitrarily, this concludes our
proof. �

We can now provide the main result of this section.

Theorem 1
Let M be a cyclic permutation multigraph and let k ≥ 1 be some integer. The problem
of deciding whether M has carving width less than or equal to k is NP-complete.

Proof
For the hardness part, we reduce from the problem of deciding whether a (standard)
graph G has carving width less than or equal to k, which is an NP-complete problem,
as already mentioned. We construct the cyclic permutation multigraph M from G as
in Section 4.2. It is not difficult to see that the construction can be carried out in time
O(nk2 + e), where n and e are the number of vertices and edges, respectively, in G. Since
we can assume k ≤ e, we have that the reduction takes polynomial time in the size of
the input. By combining Lemma 4 and Lemma 8, we have that G has carving width k if
and only if M has carving width 4k. This completes our reduction.

For the completeness part, given a cyclic permutation multigraph M, we can guess
a tree layout T, and accept if the width of T is less than or equal to k. All of this
computation can be carried out in linear time. �

31



Computational Linguistics Volume xx, Number xx

A C E G I K M

B D F H J L

N

P

R

O

Q

S

CDE DEF EFG FGH GHI HI J I JK

BCD GHN JKL

ABC HNO KLM

NOP

OPQ PQR QRS

Figure 16
A tree decomposition of a graph is a set of overlapping clusters of the graph’s vertices, arranged
in a tree. This example has treewidth 2.

4.4 NP-Completeness of Fan-out

We can now present the main result on the optimization of the fan-out of parsing
strategies for an SCFG rule.

Theorem 2
Let s be a synchronous rule and let k ≥ 1 be some integer. The problem of deciding
whether there exists a binary parsing strategy for s with fan-out less than or equal to k
is NP-complete.

Proof
This directly follows from Lemma 1 and from Theorem 1. �

5. Time Complexity

In this section, we address the problem of finding the parsing strategy with the optimal
time complexity. The time complexity of one combination step in a parsing strategy is
determined by the total number of variables involved in the step, which is the total
number of distinct endpoints of the spans being combined. Time complexity can differ
from space complexity due to the fact that the time complexity takes into account which
endpoints are shared in the two groups of spans being combined.

Time complexity of general parsing problems can be analyzed using the graph-
theoretic concept of treewidth, which we now proceed to define precisely. A tree de-
composition of a graph G = (V, E) is a type of tree having a subset of G’s vertices at
each node. We define the nodes of this tree T to be the set I, and its edges to be the set
F. The subset of V associated with node i of T is denoted by Xi. A tree decomposition
is therefore defined as a pair ({Xi | i ∈ I}, T = (I, F)) where each Xi, i ∈ I, is a subset
of V, and tree T has the following propertiesr Vertex cover: The nodes of the tree T cover all the vertices of G:

⋃
i∈I Xi = V.
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x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

Figure 17
Dependency graph for the CFG rule S→ A B C D (left) and the SCFG rule
[S→ A 1 B 2 C 3 D 4 , S→ B 2 D 4 A 1 C 3 ] (right).

r Edge cover: Each edge in G is included in some node of T. That is, for all
edges (u, v) ∈ E, there exists an i ∈ I with u, v ∈ Xi.r Running intersection: The nodes of T containing a given vertex of G form a
connected subtree. Mathematically, for all i, j, k ∈ I, if j is on the (unique)
path from i to k in T, then Xi

⋂
Xk ⊆ Xj.

The treewidth of a tree decomposition ({Xi}, T) is maxi |Xi| − 1. The treewidth of a
graph is the minimum treewidth over all tree decompositions

tw(G) = min
({Xi},T)∈TD(G)

max
i
|Xi| − 1

where TD(G) is the set of valid tree decompositions of G. We refer to a tree decomposi-
tion achieving the minimum possible treewidth as being optimal.

In general, more densely interconnected graphs have higher treewidth. Any tree has
treewidth one, while a graph consisting of one large cycle has treewidth two, and a fully
connected graph of n vertices has treewidth n− 1. Low treewidth indicates some treelike
structure in the graph, as shown by the example with treewidth two in Figure 16. As an
example of the running intersection property, note that the vertex N appears in three
adjacent nodes of the tree decomposition. Finding the treewidth of a graph is an NP-
complete problem (Arnborg, Corneil, and Proskurowski 1987).

We use a representation known as a dependency graph to analyze the time com-
plexity of parsing for a given SCFG rule. Dependency graphs (known under a large
number of different names) are used to represent the interaction between variables in
constraint satisfaction problems, and have one vertex for each variable, and an edge
between vertices representing any two variables that appear together in a constraint. In
parsing problems, the variables consist of indices into the string being parsed, and the
constraints require that a nonterminal on the right-hand side of a rule has previously
been identified. Thus, the graph has a vertex for each endpoint involved in the rule, and
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Figure 18
Gadget grid Gi in the construction of cyclic permutation multigraph M, assuming di = 3.

a clique for each nonterminal (including the left-hand side nonterminal) connecting all
its endpoints.

Example 9
The dependency graph for a CFG rule with n nonterminals, including the left-hand
side nonterminal, is a cycle of n vertices. For instance, the CFG rule S→ A B C D is
shown in the left part of Figure 17. The five vertices represent the possible endpoints
that need to be considered when parsing any instantiation of the rule, and each arc is a
nonterminal appearing in the rule, including the left-hand side nonterminal. In this way,
each nonterminal has two endpoints, and adjacent nonterminals share one endpoint.
In particular, the left-hand side nonterminal shares one endpoint with the left-most
nonterminal in the right-hand side and one endpoint with the right-most nonterminal
in the right-hand side.

In the case of an SCFG rule, each nonterminal has four endpoints, two on the
English side and two on the Chinese side. If the rule has n linked nonterminals, in-
cluding the left-hand side linked nonterminal, the dependency graph consists of 2n
vertices and n cliques of size four. For instance, the SCFG rule [S→ A 1 B 2 C 3 D 4 , S→
B 2 D 4 A 1 C 3 ] is shown in the right part of Figure 17.

A tree decomposition of the dependency graph corresponds directly to a parsing
strategy, and the treewidth of the graph plus one is the exponent in the time complex-
ity of the optimal parsing strategy (Gildea 2011). Each cluster of vertices in the tree
decomposition corresponds to a combination step in a parsing strategy. The running
intersection property of a tree decomposition ensures that each endpoint in the parsing
rule has a consistent value at each step. Treewidth depends on the number of vertices
in the largest cluster of the tree decomposition, which in turn determines the largest
number of endpoints involved in any combination step of the parsing strategy.

Our hardness result in this section is a reduction from treewidth of general graphs.
Given an input graph G to the treewidth problem, we construct an SCFG rule using
techniques similar to those in the previous section. We then show that finding the pars-
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Figure 19
Grid Di of dependency graph D. Connector vertices are in the left-most column and top-most
row, and have edges, shown as dashed, internal to other grids Dj.

ing strategy with optimal time complexity for this rule would imply an approximation
bound on the treewidth of the original graph G.

The precise construction proceeds as follows. Given an instance of the treewidth
problem consisting of a graph G and integer k, we construct a cyclic permutation
multigraph M as in the previous section, with the exception that the grid Gi will contain
only 2di rows and 2di columns. This grid, shown in Figure 18, is a simplified version of
the grid used in Figure 10. Furthermore, there are no gadgets Xi in M, but rather, for
each edge (i, j) in G, there are a total of four edges in M connecting Gi directly to Gj.
We refer to these edges as connector edges, and we refer to edges internal to some Gi as
internal edges.

We construct a dependency graph D by replacing each edge (i, j) in M with a vertex
v(i, j) in D, and adding edges (v(i, j), v(i, k)) to D connecting all vertices in D that derive
from adjacent edges in M, as shown in Figure 19. As is required for the dependency
graph representation, this gives us a graph with one vertex corresponding to each
boundary between adjacent nonterminals in the SCFG rule and a clique connecting the
vertices for the four boundary points of each nonterminal (two boundaries in English
and two in Chinese).

We refer to vertices in D derived from connector edges in M as connector vertices,
and we refer to vertices in D derived from internal edges in M as internal vertices. We
refer to the subgraph of D derived from vertex i of G as Di. To be precise, Di consists of
connector vertices and internal vertices derived from edges of M incident on vertices of
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Gi, and the edges of D connecting these vertices. We refer to the vertices of Di as red or
green, depending on whether they are derived from red or green edges in M.

We now show that any dependency graph D constructed from a cyclic permutation
multigraph M is the dependency graph for some SCFG rule r. Interpret an arbitrary
vertex in M as the left-hand side nonterminal. Each green edge represents a boundary in
English shared between two nonterminals, including the boundary shared between the
first right-hand side nonterminal and the left-hand side nonterminal, and the boundary
shared between the last right-hand side nonterminal and the left-hand side nonterminal.
Similarly, each red edge represents the boundary between two nonterminals in Chinese.
We then replace each edge in M with a vertex in D, and replace each vertex in M with a
clique in D. D is the dependency graph for an SCFG rule, because it has a vertex for each
boundary, and a clique that connects the boundaries of each nonterminal (including the
left-hand side nonterminal).

With this construction in place, we can prove the main result of this section.

Theorem 3
A polynomial time algorithm for finding the parsing strategy of an SCFG rule having
the lowest time complexity would imply a polynomial time constant-factor approxima-
tion algorithm for the treewidth of graphs of fixed degree.

Proof
Let T be a tree decomposition of G having treewidth k− 1, and let ∆(G) be the maximum
degree of a vertex of G. Let M and D be the cyclic permutation multigraph and the
dependency graph, respectively, constructed from G as previously specified. We can
construct a tree decomposition TD of D having treewidth 4k∆(G)− 1 by replacing each
occurrence of vertex i in T with the 4di connector vertices in D that are derived from the
4di connector edges in M that are adjacent to Gi. From one of the nodes of TD containing
the connector vertices of i, we attach a subtree containing the remaining vertices of Di.
This subtree has treewidth 4di − 1, and can be constructed in a linear chain adding
vertices from Di one at a time. That is, we process the nodes in Di in column-major
order, at each step constructing a new node in the tree decomposition of D by adding
one vertex of Di, either red or green, and removing the corresponding vertex from the
previous red or green column respectively. In sum, if k− 1 = OPT = tw(G), then

tw(D) < 4∆(G)(OPT + 1)

Suppose that we have an algorithm for finding the treewidth of dependency graphs
derived from SCFG rules. Given a tree decomposition TD of D of treewidth k′ − 1, a
valid tree decomposition TG of G having treewidth at most 2k′ − 1 can be constructed
by replacing each connector vertex in TD with the corresponding two vertices i and j of
G, and replacing occurrences of internal vertices of D with the corresponding vertex i
of G. This is a valid tree decomposition of G, because

r For any edge (i, j) in G, there is a node in TD containing the corresponding
connector vertex in D, and hence a node in TG containing both i and j.
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r Any two vertices u and v in D that are associated with i in G (either as
connector vertices or as internal vertices) are connected by a path in D
containing only vertices associated with i. Hence, the path between any
two occurrences of i in TG contains nodes that also contain i, guaranteeing
the running intersection property of TG.

Thus, by constructing D from G, finding an optimal tree decomposition of D, and then
translating the result into a tree decomposition of G, we have a tree decomposition of G
having width SOL where SOL ≤ 2tw(D). Combining the results above, we have

SOL < 8∆(G)(OPT + 1) .

Therefore, an algorithm for minimizing the treewidth of dependency graphs of SCFG
rules would imply the existence of a constant-factor approximation algorithm for the
treewidth of graphs of fixed degree. �

The existence of a polynomial time constant-factor approximation algorithm for
the treewidth of graphs of fixed degree is a long-standing open problem. Therefore
Theorem 3 suggests that designing a polynomial time algorithm for finding the parsing
strategy of an SCFG rule having optimal time complexity is a difficult task.

In the other direction, a proof of hardness for finding the optimal time complexity
for SCFG parsing would also require progress on a long-standing open problem, as
stated by the following theorem.

Theorem 4
If it is NP-hard to find the parsing strategy with optimal time complexity for an SCFG
rule, then it is also NP-hard to find the treewidth of graphs of degree six.

Proof
Dependency graphs constructed from an SCFG rule have degree at most six. This is
because each vertex in the graph is a member of two cliques corresponding to the two
nonterminals meeting at a given boundary point in the rule. Each clique has three other
vertices, for a total degree of six. Any NP-hardness result for dependency graph of SCFG
rules would imply NP-hardness for general graphs of degree six. �

6. Conclusion

In the context of machine translation, the problem of synchronous parsing with an
SCFG corresponds to the problem of analyzing parallel text into grammar derivations,
often as part of learning a translation model with Expectation Maximization or related
algorithms. The synchronous parsing problem also applies to decoding with an SCFG
and an integrated n-gram language model.

Parsing with an SCFG requires time (and space) polynomial in the sentence length,
but with the degree of the polynomial depending on the specific grammar. A loose time
upper bound obtained using dynamic programming techniques is O(n2r+2), where n
is the sentence length and r is the maximum rule length, that is, the maximum number
of linked nonterminals in the right-hand side of a rule. Gildea and Štefankovič (2007)
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show a lower bound of Ω(ncr) for some constant c, meaning that the exponent grows
linearly with the rule length. In this article, we show that even finding this exponent is
itself computationally difficult. For space complexity, finding the best parsing strategy is
NP-hard. For time complexity, finding the best parsing strategy would require progress
on approximation algorithms for the treewidth of general graphs.

To our knowledge, the use of the notion of carving width of a graph in connection
with the space complexity of dynamic programming parsing is novel to this article. In
previous work, Crescenzi et al. (2015) used the notion of graph cutwidth to investigate
space complexity for SCFGs restricted to linear parsing strategies, that is, strategies that
add only one nonterminal at a time. However, graph cutwidth does not extend to the
general binary parsing strategies that we consider in this article.

The connection of space complexity to carving width means that we can use
existing linear-time algorithms for computing the tree layout of graphs of bounded
carving width (Thilikos, Serna, and Bodlaender 2000), and approximation algorithms
for carving width such as the O(log n)-factor approximation algorithm of Khuller,
Raghavachari, and Young (1994). The connection of time complexity to treewidth means
that we can apply algorithms for treewidth of general graphs that tend to find op-
timal results quickly in practice, such as the branch-and-bound algorithm of Gogate
and Dechter (2004). We can also apply linear time algorithms for graphs of bounded
treewidth (Bodlaender 1996), and approximation algorithms such as the

√
log(k)-factor

approximation algorithm of Feige, Hajiaghayi, and Lee (2005).
Since SCFG is an instance of the general class of Linear Context-Free Rewriting

Systems (LCFRSs) (Vijay-Shankar, Weir, and Joshi 1987), our hardness results also apply
to the latter class. Therefore our results generalize those of Crescenzi et al. (2011), who
show NP-hardness for optimizing space and time complexity for LCFRSs, again with
the restriction to linear parsing strategies.

Viewing SCFG as an instance of LCFRS also allows connecting the parsing op-
timization problems investigated in this article to the rule factorization problem for
SCFGs, investigated by Huang et al. (2009). Rule factorization is the problem of replac-
ing an individual rule with a large size with several rules of smaller size, in a way
that the language generated by the overall grammar is preserved. (The algorithm for
casting a CFG in Chomsky normal form is an example of rule factorization.) As already
mentioned in the introduction, it is known that SCFGs do not admit any canonical
binary form (Aho and Ullman 1972). This means that, when we attempt to factorize
a SCFG rule into ‘smaller pieces’, some of the resulting pieces might no longer be
SCFG rules, because they span more than two substrings; see again Figure 3. However,
when viewing a SCFG as a LCFRS, factorization is always possible, and the parsing
strategy trees defined in Section 2.3 directly provide a binary factorization of a SCFG
into a LCFRS. Under this view, the problems investigated in this article are related to
the problem of detecting rule factorizations for certain LCFRS, where we require that
the factorized LCFRS are space or time optimal when used in standard algorithms for
parsing based on dynamic programming. Rule factorization for general LCFRS has been
investigated by Gómez-Rodríguez et al. (2009) and Gildea (2010).

As a final remark, if a strategy of space or time O(nk) exists for a fixed k, it can
be found in space or time O(rk), respectively, by parsing the SCFG rule’s right-hand
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itself, represented as a string of nonterminals, with a grammar representing all possible
parsing strategies. Such a grammar can be constructed by instantiating all possible
LCFRS rules of space or time complexity O(nk). If a parse of the SCFG rule’s right-
hand side is found, the resulting parse tree can be used as a parsing strategy for the
original rule.
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