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We present algorithms for extracting Hyperedge Replacement Grammar (HRG) rules from a
graph along with a vertex order. Our algorithms are based on finding a tree decomposition of
smallest width, relative to the vertex order, and then extracting one rule for each node in this
structure. The assumption of a fixed order for the vertices of the input graph makes it possible to
solve the problem in polynomial time, in contrast to the fact that the problem of finding optimal
tree decompositions for a graph is NP-hard. We also present polynomial-time algorithms for
parsing based on our HRGs, where the input is a vertex sequence and the output is a graph
structure. The intended application of our algorithms is grammar extraction and parsing for
semantic representation of natural language. We apply our algorithms to data annotated with
Abstract Meaning Representations (AMRs) and report on the characteristics of the resulting
grammars.

1. Introduction

In statistical natural language processing, parsing has been traditionally intended as the
task of taking as input a string, representing a sequence of word tokens, along with a
grammar, and producing as output one or possibly more trees that hierarchically group
those tokens according to the grammar’s rules. In this article we use the term string-
to-tree parsing when referring to this task, in contrast with a different parsing problem
that will be introduced later, in which the produced output is a general graph. The
high relevance of string-to-tree parsing in statistical natural language processing stems
from a historical focus on syntactic analysis and on formal grammars that produce
tree structures, as for instance context-free grammars or dependency grammars. This
perspective has been strongly influenced by the fact that generative linguistic theories
use hierarchical structures to model the syntax of natural language. In the last decades,
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string-to-tree parsing has also been reinforced by the proliferation of syntactically an-
notated data for several languages, available in the form of treebanks.

At the time of writing there is growing attention toward semantic analysis of sen-
tences with the conviction that, along with syntactic information, semantic information
will greatly improve end-user applications. While, in statistical natural language pro-
cessing, semantic analysis had been mainly investigated by means of separated tasks,
such as named entity recognition, semantic role labeling and co-reference resolution, we
now witness the attempt to incorporate all these different aspects into a single process of
semantic parsing. This trend is attested by the wide variety of semantic representations
that are being proposed (Kuhlmann and Oepen 2016) and by the amount of semantically
annotated datasets being produced and distributed. As a follow up, semantic parsing is
now being exploited in machine translation (Jones et al. 2012), text summarization (Liu
et al. 2015; Dohare and Karnick 2017), sentence compression (Takase et al. 2016), event
extraction (Huang et al. 2016; Rao et al. 2017; Wang et al. 2017) and question answer-
ing (Khashabi et al. 2018). It seems therefore that the field is returning to the task of
semantic parsing after a long hiatus, since semantic analysis was already part of the
agenda in formalisms such as head-driven phrase structure grammars, in the era when
grammars were generally manually developed rather than learned from data.

Crucially, semantic representations are graph structures, as opposed to tree struc-
tures. There is therefore a need for formal grammars that generate graphs. Graph gram-
mars have been investigated in the formal language literature since the mid seventies.
These models are based on a derive relation that rewrites graphs, and therefore generate
graph languages, that is, languages that are sets of graphs. Accordingly, the problem of
graph parsing has been conceived in such a way that a graph structure and a graph
grammar are provided as input, and the goal is to produce as output one or more
grammar derivations that generate the input graph itself. However, this problem setting
does not apply to the scenario of semantic parsing for natural language. More precisely,
in semantic parsing the input is a graph grammar along with a sentence represented as
a sequence of tokens which, to simplify our discussion, can be regarded as the vertices
of some graph. One then needs to output one or more graphs, defined over the input
vertices, that can be generated by the input grammar. These graphs represent thus
possible semantic representations associated with the input sentence. In this article we
use the term string-to-graph parsing when referring to this novel problem.

We observe here that graph parsing and string-to-graph parsing, as described
above, are incomparable problems. More precisely, in graph parsing the input graph
is fully specified by means of its vertices and edges, while in string-to-graph parsing
we do not have access to the edges of the graph. Therefore, in this respect, string-
to-graph is more general than graph parsing. On the other hand, in string-to-graph
parsing we are given a specific ordering of the graph vertices, which is not provided
in graph parsing, and we might take advantage of such restriction for graph grammars
of certain types. To our knowledge, there is no relevant work in the literature on graph
grammars investigating string-to-graph parsing. This article provides a contribution in
this direction.
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String-to-tree parsing is rather well understood. If we assume that when generating
a string our trees do not have crossing arcs,1 then string-to-tree parsing can be efficiently
solved using dynamic programming algorithms, also called chart-based methods or
tabular methods in the natural language processing community. For an introduction to
dynamic programming methods for string-to-tree parsing, we refer the reader to Gra-
ham and Harrison (1976) and Nederhof and Satta (2004) for context-free grammars, and
to Kübler, McDonald, and Nivre (2009, Chapter 5) for projective dependency grammars.
Dynamic programming is perhaps the most general way to attack string-to-tree parsing,
and other alternative methods such as greedy algorithms or beam search algorithms can
be derived as special cases of dynamic programming, as discussed by Huang and Sagae
(2010) and Kuhlmann, Gómez-Rodríguez, and Satta (2011). In most cases of interest,
dynamic programming provides polynomial space and time solutions for non-crossing
string-to-tree parsing as well as for unsupervised learning of the weights of grammar
rules from annotated data, assuming one is interested in data-driven methods.

Note that string-to-tree parsing and string-to-graph parsing are two closely related
problems, since they both take as input a sequence of tokens and a grammar, and
produce as output a structure that can be generated by the grammar and is “compatible”
with the input sequence. Due to this similarity, algorithms for string-to-tree parsing
that use dynamic programming can be naturally extended to string-to-graph parsing.
However, when we do so, we soon realize that there is a gap in computational complex-
ity between the two cases, because of the structural differences between non-crossing
trees and general graphs. More precisely, the trees considered by the parsing algorithms
mentioned above do not have crossing arcs. In contrast, the graphs associated with the
semantic structures we are interested in have arcs that can cross each other, relative
to the input sentence. Furthermore, if we assume that the arcs in our two structures
are directed, a tree node has at most one parent, while a graph node might have more
than one parent. Because of crossing arcs and/or multi-parenthood, extending existing
string-to-tree parsing algorithms to string-to-graph parsing requires additional book-
keeping, resulting in a considerable increase in computational resources. We illustrate
this problem by means of a concrete example involving dependency structures.

Example 1
We consider general dependency structures, that is, graph-like structures where each
vertex represents a word in the input. We informally compare the application of dy-
namic programming to projective, i.e., non-crossing, string-to-tree parsing and string-
to-graph parsing for such structures. Most important, our discussion abstracts away
from the specific class of formal grammars used to generate our dependency struc-
tures, and focuses essentially on the two structural features of crossing arcs and multi-
parenthood, which distinguish general graphs from projective trees as already dis-
cussed.

We start with string-to-tree parsing. Let w = a1a2 · · · an be the input string. At the
heart of dynamic programming algorithms for projective, dependency tree parsing, we

1 In the natural language processing literature, trees with crossing arcs are also called discontinuous trees
in the context of phrase structures, or else non-projective trees in the context of dependency structures.
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Figure 1
Graphical representation for (a) the partial analysis [i, j; h] and (b) the combination of partial
analyses [i, k; h′] and [k, j; h], implementing left attachment and producing partial analysis [i, j; h].

find a set of operations to combine two trees, resulting in a larger tree. When combining
trees, the only information we care about is the span and the root of each tree. The
span is needed to make sure that trees to be combined do not overlap and that the
combination forms a tree spanning a larger (connected) substring of w. The root is used
to compute the score of the added dependency arc, which contributes to the score of the
resulting tree. Since the span of a tree t is a substring of w of the form ai+1ai+2 · · · aj,
we may conveniently record t’s span by means of the two indices i and j. Furthermore,
the root of t is a word ah occurring in ai+1ai+2 · · · aj, and we may similarly record this
information by means of the index h.

Consider now two trees t and t′, and assume that they share the same span i, j
and the same root h. We can conveniently group t and t′ into the same equivalence
class [i, j; h]. We call each equivalence class a partial analysis. Figure 1(a) graphically
represents partial analysis [i, j; h]. In order to combine trees, we can then use partial
analyses. This is exemplified in Figure 1(b), where we show the basic operation of left
tree attachment. Each tree in [i, k; h′] is attached as a left dependent of the root of each
tree in [k, j; h], by means of a new arc with head h and dependent h′. Each attachment
provides a new tree with span i, j and root h, and the resulting trees are represented in
the new partial analysis [i, j; h]. A second operation of right tree attachment is symmet-
rically defined.

The representation of trees by means of partial analyses is at the root of the efficiency
of the algorithm, which we now briefly analyze. Each index i, j and h in a partial
analysis can range from 0 to n, the length of w, for a total number of partial analyses
in O(n3). Furthermore, the left/right tree attachment operations can be implemented
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in constant time for fixed values of i, k, j, h and h′. Then the overall time used by the
algorithm when combining trees is in O(n5). We conclude that our parsing algorithm
runs in polynomial time and space. What we have briefly summarized above is a well
known adaptation of the standard Cocke-Kasami-Younger algorithm for parsing using
context-free grammars (Aho and Ullman 1972), as applied to lexicalized context-free
grammars (Collins 1996) and to dependency grammars (Eisner 1996).

Let us now turn to string-to-graph parsing. When applying dynamic programming,
we can exploit ideas similar to those presented for the string-to-tree case, but we need
to make some generalizations. The input to the algorithm is now a sequence of vertices,
which we again represent as w = v1v2 · · · vn. We need to combine graphs into larger
graphs, eventually leading to a graph whose set of vertices spans all of w. In general,
we need to deal with intermediate graphs G whose span may not be a single substring
of w, as in the case of projective dependency trees, but rather several unconnected non-
empty substrings of the form s1 = vi1+1vi1+2 · · · vi2 , s2 = vi3+1vi3+2 · · · vi4 , . . . , sq/2 =

viq−1+1viq−1+2 · · · viq , for some even q > 2. This is a consequence of the fact that our
graphs might have crossing arcs that reach the vertices placed in between the si’s. We
then represent G’s span by means of the associated indices i1, i2, . . . , iq. Furthermore,
while for dependency trees a subtree is connected to the rest of the structure only
through its root, G will be connected to the final graph that we want to construct through
several of its vertices. This is a consequence of the fact that the nodes of our graphs can
have multiple parent nodes. We call the connecting vertices the attachment vertices of
G, and again denote this set by means of the associated indices h1, h2, . . . , hd, for some
d ≥ 1.

When combining graphs, the span and the attachment vertices are the only infor-
mation we need to process. As before, we can therefore group several graphs sharing
the same span and attachment vertices into an equivalence class represented as a partial
analysis, which we denote by a tuple of the form [i1, i2, . . . , iq; h1, h2, . . . , hd]. Figure 2(a)
graphically represents a partial analysis [i1, i2, i3, i4, i5, i6; h1, h2]. At the heart of the
parsing algorithm we have a set of binary combinations of partial analyses, resulting
in new partial analyses for larger graphs. In Figure 2(b) we show one such operation,
where partial analyses [i1, i2, i4, i5; h1, h2] and [i3, i4, i6, i7; h3] are combined. Observe that
the spans of these partial analyses share the index i4. This means that, within w, some
string in the span of the first partial analysis is “adjacent” to some string in the span
of the second one. The operation creates two new dependency arcs, one with head h3
and dependent h1, and the other with head h2 and dependent h3. This means that the
underlying graph grammar is more powerful than a first order model: see Section 1.1
for a precise definition of this terminology. The result of the combination is the partial
analysis [i1, i2, i3, i5, i6, i7; h1, h2, h3]. The span of the resulting analysis is obtained by
merging the spans of the input analyses. In this specific case, the attachment vertices
of the resulting analysis is the union of the attachment vertices of the input analyses:
this means that each of these vertices is still seeking connections to vertices in w that are
outside of the current span.

We now briefly analyse the efficiency of the string-to-graph parsing algorithm.
Assume that q is the maximum number of indices in a span of our graphs, and d is the
maximum number of attachment vertices. Again, each index ik and hk′ can range from 0
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Figure 2
Graphical representation for (a) the partial analysis [i1, i2, i3, i4, i5, i6, ; h1, h2] and (b) the
combination of partial analyses [i1, i2, i4, i5; h1, h2] and [i3, i4, i6, i7; h3] with
i1 < i2 < i3 < i4 < i5 < i6 < i7, producing partial analysis [i1, i2, i3, i5, i6, i7; h1, h2, h3].

to n, the length of w. This means that the total number of partial analyses that need to be
stored is in O(nq+d). As for the time complexity, let us assume that graph combination
applies to two partial analyses whose spans share at least one index. We also assume
that dr is the maximum number of attachment vertices involved in a graph combining
operation. Note that we must have dr ≤ 2d, since our operations are always binary. We
then derive that the overall time spent by the algorithm for graph combination is in
O(n2q−1+dr ). We observe that the above space and time bounds are a generalization
of the same bounds already discussed for string-to-tree parsing, where we have q = 2,
d = 1 and dr = 2, leading to O(n3) space and O(n5) time.

From the above computational analysis we realize that if the grammar does not
impose any constant bounds on the parameters q, d and dr, then these values can grow
with n and we end up with an exponential parsing algorithm, both in time and space.
On the other hand, while constant bounds on these parameters result in a polynomial
parsing algorithm, this comes at the cost of some loss in coverage, since some graphs
might no longer be parsable. The choice of bounds for q, d and dr is essentially an em-
pirical matter, in the sense that one should test the coverage of the restricted algorithm
on a dataset representative of the application domain. Furthermore, we point out that
there is a trade-off between q and d (and between q and dr): one can achieve the desired
coverage by setting a low value of q and increasing d, or else by setting a low value of d
and increasing q.

To conclude our example, we have outlined that, when extending existing dynamic
programming algorithms for string-to-tree parsing to string-to-graph parsing, we ob-
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serve a huge gap in time and space efficiency. This gap does not depend on the specific
class of formal grammars used to generate our structures, and is essentially due to any
one of the two features that distinguish the two structures, namely crossing arcs and
multi-parenthood. We have also shown that one can improve the efficiency of string-to-
graph parsing by restricting the class of graphs that can be parsed, that is, at the cost of
some loss in coverage.

Before turning to a summary of the contributions of this article, we need to make
one final step and introduce the grammar framework that we use to model semantic
representations for natural language sentences, as well as the problem of extracting
these grammars from data. We consider the class of hyperedge replacement grammar,
or HRG for short (Drewes, Kreowski, and Habel 1997). HRGs generate graph languages
in a way that generalizes the traditional context-free grammars for string rewriting.
More precisely, each rule in an HRG replaces a left-hand side nonterminal in some
hosting graph by means of a right-hand side graph. Similarly to context-free grammars,
rewriting is done in a way that depends only on the nonterminal in the left-hand side
of the rule, and not on the content of the hosting graph. The specific way in which, after
rewriting, the right-hand side graph is connected to the hosting graph depends on the
technical notion of hyperedge, which will be discussed in detail later on in Section 5.1.

In semantic parsing applications, HRGs are extracted from a large dataset of seman-
tic graphs. The process of grammar extraction is an unsupervised task, since a graph does
not provide any information about the rules of the underlying grammar that have been
used to generate the graph itself. This is in contrast with the extraction of context-free
grammars from a tree bank, where each tree provides information about its derivation
process. A known technique to extract HRG rules from a given graph is to construct a
so-called tree decomposition of the graph itself. This is a tree structure where each node
contains some vertices of the graph, and the same vertex can appear at different nodes;
we provide a mathematical definition of tree decomposition in Section 2. In the context
of this article, the important property of a tree decomposition is that each node can be
converted into an HRG rule manipulating the vertices of the graph that appear in the
node itself. From a tree decomposition we can then directly read off the rules of an HRG
that generates the given graph. We say that a tree decomposition is optimal if it keeps
to a minimum the maximum number of vertices contained in its nodes. It follows that
an optimal tree decomposition keeps the size of the rules of the extracted HRG as small
as possible and, as we will see, optimizes also the computational complexity of parsing
algorithms based on HRGs. We can therefore reformulate our unsupervised learning
problem of extracting an HRG from a graph as the problem of finding an optimal tree
decomposition of a graph.

In the graph theory literature, a considerable amount of work has been devoted to
the problem of finding optimal tree decompositions of a graph. In the general case, this
is an NP-hard problem; see Section 1.1 for references. The novel idea in this article is
to impose restrictions on tree decompositions, on the basis of the fact that the vertices
of the input graph are associated with a total ordering. As we will see, this leads to
some interesting classes of tree decompositions that can be optimized in polynomial
time. Furthermore, optimal tree decompositions on available semantic datasets provide
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HRGs leading to algorithms for the string-to-graph problem running in polynomial
space and time.

We are now ready to list the main contributions reported in this article.r We define two novel, specialized tree decompositions for graphs
associated with a fixed vertex ordering, called inside tree decompositions
and outside tree decompositions. We provide algorithms that compute
optimal inside and outside tree decompositions in polynomial time in the
size of the input graphs.r The HRG extracted from an optimal inside or outside tree decomposition,
called inside or outside HRG, respectively, has the following properties
(we use the notation of Example 1). Each generated subgraph can be
represented by a partial analysis with q = 2. The value of dr is as small as
possible on the training dataset, given the constraint that q = 2.r We develop a dynamic programming algorithm for string-to-graph
parsing based on HRGs, running in time O(|G|n3+dr ), where |G| is the size
of the input HRG, n is the number of input vertices, and dr is specified as
in the item above. This is a polynomial algorithm whenever dr is bounded
by a constant.r We provide empirical assessment on a semantic dataset annotated
accordingly to the linguistic formalism called Abstract Meaning
Representation (AMR), described by Banarescu et al. (2013). This shows
that inside and outside HRGs with dr = 5 cover 99% of the sentences in
the dataset. On average, we have dr = 1.97 for inside HRG and d = 1.81
for outside HRG, suggesting that for English most of the partial analyses
can be stored and processed efficiently.

We close this introduction with a summary of the content of the remaining sections.
After summarizing related work, we define tree decompositions and our notion of parse
trees over vertex sequences in Section 2. In Section 3, we define our first family of tree
decompositions, which we call inside tree decompositions, and give an algorithm for
finding optimal inside tree decompositions. As our second family, we define outside
tree decompositions and give a corresponding optimization algorithm in Section 4.
Section 5 describes how to extract an HRG from a tree decomposition of either family,
and how to parse a vertex sequence into a graph using an HRG. Section 6 gives results
of our grammar extraction algorithms on linguistic datasets, and Section 7 concludes
with discussion and directions for future work.

1.1 Related Work

Hyperedge replacement grammars (Drewes, Kreowski, and Habel 1997) are among the
most successful generative models for graph languages, due to their close relationship
to the well-known class of context-free grammars. In the context of natural language
processing, HRGs have been exploited to model semantic representations by Jones
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et al. (2012), who propose a synchronous version of HRG for machine translation,
and by Jones, Goldwater, and Johnson (2013) and Peng, Song, and Gildea (2015), who
propose algorithms for automatic learning of HRGs that are evaluated on the task of
extracting semantic dependency graphs from text.

Considering the already mentioned graph parsing problem, where the input con-
sists of a graph and a graph-rewriting grammar, one of the first algorithms for parsing
based on HRG has been proposed by Lautemann (1990). For general HRGs, this algo-
rithm runs in exponential time. This complexity result comes as no surprise, since it
is known that graph parsing for HRG is an NP-hard problem, even for fixed gram-
mars (Aalbersberg, Rozenberg, and Ehrenfeucht 1986; Lange and Welzl 1987). In the
context of natural language processing, Chiang et al. (2013) proposed an optimized
version of Lautemann (1990), providing also a fine-grained complexity analysis which
is missing in the original article. The running time of the optimized algorithm is an
exponential function of both the treewidth of the input graph (to be defined in Section 2)
and of the maximum degree of its nodes.

Polynomial time parsing algorithms for subclasses of HRG have also been inves-
tigated in the graph grammar literature. A predictive top-down parsing algorithm has
been presented by Drewes, Hoffmann, and Minas (2015), inspired by the LL(1) parsing
method for context-free grammars, and working for a restricted class of HRG. The
algorithm runs in quadratic time in the size of the input graph. However, in the worst
case, the constructed grammar table used to drive the parser has size exponential in
the size of the input grammar. Björklund, Drewes, and Ericson (2016) also propose
a quadratic time parsing algorithm, for a restricted class of HRG generating directed
acyclic graphs, and discuss the relevance of this subclass for parsing of natural language
semantic representations.

The term string-to-graph parsing has been introduced in this article to denote the
problem of parsing a sequence of vertices into a graph using a graph grammar, in con-
trast to the graph parsing problem discussed above. We have already argued that these
two problems are incomparable and that, in the context of semantic analysis of natural
language, string-to-graph parsing is more relevant than graph parsing. Nonetheless, all
of the algorithms for natural language semantic analysis cited above solve the graph
parsing problem, that is, they take as input a completely specified graph, and we are
not aware of any published algorithm for string-to-graph parsing making use of a graph
rewriting grammar.

String-to-graph parsing is very closely related to the so-called problem of depen-
dency semantic parsing, where one is given an ordered sequence of vertices and has to
output a maximum weight graph defined over those vertices, representing a most-likely
semantic analysis of the associated sentence. In contrast with string-to-graph parsing,
dependency semantic parsing does not require any hardwired input grammar generat-
ing a set of valid graphs. In practice, in all of the approaches to dependency semantic
parsing we are aware of, the search space basically consists of every possible graph, and
the weight of each graph is defined using some general schema that provides weights
for elementary patterns appearing in the graph. More precisely, a pattern is either a
single arc, called a first order pattern, or else a more complex combination of k > 1 arcs,
called a k-th order pattern. The weight of a graph G is then computed by summing
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up the weight of each occurrence of a pattern in G, where different occurrences might
overlap in case of patterns of order higher than one. In this respect, we may therefore
view semantic dependency parsing as the grammarless version of string-to-graph pars-
ing, meaning that in the definition of the former problem the search space need not be
defined by a generative grammar. Dependency semantic parsing has been a prominent
shared task at recent editions of the International Workshops on Semantic Evaluation
(SemEval). See Oepen et al. (2014) and Oepen et al. (2015) for a quick overview of the
different approaches that have been evaluated.

Two grammarless algorithms for dependency semantic parsing are worth dis-
cussing here, since they are related to the dynamic programming approach that we use
in Section 5 to solve string-to-graph parsing for HRG. Kuhlmann and Jonsson (2015)
and Schluter (2015) have independently discovered essentially the same algorithm for
finding a maximum weight projective directed acyclic graph, given an input vertex
sequence w and using a first order model (a model using only first order patterns).
The term projective is a generalization to graphs of the same concept as used in
dependency trees: informally, a projective graph does not have two arcs that cross
each other, with respect to the ordering in w. The algorithm is based on the already
mentioned Cocke-Kasami-Younger algorithm for text-to-string parsing under a context-
free grammar (Aho and Ullman 1972). It explores projective graphs whose vertices span
a substring of w, and it does so by merging in some specific ways subgraphs with spans
that are “adjacent” in w. At the top of the merge operations, a Viterbi search is performed
to find the maximum weight graph(s). The algorithm runs in cubic time in the length
of w. Using the notation of Example 1, this algorithm uses q = 2, d = 2 and dr = 4, but
with the restriction that the attachment vertices of each subgraph are the same as the
vertices at the left and right boundaries of the span of the subgraph itself. This condition
rules out crossing arcs and is only possible because of the projective restriction on the
processed graphs. If we ignore the fact that Kuhlmann and Jonsson (2015) and Schluter
(2015) use a grammarless approach, the parsing algorithm we present in this article can
be viewed as a generalization of the work by those authors, since we relax the condition
d = 2 and we do not impose any restriction on the position of the attachment vertices.

Other grammarless algorithms for dependency semantic parsing have been re-
ported by Flanigan et al. (2014), who use maximum weight spanning techniques, and
by Damonte, Cohen, and Satta (2017) and Gildea, Satta, and Peng (2018), who use
special transition systems combined with greedy methods.

The connection between tree decomposition of a graph and hyperedge replacement
grammar rules, which we use in this article, was first made by Lautemann (1988). In
the context of natural language processing, the same idea has been previously exploited
by Jones, Goldwater, and Johnson (2013), who introduce a number of heuristics to find
tree decompositions of semantic graphs of natural language sentences. They extract
corresponding HRG rules and analyze the characteristics of the resulting grammars.
Unlike the methods we present in this article, the methods of Jones, Goldwater, and
Johnson (2013) do not refer to the natural language string corresponding to the semantic
graph, and therefore are not applicable to string-to-graph parsing.

In this article, we experiment with semantic datasets annotated according to the
linguistic formalism called Abstract Meaning Representation, described by Banarescu
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et al. (2013). A general discussion of alternative formalisms and linguistic graph banks
can be found in Kuhlmann and Oepen (2016).

2. Tree Decompositions and Parse Trees

The graphs that we use in this article have directed arcs, since this is a standard
requirement for semantic representation of natural language sentences. We denote a
directed graph as G = (V, E), where V is the set of vertices and E is the set of edges, that
is, ordered pairs of the form (v, u) with v, u ∈ V. A tree decomposition of G is a special
tree where each node is associated with a subset of V. Since a tree is a particular kind of
graph, to avoid confusion between the two we adopt the following convention: when
describing tree decompositions we use the terms node and arc, and when describing
graphs we use the terms vertex and edge.

Definition 1
Let G = (V, E) be a graph. A tree decomposition of G is a tree T = (N, A), where N
is a set of nodes and A is a set of directed arcs. Each node n ∈ N is associated with a
set Bag(n) ⊆ V, referred to as a bag, in such a way that the following properties are all
satisfied.

1. Vertex cover: The nodes of the tree T cover all the vertices of G:⋃
n∈N Bag(n) = V.

2. Edge cover: Each edge in G is included in some node of T. That is, for all
edges (u, v) ∈ E, there exists an n ∈ N with u, v ∈ Bag(n).

3. Running intersection: The nodes of T containing a given vertex of G form
a connected subtree of T. That is, for all n, n1, n2 ∈ N, if n is on the
(unique) path in T from n1 to n2, then Bag(n1)

⋂
Bag(n2) ⊆ Bag(n).

The width of a tree decomposition T is maxn∈N |Bag(n)| − 1. Let TD(G) be the set
of all valid tree decompositions of a graph G. The treewidth of G is the minimum width
over all tree decompositions of G:

tw(G) = min
T ∈ TD(G)
T = (N, A)

max
n∈N

|Bag(n)| − 1 .

We say that a tree decomposition T of G is optimal if its width equals tw(G).

Example 2
A graph G is displayed in Figure 3. More precisely, G has vertices V = {vi | 1 ≤ i ≤ 5}
and edges E = {(vi, vi+1) | 1 ≤ i ≤ 4} ∪ {(v1, v5)}. Figure 3 also presents a possible
tree decomposition T for G. Inside each node of T we display the corresponding bag. It
is easy to verify that the vertex cover and the edge cover properties from Definition 1
are both satisfied for T. As an example of the running intersection property, consider
vertex v3. This vertex appears in the bags of the nodes of T with labels [2, 3], [0, 3], [0, 5]
and [3, 5], which form a connected subtree of T. The largest size of a bag for T is 3,
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v1 v2 v3 v4 v5

{v1, v3, v5}

[0, 5]

{v1, v2, v3}

[0, 3]

{v1}

[0, 1]

{v3}

[2, 3]

{v3, v4, v5}

[3, 5]

{v4}

[3, 4]

Figure 3
Graph G (top) consisting of a single cycle and the vertex ordering v1v2v3v4v5. A possible tree
decomposition T (bottom) for G, which is also a parse tree for w. Bags and spans are depicted
inside and below circles, respectively. In each bag, we underline the vertex that is introduced at
the corresponding node of T.

and therefore the width of T is 2. It is possible to show that T is also an optimal tree
decomposition, that is, no tree decomposition of G has width smaller than 2.

Definition 1 can apply to either a directed or an undirected graph G: whether a tree
decomposition is valid does not depend on the direction of the edges of G. While a tree
decomposition is typically an undirected tree in the literature on tree decomposition,
in this article we will consider rooted trees with directed arcs. Furthermore, our tree
decompositions are ordered trees, meaning that there is a total ordering for the children
at any internal node. The direction and the ordering do not affect whether T is a valid
tree decomposition of G, but will be useful in describing our algorithms.

The tree decompositions we investigate in this article are all relativized to some
ordering w of the vertices of G that is provided as input. More specifically, we impose
that a tree decomposition T is a parse tree for w. Before presenting the mathematical
definition of parse tree, we informally introduce the basic idea. Let w = v1 · · · v|V|. For
each vi, there is a unique, designated node of T that is said to introduce vi, and each node
can introduce at most one vi. The nodes of T that introduce some vi are called anchored,
and the remaining nodes are called unanchored. We also require that internal nodes of T
have at most two children. Recall that T is an ordered tree, so that at each internal node
we may distinguish between left and right children. If T is a parse tree for w then, when
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we perform an in-order traversal of T and print vi whenever we visit the anchored node
that introduces vi, we obtain w.

We are now ready to introduce the mathematical definition of parse tree. For each
i, j with 0 ≤ i < j ≤ |V|, we write [i, j] to denote the set of vertices {vi+1, . . . , vj}. The
pair [i, j] is called a span of w.

Definition 2
Let w = v1 · · · v|V|. A parse tree for w is a tree where each node is associated with some
span [i, j] of w, and T’s root has span [0, |V|]. Each node of T is either an anchored or an
unanchored node, specified as follows.

1. An unanchored node has span [i, j] with j− i ≥ 2, and has left and right
children with spans [i, k] and [k, j], respectively, for some k with i < k < j.

2. An anchored node n with span [i, j] introduces a unique vertex vk ∈ [i, j].
We distinguish four cases, based on the position of vk in the substring
vi+1 · · · vj of w.

(a) If j− i = 1, then n is a leaf and k = j.
(b) If j− i ≥ 2 and k = i + 1, then n has only a right child, with span

[i + 1, j].
(c) If j− i ≥ 2 and k = j, then n has only a left child, with span [i, j− 1].
(d) If j− i ≥ 3 and k 6∈ {i + 1, j}, then n has left and right children with

spans [i, k− 1] and [k, j], respectively, for some k with i + 1 < k < j.

According to Definition 2, the span at each internal node n of T is always the union
of the following disjoint sets: the spans at the children (or at the single child) of n and,
if n is anchored, the set {v} where v is the vertex introduced at n. We also observe that
each vertex is introduced by exactly one node of T, and each node introduces at most
one vertex.

Example 3
Consider again the graph G and the tree decomposition T in Figure 3. Tree T is also a
parse tree for the vertex ordering w = v1v2v3v4v5, with both anchored and unanchored
nodes. When we underline a vertex vi in Bag(n), it means that n is an anchored node
introducing v.

The span of each node is also depicted at the bottom of the node itself. For instance,
the node with span [0, 5] is a binary unanchored node with left and right children having
span [0, 3] and [3, 5], respectively. The node with span [3, 5] is a unary anchored node,
introducing vertex v5 and with left child having span [3, 4]. Finally, the node with span
[0, 3] is a binary anchored node introducing vertex v2 and with left and right children
having span [0, 1] and [2, 3], respectively. The span [0, 3] is the union of the disjoint spans
at the children and the set {v2} containing the introduced vertex.

If we perform an in-order traversal of T and print the introduced vertices at each
anchored node, we obtain w. This fact is a general property of parse trees, and will be
proven below.

13
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To help the reader’s intuition, we observe that there is a strong similarity between
parse trees and trees generated by a context-free grammar whose rules are of the form

S→ SS, S→ SvS, S→ vS, S→ Sv, S→ v,

where S is a nonterminal symbol and v is a terminal symbol denoting any of the vertices
in w. The only difference is that in a parse tree T each vertex v is introduced by some
node n rather than being attached as a child node of n, as in the above grammar.

Consider now a node n of T with span [i, j], and let Tn be the subtree of T rooted
at n. We show by induction that an in-order traversal of Tn printing vi whenever we
visit an anchored node that introduces vi, results in the substring vi+1 · · · vj of w. In the
base case n is a leaf node, and we have j− i = 1. According to Definition 2, n introduces
vj, and therefore an in-order traversal of Tn prints the substring vi+1 · · · vj = vj. Assume
now that n is an anchored binary node, with left child nL having span [i, k− 1] and right
child nR having span [k, j], for some k with i+ 1 < k < j. According to Definition 2, node
n introduces vertex vk. By the inductive hypothesis an in-order traversal of TnL prints
vi+1 · · · vk−1 and an in-order traversal of TnR prints vk+1 · · · vj. We then have that an
in-order traversal of Tn prints vi+1 · · · vk−1 · vk · vk+1 · · · vj = vi+1 · · · vj. The remaining
cases for an internal node n can be dealt with in a similar way. Finally, from the above
property it follows that the set of vertices introduced by the anchored nodes within Tn
is [i, j], since [i, j] contains all and only the symbols in vi+1 · · · vj.

Definition 2 places constraints on the tree structure of the tree decomposition T,
based on the ordering w, but does not refer to the contents of the bag at each node of
T. Thus, the problem of finding a tree decomposition of G can be broken into the two
problems of, first, finding a parse tree for w and, second, identifying the vertices of G to
include in the bag at each node of T.

Notation. Throughout this article we use the following general notation for the vertices
in V and the nodes of T. For v ∈ V, we write N(v) to denote the set of all neighbors
of v; formally, N(v) = {u | (v, u) ∈ E or (u, v) ∈ E}. We also write T(v) to denote the
anchored node of T that introduces v. For each u ∈ N(v), we write T(v, u) to denote the
lowest common ancestor in T of the anchored nodes T(v) and T(u). Since each T(v, u),
u ∈ N(v), dominates T(v), nodes T(v, u) are all in a path from T(v) to T’s root. We then
write T(v, N(v)) to denote the highest node in such a path among all the nodes T(v, u),
u ∈ N(v).

3. Inside Tree Decomposition

Assume a graph G = (V, E), with V = {v1, . . . , v|V|}, and let v1 · · · v|V| be a string
representing an ordering of the vertices in V. In this section we introduce our first
family of tree decompositions, called inside tree decompositions, and show how to
compute optimal tree decompositions for this family. We use the notation T(v), T(v, v′)
and T(v, N(v)) introduced at the end of Section 2.

For our inside tree decompositions, we use a restricted version of the parse trees
in Definition 2. An inside parse tree is a parse tree that has anchored nodes only at its
leaves. Since internal nodes of an inside parse tree are all unanchored, there are only
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v1 v2 v3 v4 v5

{v1, v2, v5}

[0, 5]

{v1}

[0, 1]

{v2, v3, v5}

[1, 5]

{v2}

[1, 2]

{v3, v4, v5}

[2, 5]

{v3}

[2, 3]

{v4, v5}

[3, 5]

{v4}

[3, 4]

{v5}

[4, 5]

Figure 4
Graph G (top) consisting of a single cycle and the vertex ordering v1v2v3v4v5. A possible inside
tree decomposition T (bottom) for G and the given ordering. Bags and spans are depicted inside
and below circles, respectively.

binary nodes in these trees. Furthermore, in an inside parse tree the vertex ordering
v1 · · · v|V| can be directly obtained from the yield of the tree itself.

Definition 3
A tree decomposition T of G is an inside tree decomposition of G relative to vertex
order v1 · · · v|V| if the following conditions are both satisfied.

1. Tree T is an inside parse tree for v1 · · · v|V|.

2. Each vertex vi ∈ V appears in the bags at nodes T(vi, N(vi)) and T(vi),
and at each node on the path between these two nodes.
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4

1 2

5 3 6

124

123

135 236

Figure 5
Left: a graph G for which no inside tree decomposition is optimal. Right: an optimal tree
decomposition for G. Note that, regardless of which bag is chosen as the root, there exists a
vertex v such that the bags containing v are not all on a path from the root to a leaf.

Example 4
Consider again the graph G of Example 2, repeated for convenience at the top of
Figure 4, and the associated vertex ordering v1v2v3v4v5. There are several inside tree
decompositions of G, relative to v1v2 · · · v5, depending on the specific choice for the
topology of the underlying inside parse tree for v1v2 · · · v5. One possible inside decom-
position T is shown at the bottom of Figure 4. Inside each node of T we display the
corresponding bag. Anchored nodes appear all at the leaves of T. Following Example 3,
we underline the vertex in the bag that is introduced at each anchored node, even if
there is no ambiguity in this case, since each leaf has only one vertex in its bag.

Consider for instance vertex v3 with set of neighbors N(v3) = {v2, v4}. Node T(v3)

introduces v3 and has span [2, 3], node T(v3, v2) has span [1, 5], and node T(v3, v4) has
span [2, 5]. Then T(v3, N(v3)) = T(v3, v2), and v3 appears in the bags of all and only the
nodes in the path from T(v3) to T(v3, v2).

More interestingly, consider vertex v5 with N(v5) = {v4, v1}, and observe that v1 is
not adjacent to v5 in the given vertex order. Node T(v5) introduces v5 and has span [4, 5],
node T(v5, v4) has span [3, 5], and node T(v5, v1) has span [0, 5]. Then T(v5, N(v5)) =

T(v5, v1), and v5 appears in the bags of all and only the nodes in the path from T(v5) to
T(v5, v1).

We now show that any tree T specified as in Definition 3 is a valid tree decomposi-
tion of G, according to Definition 1. First, each vertex vi ∈ V is included in Bag(T(vi)),
satisfying the vertex cover condition. For each edge (v, v′) ∈ E, vertices v and v′ are
both included in Bag(T(v, v′)), satisfying the edge cover condition. Finally, for each
vertex vi ∈ V, all the nodes n of T such that vi ∈ Bag(n) form a subtree of T that is
simply the path starting at T(vi, N(vi)) and ending with T(vi). This satisfies the running
intersection condition.

Inside tree decompositions cannot always achieve optimal treewidth. This means
that there exist graphs G such that, regardless of the vertex order, no inside tree decom-
position of G achieves the width tw(G) of an optimal tree decomposition of G. We will
show this by means of an example.

Example 5
In this example we ignore edge directions in graphs as well as arc directions in tree
decompositions, since this information is not relevant in this case. Figure 5 shows a
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graph G and an optimal tree decomposition T of width 2. We show here that no inside
tree decomposition of G can achieve width 2.

We first show that any optimal tree decomposition must contain the bags shown in
Figure 5, arranged in the same general pattern. A clique is a set of vertices in a graph
with an edge joining each pair of vertices in the set. For each clique W in G, and for each
tree decomposition T′ of G, there must be a bag in T′ containing the vertices in W; this
is a well-known property of tree decompositions. To be optimal, T′ must have no bags
of more than three vertices. Hence, each bag in T appears as a bag of T′. Consider now
the three leaf bags in T. It can be easily verified that, for each of these bags, the path
in T′ to the bag 123 must not pass through any of the other leaf bags of T, because this
would violate running intersection. Hence, T′ must contain the basic structure shown
in T, possibly with additional bags interposed along the edges shown in T.

An inside tree decomposition is a rooted tree, and thus one of the bags shown in
T must appear closest to the root. By considering each of the four possibilities, one
can verify that, regardless of which bag is chosen as closest to the root, some vertex
is contained in bags in a path which travels up one branch of the tree and then down
another branch. But, in an inside tree decomposition, a vertex can only appear along a
path from one node up toward the root. Thus, the structure shown in T cannot appear
in an inside tree decomposition, and thus no inside tree decomposition can achieve the
optimal width tw(G).

We now consider the problem of taking as input a graph G = (V, E) and some
vertex order v1 · · · v|V|, and finding the optimal inside tree decomposition for G relative
to the given order. This is the inside tree decomposition having its largest bags with as
few vertices as possible. The problem is not trivial, since there is a valid inside tree
decomposition corresponding to any binary tree over the input, and the number of
such trees is not bounded by any polynomial in |V|. This problem can be broken into
two tasks: constructing the forest with all the skeleton structures of the tree decompo-
sitions, and performing a min-max search on the entire forest. We provide a dynamic
programming algorithm that intermixes the two tasks described above. The algorithm
is based on the Cocke-Kasami-Younger (CKY) algorithm for parsing using context-free
grammars (Aho and Ullman 1972).

We start by developing a characterization of the sets Bag(n). Recall that N(v) is the
set of all neighbors of v. We write I(i, j) to denote the set of vertices in [i, j] that have
neighbors outside of [i, j]:

I(i, j) = {v | v ∈ [i, j], u ∈ N(v), u 6∈ [i, j]} .

Theorem 1
Let T be an inside tree decomposition of G relative to v1 · · · v|V|, and let n be a node of
T with span [i, j]. Then the following conditions must hold.

1. If n is a leaf node introducing vertex vj, which implies i = j− 1, then
Bag(n) = {vj}.
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2. If n is an internal node whose children have spans [i, k] and [k, j],
respectively, then Bag(n) = I(i, k) ∪ I(k, j).

Conversely, any inside parse tree for v1 · · · v|V| meeting Conditions 1. and 2. above at
each node is an inside tree decomposition of G relative to v1 · · · v|V|.

Proof. We start with the first part of the statement of the theorem, and assume n is a
node of T with span [i, j].

Condition 1. Suppose n = T(vj), that is, n is the leaf node introducing vj and i =
j− 1. It follows directly from Definition 3 that Bag(n) = {vj}.

Condition 2. Suppose n is an internal node whose children have spans [i, k] and
[k, j], respectively. We first show I(i, k) ⊆ Bag(n). Let nL be the left child of n, which has
span [i, k]. Consider an arbitrary vertex v ∈ I(i, k). By the definition of I(i, k), there exists
a neighbor u ∈ N(v) that is outside of [i, k]. Then the least common ancestor of T(v) and
T(u), T(v, u), dominates nL, because nL dominates T(v) but not T(u). Node T(v, N(v))
also dominates nL, and therefore v appears in Bag(n) by Definition 3. Since v was
arbitrarily chosen in I(i, k), we conclude that I(i, k) ⊆ Bag(n). By the same reasoning,
I(k, j) ⊆ Bag(n).

In the other direction, we show that all vertices in Bag(n) appear in either I(i, k) or
I(k, j). First we note that Bag(n) ⊆ [i, j]. To see this, observe that each vertex v ∈ Bag(n)
appears only in bags on a path from T(v, N(v)) to T(v), where T(v) has span [k− 1, k]
for some k such that [k − 1, k] = {v} ⊆ [i, j]. Furthermore, if v ∈ [i, k] and if v has no
neighbors outside [i, k], then T(v, N(v)) will be below n, and v will not appear in Bag(n).
Thus v is in Bag(n) only if v has a neighbor not in [i, k], and hence v ∈ I(i, k), by the
definition of set I(i, k). Similarly, if v ∈ [k, j], v is in Bag(n) only if v has a neighbor not
in [k, j], and hence v ∈ I(k, j).

We now show the second part of the theorem. Let T be an inside parse tree.
Conditions 1. and 2. in the statement of the theorem specify a unique collection of bags
for the nodes of T. We also observe that Condition 2 in Definition 3 applies to any inside
parse tree for v1 · · · v|V|, and therefore to T as well, producing a unique collection of
bags for its nodes, and we have already shown above that the collections of bags for the
nodes of T produced by the two definitions are the same.

The important thing about Theorem 1 is that, in an inside tree decomposition, the
bag of an internal node n depends only on the span of n’s children. This means that, in
order to compute Bag(n), we do not need to store the bags at n’s children. This fact is at
the basis of our optimization method, which is reported in Algorithm 1.

Algorithm 1 computes quantities b(i, j) for each i, j with 0 ≤ i < j ≤ |V|, storing
one plus the minimum width among all inside tree decompositions with root span [i, j]
(we work in terms of bag size, which is width plus one). As already mentioned, the
algorithm follows the basic structure of the CKY chart parsing algorithm, adopting a
bottom-up strategy, and combines it with a min-max search. At line 3, we initialize
quantities b(i − 1, i) with the bag size of a leaf node, which is always one. At line 7,
we compute the maximum bag size of an inside decomposition formed by a root node
n with span [i, j] and with two children with span [i, k] and [k, j], respectively, that are
the roots of optimal inside decompositions. The maximum bag size is therefore the max

18



Gildea, Satta, and Peng

Algorithm 1 Computation of the width of an optimal inside tree decomposition of G
relative to v1 · · · v|V|.

1: procedure INSIDETREEWIDTH(G = (V, E), v1 · · · v|V|)
2: for each i do
3: b(i− 1, i)← 1

4: for each i, j in ascending order of j− i > 1 do
5: b(i, j)← +∞
6: for each k with i < k < j do
7: b← max{|I(i, k) ∪ I(k, j)|, b(i, k), b(k, j)}
8: b(i, j)← min{b(i, j), b}
9: return b(0, |V|)− 1

among the same value at the children decompositions and the size of the bag at n, which
only depends on the span of n’s children, by Theorem 1. At line 8 we store the running
minimum among the values computed at line 7. In this way, when we exit the for loop
of line 6, quantity b(i, j) stores the minimum width plus one among all decompositions
with root span [i, j]. Finally, we return b(0, |V|) − 1 which is the width of an optimal
inside tree decomposition of G relative to v1 · · · v|V|.

Theorem 2
Algorithm 1 finds the width of the optimal inside tree decomposition of the input graph
relative to the input vertex order v1 · · · v|V|.

Proof. Let k be the result of Algorithm 1 and let k∗ be the width of an optimal inside
tree decomposition. To show that k∗ ≤ k, let T be the tree visited by the dynamic
programming procedure of Algorithm 1 when applying the min operator at line 8. Tree
T is a binary tree having leaves corresponding to the vertices v1 · · · v|V|, and therefore
forms an inside parse tree. By the converse part of Theorem 1, the bags assigned by
Algorithm 1 form an inside tree decomposition, and Algorithm 1 returns the treewidth
of this tree decomposition, which cannot be smaller than k∗.

To show that k ≤ k∗, suppose that T∗ is an inside tree decomposition having the
optimal width. Each bag in T∗ must have the contents assigned by Algorithm 1 by the
first part of Theorem 1. By induction over nodes n in T∗ in bottom-up order, with [i, j]
the span of n, each quantity b(i, j) at the completion of the inner loop at line 6 can be
no larger than the maximum bag size of the subtree of T∗ rooted at n. Therefore the
treewidth returned by Algorithm 1 can be no larger than the treewidth of T∗.

We now analyse the computational complexity of Algorithm 1, and show how to
use this algorithm to retrieve optimal inside tree decompositions.

Theorem 3
An optimal inside tree decomposition of G relative to v1 · · · v|V| can be found in time
O(|V|3).
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Proof. We start by showing how to efficiently compute quantities I(i, j), which are taken
for granted by Algorithm 1. For each v ∈ V, let lm(v) be the leftmost neighbor of v,
relative to v1 · · · v|V|; assume lm(v) = v in case v has no left neighbors. Similarly, rm(v)
is the rightmost neighbor of v. We can efficiently compute lm(v) and rm(v) as follows.
Start with lm(v) = rm(v) = v for each v ∈ V. For each v ∈ V and each right neighbor u
of v, if v is at the left of lm(u) then update lm(u) with v. Similarly, for each left neighbor
u of v, if v is at the right of rm(u) then update rm(u) with v. This preprocessing can be
carried out in time O(|V|+ |E|).

Recall that I(i, j) consists of vertices in [i, j] with neighbors outside [i, j]. Thus v ∈
[i, j] belongs to I(i, j) if and only if either 1) v has a neighbor to the left of [i, j], in which
case lm(v) = vk with k ≤ i, or 2) v has a neighbor to the right of [i, j], in which case
rm(v) = vk with k > j. This can be used to compute I(i, j) for all i, j with 0 ≤ i < j ≤ |V|
in time O(|V|3).

Turning now to Algorithm 1, the loop structure results in O(|V|3) executions of
the innermost block at lines 7 and 8. Since I(i, j) ⊆ [i, j], as already observed, at line 7
we have that I(i, k) and I(k, j) are disjoint sets, and we can write |I(i, k) ∪ I(k, j)| =
|I(i, k)| + |I(k, j)|. We can therefore compute this quantity in time O(1), if we have
previously stored the size of each I(i, j). All of the remaining operations at lines 7
and 8 can be executed in time O(1) as well. We thus conclude that Algorithm 1 can
be implemented to run in time O(|V|3).

In order to be able to retrieve an optimal inside decomposition, we can modify
Algorithm 1 by saving so-called backpointers. These are the values of k at line 8 that
correspond to the computed minimum for each b(i, j). After the execution of Algo-
rithm 1, we start at b(0, |V|) and use the backpointers to retrieve the parse tree of
an optimal inside decomposition in time O(|V|). We can then annotate each node of
the tree with the associated bag in time O(b(0, |V|)) per node, using Theorem 1. We
therefore conclude that, after the execution of Algorithm 1, the process of retrieving
an optimal inside decomposition can be carried out in time O(|V| · b(0, |V|)), which is
in O(|V|2).

4. Outside Tree Decomposition

We introduce in this section an alternative tree decomposition, called outside, that is
complementary to the inside tree decomposition of Section 3. Informally, the inside tree
decomposition stores, at each bag, vertices inside the span that need to be connected
to the portion of the graph that lies outside of the span itself. Complementary to this,
the outside tree decomposition stores at each bag vertices outside the span that need to
be connected to the portion of the graph that lies inside the span. In what follows, we
assume the definitions of graph G = (V, E), vertex order v1 · · · v|V|, and span [i, j] from
Section 2.

Recall that N(v) is the set of all neighbors of v. We write O(i, j) to denote the set of
neighbors of vertices in [i, j] that are themselves outside the span:

O(i, j) = {u | v ∈ [i, j], u ∈ N(v), u 6∈ [i, j]} .
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We define an outside parse tree for v1 · · · v|V| to be a parse tree as in Definition 2 meeting
the following additional restriction: for every vertex v ∈ V such that [i, j] is the span
of T(v), and for every vertex u such that u ∈ N(v) and u ∈ O(i, j), node T(u) must
dominate T(v) in T. In words, we require that each neighbor u of v that is not introduced
below node T(v), must be introduced at some node of T that dominates T(v). From
this condition, it follows that for each (v, u) ∈ E, one node among T(v) and T(u) must
dominate the other in T.

Example 6
Consider again the graph G of Example 2, repeated for convenience at the top of
Figure 6, and the associated vertex ordering v1v2v3v4v5. A possible outside parse tree
for G and the given vertex order is displayed at the bottom of Figure 6. The span of
each node is depicted to the right of the node itself. Inside each node we report the
corresponding bag, which will be defined later and should be ignored for now, and we
underline the vertex that is introduced at the node itself.

There are no unanchored nodes in this outside parse tree. For instance, the node
with span [0, 5] is a unary anchored node, introducing vertex v1 and with right child the
node with span [1, 5]. The latter node is a binary anchored node having left child with
span [1, 3] and right child with span [4, 5], and introducing vertex v4. Finally, one can
check that, for each edge (v, u) of G, we have that either T(v) dominates T(u) or else
T(u) dominates T(v).

Definition 4
A tree decomposition T of G is an outside tree decomposition of G relative to vertex
order v1 · · · v|V| if the following conditions are both satisfied.

1. Tree T is an outside parse tree for v1 · · · v|V|.

2. Each vertex vi ∈ V appears in the bags at nodes T(vi), T(u), and at each
node on the path between these two nodes, for every u ∈ N(vi) such that
T(vi) dominates T(u).

Example 7
Consider again the graph G from Figure 6. The outside parse tree T at the bottom
of that figure is also an outside tree decomposition of G relative to vertex ordering
v1v2v3v4v5. To see this, consider for instance vertex v1 of G, having neighbor vertices
N(v1) = {v2, v5}. T(v1) is the anchored unary node with span [0, 5], T(v2) is the leaf
node with span [1, 2], and T(v5) is the leaf node with span [4, 5]. Since T(v1) dominates
T(v2), v1 appears in each bag in the downward path from T(v1) to T(v2). Similarly,
since T(v1) dominates T(v5), v1 appears in each bag in the downward path from T(v1)

to T(v5).

We now show that any tree T satisfying Definition 4 is a valid tree decomposition
according to Definition 1. We observe that each vertex v appears in Bag(T(v)), satisfying
the vertex cover condition. Furthermore, for each edge (u, v) ∈ E, vertices u, v both
belong to either Bag(T(u)) or Bag(T(v)), whichever is lower in the tree. This satisfies the
edge cover condition. Finally, we need to show that the running intersection condition
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v1 v2 v3 v4 v5

{ v1} [0, 5]

{v1, v4} [1, 5]

{v1, v3, v4} [1, 3]

{v1, v2, v3} [1, 2]

{v1, v4, v5} [4, 5]

Figure 6
Graph G (top) from Example 2 with associated vertex ordering v1v2v3v4v5. A possible outside
tree decomposition T (bottom) for G and the given ordering. Bags and spans are depicted inside
and to the right of circles, respectively. In each bag, we underline the vertex that is introduced at
the corresponding node of T.

is satisfied. Let v be an arbitrary vertex of G. According to Condition 2. in Definition 4,
node T(v) introducing v is the highest node in T with v in its bag. Furthermore, the
nodes of T such that v ∈ Bag(n) are placed in the paths from T(v) to the nodes T(u),
for every u ∈ N(v) such that T(v) dominates T(u). This means that the nodes of T with
v ∈ Bag(n) form a connected subtree of T rooted at T(v) and with leaves the nodes T(u)
above.

As already observed in Example 5, the inside tree decompositions of Section 3 are
sub-optimal, in the sense that, regardless of the vertex ordering, they might not be
able to provide the smallest possible width for a given graph. In contrast, outside tree
decompositions have this optimality property, as shown in the next theorem.

Theorem 4
Let G be some graph with vertex set V. Any tree decomposition of G can be transformed
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into an outside tree decomposition of G, relative to some ordering of V, preserving its
width.

Proof. Let T be an arbitrary tree decomposition of G. Choose an arbitrary node of T as
the root, add directions to each arc of T accordingly, and fix an arbitrary ordering for
the children at each internal node of T. The resulting tree decomposition is called T1. We
specify below a few steps that, starting from T1, construct new, intermediate decompo-
sitions T2, T3, T4 of G that are rooted, directed, binary ordered trees.

We need to introduce some auxiliary notation. Let v be an arbitrary vertex in V.
For a tree decomposition Ti, we write H(Ti, v) to denote the highest (closer to the root)
node of Ti whose bag contains v. Node H(Ti, v) is unique, since the running intersection
condition in Definition 1 states that the nodes in Ti that contain v in their bags are all
connected. Informally, we say that H(Ti, v) contains the highest occurrence of v.

r For each internal node n of T1 that has q > 2 children, we create q− 2 new
nodes that are placed intermediately between n and its children in T1, in
such a way that n and the new nodes are all binary. The bag at each
intermediate node is a copy of Bag(n). The resulting tree T2 is rooted and
binary, and is still a valid tree decomposition of G.r Assume there exists a node n of T2 that contains the highest occurrences of
vertices v1, . . . , vq, q ≥ 2, that is, we have H(T2, vi) = H(T2, vj) for every
i, j with i 6= j, 1 ≤ i, j ≤ q. Then we replace n by means of a unary chain of
q nodes n1, . . . , nq, whose bags are copies of Bag(n). Afterward, for each i
with 1 ≤ i ≤ q, we remove vertices vi+1, . . . , vq from ni.
If a unary node n of T2 does not contain the highest occurrence of any
vertex in V, then n must have a parent node np and Bag(n) ⊆ Bag(np). We
remove n and create a new arc joining np with the only child of n.
Let T3 be the tree obtained at this step. Note that T3 is still a valid tree
decomposition of G. This is because we have removed a vertex from bags
only when the associated nodes were the highest positions in the tree
containing the vertex, and had a single child containing the vertex.
Furthermore, we have removed nodes from the tree only when the
associated bags were included in the bag at the parent node. This
preserves the three properties in the definition of tree decomposition
(Definition 1). Finally, observe that each binary node in T3 may contain the
highest occurrence of at most one vertex, and each unary node contains
the highest occurrence of exactly one vertex.r We produce a tree T4 by pruning T3 as follows. Consider any pair of
vertices u, v such that u ∈ N(v) and such that H(T3, v) dominates H(T3, u).
If v has no neighbor vertex in any of the bags below node H(T3, u), then
we remove possible occurrences of v from the bags at each node below
H(T3, u). We then prune all nodes of T3 that have an empty bag. We call T4
the resulting tree. Again, it is not difficult to see that T4 is a valid tree
decomposition of G.
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We now argue that T4 is an outside tree decomposition of G, relative to some vertex
ordering. For any vertex v ∈ V, we let H(T4, v) be the anchored node introducing v. We
also need to assign a span to each node of T4. For each unary node n of T4, we arbitrarily
classify n’s child as a left child or else as a right child. We then perform an in-order visit
of T4, and print each vertex v when we encounter H(T4, v), that is, the node of T4 that
introduces v. Let v1 · · · v|V| be the resulting vertex ordering. For each node n of T4, let
vi+1 · · · vj be the substring of v1 · · · v|V| that is printed while visiting the subtree of T4
rooted at n. We associate n with the span [i, j].

The above span assignment satisfies the properties of the outside parse trees we use
for outside tree decompositions. In particular, for every node H(T4, v) with span [i, j]
and for every vertex u ∈ N(v) such that u ∈ O(i, j), we have that H(T4, u) dominates
H(T4, v). To see this, we observe that H(T4, u) cannot be dominated by H(T4, v), since
u ∈ O(i, j). Furthermore, if H(T4, u) does not dominate H(T4, v), then there would be
no node n in T4 such that u, v ∈ Bag(n). Since v and u are joined by some edge of G, this
violates the edge cover condition in Definition 1, against the fact that T4 is a valid tree
decomposition of G.

We now show a mathematical property that characterizes the family of outside tree
decompositions. This property will be used later in the design of a dynamic program-
ming algorithm that computes optimal outside tree decompositions of G.

Theorem 5
Let T be an outside tree decomposition of G relative to v1 · · · v|V|, and let n be a node of
T with span [i, j]. Then the following conditions must hold.

1. If n is an unanchored (binary) node whose children have spans [i, k] and
[k, j], respectively, then O(i, k) ∩ [k, j] = ∅, [i, k] ∩O(k, j) = ∅, and
Bag(n) = O(i, j).

2. If n is an anchored binary node whose children have spans [i, k− 1] and
[k, j], respectively, then O(i, k− 1) ∩ [k, j] = ∅, [i, k− 1] ∩O(k, j) = ∅, and
Bag(n) = O(i, j) ∪ {vk}.

3. If n is an anchored unary node or an anchored leaf node (with j = i + 1 if n
is a leaf) introducing a vertex v, then Bag(n) = O(i, j) ∪ {v}.

Conversely, any parse tree for v1 · · · v|V| with nodes meeting Conditions 1. to 3. above
is an outside parse tree and an outside tree decomposition of G relative to v1 · · · v|V|.

Proof. We start with the first part of the statement of the theorem, and assume n is a
node of T with span [i, j]. We separately prove Conditions 1. to 3.

Condition 1. Let nL be the left child of n and nR be the right child. Consider a vertex
u ∈ O(i, k). According to the definition of outside parse tree, T(u) dominates nL, so T(u)
is not in the subtree of T rooted at nR and u 6∈ [k, j]. Thus O(i, k) ∩ [k, j] = ∅. A similar
argument shows that [i, k] ∩O(k, j) = ∅.

Consider now u ∈ O(i, j). By the definition of O(i, j), u 6∈ [i, j] and there must exist
a vertex v ∈ [i, j] such that u ∈ N(v). According to the definition of outside parse tree,
node T(v) must be either in the subtree rooted at nL or in the subtree rooted at nR, and
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T(u) must dominate the root of that subtree. Then u appears in Bag(n) by Definition 4.
This shows that O(i, j) ⊆ Bag(n).

In the other direction, let u ∈ Bag(n). There must exist a vertex v such that u ∈
N(v), with T(v) below n and T(u) dominating T(v). Thus v ∈ [i, j], while u 6∈ [i, j], and
therefore u ∈ O(i, j). We conclude that Bag(n) ⊆ O(i, j).

Condition 2. Relations O(i, k − 1) ∩ [k, j] = ∅ and [i, k − 1] ∩ O(k, j) = ∅ can be
shown using the same argument of Condition 1.

We now show O(i, j) ∪ {vk} ⊆ Bag(n). Since n = T(vk), vk ∈ Bag(n) directly fol-
lows from Definition 4. Let u ∈ O(i, j). Again, u 6∈ [i, j] and there must exist v ∈ [i, j]
such that u ∈ N(v). Since n is an anchored node, we could have n = T(v) (which implies
v = vk) or else T(v) is in one of the two subtrees rooted at the left child or at the right
child of n, respectively. In both cases we have that T(u) dominates n, and thus u appears
in Bag(n) by Definition 4. We therefore conclude that O(i, j) ⊆ Bag(n).

In the other direction, let u ∈ Bag(n). If u = vk we are done. Assume now that u 6=
vk. There must exist a vertex v such that u ∈ N(v), with T(v) in the subtree rooted at
n and T(u) dominating T(v). Thus we have v ∈ [i, j] and u 6∈ [i, j], and therefore u ∈
O(i, j). We conclude that Bag(n) ⊆ O(i, j).

Condition 3. For an outside parse tree, we can consider both anchored unary nodes
and anchored leaf nodes as special cases of an anchored binary node. Thus Bag(n) =
O(i, j) ∪ {v} can be shown using an argument very similar to Condition 2.

We now prove the converse part of the theorem. We start by showing that a parse
tree T meeting the empty intersection requirements in Conditions 1. and 2. is an outside
parse tree. More precisely, we need to show that for every pair of vertices v, u with
u ∈ N(v), if T(v) does not dominate T(u) then T(u) must dominate T(v). Consider
such a pair v and u. Suppose that, contrary to the theorem, T(u) does not dominate
T(v). Let then n be the least common ancestor of T(u) and T(v). Since T(u) and T(v)
are not in a dominance relation, n must be a binary node with children nL and nR: we
consider the case in which T(v) is in the subtree rooted at nL, and T(u) is in the subtree
rooted at nR (the other case is symmetrical). Let [k, `] be the span of n, [k, m] be the
span of nL and [m′, `] be the span of nR, where m′ = m if n is an unanchored node, and
m′ = m + 1 if n is anchored. We then have u ∈ O(k, m) ∩ [m′, `], which violates one of
the empty intersection requirements in either Condition 1. or Condition 2. We therefore
conclude that T(u) must dominate T(v).

To complete the proof of the converse part of the theorem, we need to show that if
Conditions 1. to 3. are met by the outside parse tree T above, then T is an outside tree
decomposition of G relative to v1 · · · v|V|. But we have already shown above that, for an
outside parse tree, the collection of bags specified by Condition 2. in Definition 4 and
the collection of bags specified by Conditions 1. to 3. are the same.

Similarly to the previous section, the importance of Theorem 5 is that we can
reconstruct each set Bag(n) only on the basis of its span and the spans of its children. In
this way, we can avoid storing the bags at T’s nodes. In addition, we will use Theorem 5
to enforce on a generic parse tree the condition on branching structure for outside parse
trees.

Algorithm 2 computes quantities b(i, j) for each i, j with 0 ≤ i < j ≤ |V|, with the
same meaning as in Algorithm 1 but relative to the outside tree decomposition. The idea
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underlying Algorithm 2 is very similar to the one already discussed for Algorithm 1,
and the correctness of Algorithm 2 directly follows from Theorem 5. To simplify the
structure of the algorithm, we treat unary anchored nodes as binary anchored nodes for
which one of the two child spans is empty. For this reason, for every i with 0 ≤ i ≤ |V|,
we define the null span [i, i] to be the empty set and, accordingly, we let O(i, i) be the
empty set. We use this in line 12. Furthermore, we define b(i, i) to be zero in line 4, such
that this term does not affect the bag size of a unary node in the maximum operation of
line 13.

Algorithm 2 Computation of the optimal width of G for outside tree decomposition.
1: procedure OUTSIDETREEWIDTH(G = (V, E), v1 · · · v|V|)
2: for each i do
3: b(i− 1, i)← |O(i− 1, i)|+ 1 . anchored leaf nodes
4: b(i, i)← 0 . used for unary nodes in line 13

5: for each i, j in ascending order of j− i ≥ 2 do
6: b(i, j)← +∞
7: for each k with i < k < j do . unanchored nodes
8: if O(i, k) ∩ [k, j] = ∅ and [i, k] ∩O(k, j) = ∅ then
9: b← max{|O(i, j)|, b(i, k), b(k, j)}

10: b(i, j)← min{b(i, j), b}
11: for each k with i < k ≤ j do . anchored nodes
12: if O(i, k− 1) ∩ [k, j] = ∅ and [i, k− 1] ∩O(k, j) = ∅ then
13: b = max{|O(i, j)|+ 1, b(i, k− 1), b(k, j)}
14: b(i, j)← min{b(i, j), b}
15: return b(0, |V|)− 1

Theorem 6
Algorithm 2 finds the width of the optimal outside tree decomposition of the input
graph relative to the input vertex order.

Proof. This can be shown using Theorem 5 and applying essentially the same argument
developed in the proof of Theorem 2.

Theorem 7
An optimal outside tree decomposition of G relative to v1 · · · v|V| can be found in time
O(|V|3).

Proof. The loop structure of Algorithm 2 is that of standard CKY parsing, givingO(|V|3)
running time, if we assume that the intersection and cardinality operations on the sets
O(i, j) can be performed in constant time. This is possible using some preprocessing, as
we now explain in detail.

For each i, j with 0 ≤ i < j ≤ |V|, we first define N(i, j) to be a vector such that
N(i, j)[k], 1 ≤ k ≤ |V|, is the number of vertices in the span [i, j] that have vertex vk as a
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neighbor:

N(i, j)[k] = | {v | (v, vk) ∈ E or (vk, v) ∈ E, v ∈ [i, j]} | .

The above vectors can be computed by letting N(i − 1, i)[k] = 1 if (vi, vk) ∈ E or
(vk, vi) ∈ E, and letting N(i− 1, i)[k] = 0 otherwise. We then use the recurrence relation
N(i, j)[k] = N(i, j− 1)[k] + N(j− 1, j)[k]. The entire computation can be carried out in
time O(|V|3).

Algorithm 2 needs the cardinality of sets O(i, j), which can be computed from N(i, j)
in time O(|V|) for fixed i and j. The algorithm also requires intersecting O(i, j) with
spans that are either immediately adjacent to span [i, j], or else separated from [i, j] by a
single vertex vi or vj+1. We precompute the highest index l0(i, j) less than or equal to i
and the highest index l1(i, j) less than or equal to i− 1 of a vertex in O(i, j):

l0(i, j) = max{k | k ≤ i, N(i, j)[k] > 0} ,

l1(i, j) = max{k | k ≤ i− 1, N(i, j)[k] > 0} .

To determine whether an intersection such as [i, k] ∩O(k, j) is empty, we simply com-
pare l0(k, j) to i. Symmetrical quantities can be precomputed to determine whether
O(i, k) ∩ [k, j] is empty. In summary, after O(|V|3) preprocessing time, all set opera-
tions in Algorithm 2 can be performed in constant time, yielding overall running time
of O(|V|3).

Similarly to the proof of Theorem 3, we can augment Algorithm 2 by saving
backpointers, that is, values of k at lines 10 and 14 that correspond to the computed
minimum for each b(i, j). Backpointers can later be used to retrieve optimal outside
decompositions in time O(|V|). We can then annotate each node of the tree with the
associated bag in time O(b(0, |V|)) per node, using Theorem 5.

5. String-To-Graph Parsing

In this section we discuss the problem of string-to-graph parsing, as defined in Section 1,
in the context of the formalism of Hyperedge Replacement Grammars (HRGs). We
briefly introduce HRG and then show how to extract HRGs from the tree decomposi-
tions developed in Sections 3 and 4. We also introduce a linguistically motivated model
to score graphs, and develop a polynomial time (and space) algorithm for string-to-
graph parsing using the extracted HRGs and the proposed model.

5.1 Hyperedge Replacement Grammars

HRGs are a general graph rewriting formalism (Drewes, Kreowski, and Habel 1997),
which generalizes Context-Free Grammars to generate graphs rather than strings. For-
mally, an HRG is defined by a tuple (N, Σ, R, S), where N is a ranked alphabet of hy-
peredge labels called nonterminals, Σ is an alphabet of edge labels called terminals with
N ∩ Σ = ∅, R is a set of rules, and S ∈ N is a distinguished start symbol. Hyperedges
are graph edges that may connect to an arbitrary number of vertices, rather than to
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Figure 7
HRG rules (left column) extracted from the tree decomposition of Figure 6. The derivation (right
column) of the graph of Figure 6 using the extracted grammar.

two vertices as in the standard definition of an edge. The vertices that a nonterminal
hyperedge connects to are known as its attachment vertices, and form an ordered
set. A nonterminal symbol A ∈ N of rank r has r attachment vertices. In the example
HRG depicted in Figure 7, hyperedges are represented with squares, and the order of
attachment vertices is indicated by the numbers adjacent to the lines connecting each
hyperedge to its attachment vertices.
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Each rule in R has the form A→ h, where A ∈ N, and h is a hypergraph. The
rule indicates that we can replace any instance of A with a copy of h, consisting of
new nonterminal hyperedges and new terminal edges. The attachment vertices of the
left-hand side nonterminal hyperedge A are also vertices of the right-hand side graph
fragment h. To show this correspondence, in Figure 7, the numbers below vertices in the
right-hand side graph fragment of each rule correspond to the attachment vertices of
the left-hand side nonterminal hyperedge.

An HRG derivation starts with the distinguished start symbol S (which has zero
attachment vertices), and proceeds by applying grammar rules to replace nonterminal
hyperedges one at a time until no nonterminals are left. As with context-free grammars,
a rule may apply whenever its left-hand side nonterminal is seen, regardless of any
other features of the derivation.

Example 8
In the grammar in the left column of Figure 7, we have a rule with left-hand side
hyperedge B with two attachment vertices. Attachment vertices are numbered with
integers 1 and 2 at the lines connecting the hyperedge to its attachment vertices, and
integers 1 and 2 also label the vertices at which the graph fragment in the right-hand
side is attached to the rest of the graph. This rule rewrites B into a graph fragment
consisting of a new nonterminal hyperedge D and a terminal edge. In the derivation in
the right column of Figure 7, a hyperedge labeled B impinges upon vertices v1 and v4.
When B is rewritten by the above rule, the right-hand side graph of that rule is attached
to the graph being derived, at vertices v1 and v4 which correspond to the attachment
vertices. As a result, a new hyperedge D is introduced incident upon v1 and v3, and a
new terminal edge is introduced incident upon v3 and v4.

Because rewriting is carried out independently of the derivation context, an HRG
derivation of a graph G can be viewed as a derivation tree T. This tree has a grammar
rule at each node, where the rule expanding a nonterminal hyperedge is a child of the
rule that introduced the nonterminal in its right-hand side. The derivation tree provides
a tree decomposition of the derived graph. More precisely, the tree decomposition has
the same nodes and the same branching structure as the derivation tree, and each bag
in the tree decomposition contains all the vertices that appear in the right-hand side of
the rule. The derivation tree must satisfy the three properties in the definition of a tree
decomposition:

1. Vertex cover: Each vertex in G must be generated by some rule in the HRG
derivation tree T.

2. Edge cover: Each edge (u, v) in G must also be generated by some rule r,
and therefore both u and v appear in the righthand side of r, and in the
node for r in T.

3. Running intersection: Any vertex v of G is first generated by some rule r of
T. Vertex v can only appear in another rule r′ if it is connected to the
lefthand side nonterminal of r′, and therefore appears in the parent of r′ in
T. Thus, all occurrences of v form a connected subtree of T.
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See also Lautemann (1988) for further discussion.

5.2 HRG Extraction

We have shown that a derivation of a graph by an HRG can be viewed as a tree decom-
position of the graph itself. Conversely, it is also possible to extract HRG rules from a
tree decomposition of a graph. In this process, which we describe precisely below, each
node n in the tree decomposition becomes a rule rn in the extracted grammar, and the
arcs from node n to its children are the nonterminals in the righthand side of the rule rn.
An example of an extracted grammar is shown in Figure 7 and is discussed in Example 9
below. This grammar was extracted from the outside tree decomposition of Figure 6.

The process of grammar extraction from a tree decomposition begins by assigning
each edge in the graph to a node in the tree decomposition: the definition of tree
decomposition (Definition 1) ensures that this is always possible. We next construct the
nonterminals and the rules of the grammar.r We extract the set of nonterminal symbols of the grammar from the arcs in

the tree decomposition. In Figure 7, nonterminal symbols A, B, C, and D
were assigned arbitrarily; other schemes for choosing nonterminal
symbols in the extracted grammar are also possible, as will be discussed in
the next subsection. For an arc (n, n′) of the tree decomposition, consider
the associated bags Bag(n) and Bag(n′), respectively. The set of vertices
Bag(n) ∩ Bag(n′), known as the arc’s separator, are the attachment vertices
of the corresponding HRG nonterminal, that is, the vertices to which the
nonterminal was connected before being rewritten.r We extract the set of rules of the grammar from the nodes in the tree
decomposition. The rule at a given node rewrites the nonterminal at the
node’s incoming arc to the nonterminals at the node’s outgoing arcs, and
also produces the edges of the original graph that are assigned to this bag.
All of the vertices in the bag are vertices of the (hyper)graph fragment in
the right-hand side of the extracted rule. This includes vertices that are
attachment vertices of the nonterminal hyperedges in the left- and
right-hand side of the rule, as well as vertices not connected to any
hyperedge, that is, vertices that appear in this bag but are not part of the
neighbor bags in the tree decomposition.

Example 9
Coming back to our running example, consider the outside tree decomposition of
Figure 6 and the node n with span [1, 5] and Bag(n) = {v1, v4}. We extract from n the
HRG rule in the left column of Figure 7 that rewrites hyperedge A into hyperedges B
and C. Note that A has a single attachment vertex, obtained as the intersection of Bag(n)
and the bag at n’s parent. Both B and C have two attachment vertices, obtained as the
intersection of Bag(n) and the bag at n’s left and right child, respectively.

As an example of a leaf node in the tree decomposition, consider node n′ with
span [4, 5] and Bag(n′) = {v1, v4, v5}. We extract from n′ the HRG rule that rewrites
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hyperedge C. Because this bag is a leaf of the tree decomposition, the corresponding
HRG rule has no righthand side nonterminal hyperedges. The nonterminal hyperedge
C has two attachment vertices, corresponding to the intersection of the bags at n′ and its
parent. The rule produces one additional vertex, corresponding to the vertex v4, which
is in Bag(n′) and not in the bag at its parent.

The process of rule extraction described above can be applied to any tree decom-
position, even when the vertices of the graph are unordered. For the task of string-to-
graph parsing, in which the input string represents an ordered sequence of vertices, we
augment the rule extraction process by assigning an order to the vertices within each
rule — this is the order in which the vertices of the bag appear in the original graph,
and is shown in Figure 7 by the left to right position of vertices in each rule’s right-hand
side.

We further augment each rule by designating which of the rule’s vertices are an-
chored, if any. Each vertex in the original graph must appear as an anchored vertex
in exactly one of the extracted rules. When extracting HRG rules from an inside tree
decomposition, only the leaf nodes contain anchored vertices, in particular the single
vertex in the leaf’s span. When extracting HRG rules from an outside tree decomposi-
tion, the anchored vertices of a rule consist of the anchored vertices at the corresponding
node in the outside parse tree defined in Section 4. For both types of tree decomposition,
there are either zero or one anchored vertices in each rule.

5.3 Scoring Graphs

We now develop an algorithm for finding the best scoring graph under a general
framework which allows the score of each rule in the HRG derivation to depend on
the positions of the rule vertices in the input string. Mathematically, we require that the
score of the output graph must decompose over the rules in the HRG derivation:

score(G) = ∏
r

score(r, φ) , (1)

where the score of each rule is a function of the mapping φ from the rule’s vertices to
positions in the input string, and the score function may depend on any features of
the input string, which is fixed during parsing. The function φ performs a role similar
to lexicalization in parsing with context-free grammars. For example, consider a rule r
with two vertices in its right-hand side, producing a terminal edge with a label “ARG1”
from vertex 1 to vertex 2. Then score(r, {1→ 6, 2→ 7}) may be high if vertex 6 of the
input sentence is the word “drink” and vertex 7 is the word “water”. In general, the
function φ provides a form of lexicalization parameterized by not just one or two words
as is generally the case with lexicalized CFG parsing, but rather parameterized by as
many words as there are vertices in the right-hand side of the HRG rule.

5.3.1 Valence/relation model. As a concrete, linguistically motivated example of the
general model in (1) for scoring graphs, we define a specific model for scoring graphs
in terms of individual relations they contain. This model is based on the idea that each
word in an input sentence has a valence, specifying the set of relations in which it partic-
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ipates, and that each relation selects for vocabulary items in its two argument positions.
We define this model to provide an example of how the general form of (1) relates to
specific features that one would want in a system for semantic parsing. Equation (1)
is very general and subsumes many models more complex than the valence/relation
model.

The valence/relation model is similar to many models used in practice in semantic
and syntactic parsing, including the DMV model for unsupervised parsing of Klein
and Manning (2004) and the semantic parsing model of Toutanova, Haghighi, and
Manning (2005), among many others. So-called “arc-factored” models in dependency
parsing correspond to the relation model without valence, and have been found not to
achieve state-of-the-art results. The best parse of a sentence under the valence/relation
model can be found with the algorithm that will be presented in Section 5.4. The best
parses for either the valence model or the relation model on their own can be found
more efficiently. The joint valence/relation model is the simplest model we have found
that illustrates the power of the general HRG parsing algorithm and the importance of
finding rules with low treewidth.

We assume that the score of a semantic graph can be decomposed into two types of
terms:

score(G) = val(G)rel(G) . (2)

The first term in the right-hand side of (2), which we call the valence term, assigns a
score to each word in the input sentence as a function of the set of relations that the
word participates in, or, in terms of the graph, the multiset of labels of the edges of the
graph having a vertex vi as an endpoint:

val(G) = ∏
vi∈V

val(vi, out(vi), in(vi)) ,

in(vi) =
{
` | (vj, vi, `) ∈ E

}
,

out(vi) =
{
` | (vi, vj, `) ∈ E

}
,

where in(vi) and out(vi) are multisets, that is, they also account for the multiplicity of
their elements.

The second term in (2), which we call the relation term, assigns a score to each
relation as a function of the two words involved. In terms of the graph, this translates
into a score for each edge, which is defined as a function of the edge label and vertices
at the two endpoints of the edge:

rel(G) = ∏
(vi ,vj ,`)∈E

rel(vi, vj, `) .

In the extracted HRG, the valence of a vertex is determined by the rule at which the
vertex is anchored. In addition, grammar nonterminals are used along the derivation
to enforce the valence constraints at each of their attachment vertices, by tracking how
many of the edge labels remain to be generated. Informally, for each of its attachment
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v1 v2 v3 v4 v5

a b c d

e

Figure 8
A graph with labeled edges.

vertices, a nonterminal encodes a multiset of edge labels. When the nonterminal takes
part in a derivation, the multiset records how many of the edge labels specified by
the valence constraint at the attachment vertex remain to be generated. More precisely,
consider a rule r of an extracted HRG, and let v be the vertex anchored at r. With an HRG
extracted from an outside tree decomposition, all edges incident upon v are produced
either at r itself, or else at some rule below r in the derivation. A grammar nonterminal
therefore indicates which edge labels must be generated below that nonterminal in the
derivation. With an HRG extracted from an inside tree decomposition, all edges incident
upon v are produced at some rule above r in the derivation. A grammar nonterminal
therefore tracks which edge labels have been already generated above that nonterminal
in the derivation. To generalize to other possible types of tree decomposition, we can
indicate, for each edge in a nonterminal’s description, whether it is to be produced in-
side the subtree rooted at the nonterminal, or else whether it has already been produced
outside the subtree rooted at the nonterminal.

Example 10
Let us consider an outside tree decomposition of a graph. We demonstrate how to
extract an HRG that generates the graph according to the valence/relation model.
Figure 9 shows an example grammar along with a derivation. The grammar has been
extracted from an outside tree decomposition of the edge labeled graph in Figure 8,
where the tree decomposition has the same shape as the one in Figure 6.

The grammar nonterminals in Figure 9 specify, for each of their attachment vertices,
the multiset of edge labels to be produced on outgoing edges, and the multiset of edge
labels to be produced on incoming edges. As already mentioned, these edge labels
must be generated below the nonterminal, since the grammar has been extracted from
an outside tree decomposition. For instance, the binary rule r in Figure 9 expands a
nonterminal symbol (1 : {a, e}, {}). This symbol states that at attachment vertex 1 two
outgoing edges are still missing, with labels a and e, while no incoming edge needs to
be generated for this vertex. Rule r produces nonterminals (1 : {a}, {}; 2 : {}, {c}) and
(1 : {e}, {}; 2 : {d}, {}). From these nonterminals we see that the generation of label
a is dispatched to the first nonterminal and the generation of label e is dispatched to
the second nonterminal. Furthermore, a new vertex v is introduced by r, connected
to attachment vertex 2 of both the first and the second nonterminals in r’s right-hand
side. According to the tree decomposition in Figure 6, vertex v is anchored at r and the
valence constraint for v is determined at r itself. Specifically, v needs an outgoing edge
with label d and an incoming edge with label c, which are dispatched to the first and
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S →
1 : {a, e}, {}

1

anchored: {(1, {a, e}, {})}

1 : {a, e}, {}

1 →

1

1 : {a}, {}
2 : {}, {c}

1
2

1 : {e}, {}
2 : {d}, {}

1
2

anchored: {(2, {d}, {c})}

1 : {a}, {}
2 : {}, {c}
1 2 →

1 2

c

1 : {a}, {}
2 : {}, {b}

1 2

anchored: {(2, {c}, {b})}

1 : {e}, {}
2 : {d}, {}
1 2 →

1 2
d

e

anchored: {(3, {}, {d, e})}

1 : {a}, {}
2 : {}, {b}
1 2 →

1

a

2

b

anchored: {(2, {b}, {a})}

S

1 : {a, e}, {}

v1

1 : {a}, {}
2 : {}, {c}

1 : {e}, {}
2 : {d}, {}

v1 v4

1 : {a}, {}
2 : {}, {b}

1 : {e}, {}
2 : {d}, {}

v1 v3 v4

c

1 : {a}, {}
2 : {}, {b}

v1 v3 v4 v5

c d

e

v1 v2 v3 v4 v5

a b c d

e

Figure 9
HRG rules (left column) extracted from the graph G of Figure 8, and a derivation (right column).
Grammar nonterminals track which edges that were required by the valence remain to be
produced

to the second nonterminals, respectively, in r’s right-hand side. These two edge labels
are later generated by the two unary rules which expand the two nonterminals in r’s
right-hand side.

For a rule r, we define edges(r) as the set of (terminal) edges in the rule’s right-
hand side. We also define anchored(r) to be a set of triples (i, out, in), where i is a vertex
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Algorithm 3 HRG parsing with edge weights.
1: procedure HRGPARSE(v1 · · · v|V|, HRG rules)
2: for each i, j do . initialize chart
3: for each r, φr|A with A the left-hand side of r do
4: δ(A, i, j, φr|A)← −∞

5: for each i do . terminal rules
6: for each r : A→ ∅ do
7: for each φr with anchored vertex fixed to vi do
8: δ(A, i− 1, i, φr|A)← score(r, φr)

9: for each i, j in ascending order of j− i > 1 do . binary rules
10: for each k with i < k < j do
11: for each rule r : A→ BC do
12: for each φr with anchored vertex of r (if any) fixed to vk do
13: b← δ(B, i, k, φr|B) δ(C, k + α(r), j, φr|C) score(r, φr)

14: δ(A, i, j, φr|A)← max{δ(A, i, j, φr|A), b}
15: return δ(S, 0, |V|, ∅)

anchored in the rule r, out is the multiset of labels of i’s outgoing edges in the final graph
to be generated, and in is the multiset of labels of i’s incoming edges. In the specific case
of HRGs extracted from inside or outside tree decompositions, anchored(r) contains at
most one element; for more general cases, this set might contain more than one element.
The valence/relation model can be put into the general form in (1) by assigning the
score of each edge to the rule that produces it, and the valence score of each vertex to
the unique rule at which the vertex itself is anchored:

score(r, φ) = ∏
(i,out,in)∈anchored(r)

val(φ(i), out, in) ∏
(i,j,`)∈edges(r)

rel(φ(i), φ(j), `) .

5.4 Parsing Algorithm

We show in this section one of the main results of this article, namely that string-to-
graph parsing can be carried out in polynomial time (and space) for HRGs extracted
from inside or outside tree decompositions of bounded treewidth. We do so by pre-
senting a dynamic programming algorithm for string-to-graph parsing, formulated in
an abstract form that works for both inside and outside HRGs. The algorithm takes as
input a string representing an ordered sequence of vertices, and an HRG augmented as
described in Section 5.3.1, and it finds the graph over the input string with the highest
score according to the scoring function in (1).

We need to introduce some additional notation. We schematically write A→ BC
and A→ ∅ to denote HRG rules having two and zero nonterminal hyperedges, respec-
tively, in their right-hand side. In order to simplify the presentation of the algorithm,
we omit the unary rules of outside HRGs: one can easily process those rules by treating
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them as a special case of the anchored binary rules. Following Section 5.3, for an HRG
rule r we write φr to denote a mapping of the vertices in the right-hand side of r to
positions in the input string. If A is a hyperedge nonterminal appearing in the left-hand
side or in the right-hand side of r, we also write φr|A to denote the restriction of φr to
the attachment vertices of A.

The pseudocode for our method is reported in Algorithm 3. The algorithm is very
similar to the CKY method for parsing based on context-free grammars in Chomsky nor-
mal form. Given as input a string v1 · · · v|V|, the algorithm uses a (|V|+ 1)× (|V|+ 1)
array δ to store the score of optimal subderivations. More precisely, consider a substring
s = vi+1 · · · vj of the input along with some mapping φr|A of the attachment vertices
of nonterminal A to positions in the input string. Then we store in δ(A, i, j, φr|A) the
score of an optimal derivation by the grammar of a graph fragment spanning s and with
attachment vertices provided by φr|A. In this way, if S is the start symbol of the grammar,
δ(S, 0, |V|, ∅) provides the maximum score of any graph over the input string.

The main difference with respect to the CKY algorithm is that, in addition to the
computation of the rule endpoints i, j and k, we must also specify the location in the
input string of the endpoints of any other vertices used in the current rule, in order to
evaluate the rule’s score, and to ensure consistency with other rules in the derivation.
This necessitates an additional loop over all possible choices for the mapping φr, which
maps vertices of the HRG rule to positions in the input string. In general, the range
of the function φr can contain either vertices inside the span [i, j] of the current CKY
combination step, or vertices outside the span [i, j]. When using a grammar extracted
from inside tree decompositions, φ will only refer to vertices inside [i, j], and when
using a grammar extracted from outside tree decomposition, φ will only refer to vertices
outside [i, j].

Each terminal rule r : A→ ∅ is processed by the nested loops at line 5 by anchoring
it to some vertex vi. In case of inside HRGs, vi is the only attachment vertex for r’s right-
hand side. In case of outside HRGs, the attachment vertices are the neighbors of vi,
which are selected through the choice of mapping φr|A and then used to compute the
score for the generated graph fragment.

In order to process binary rules r : A→ BC, we need to account for the spans of the
nonterminals B and C, which depend on whether r is anchored or not. Specifically, if r
is anchored we need to introduce a vertex in between B and C. We use a special term
α(r) = 1 for anchored r and α(r) = 0 for unanchored r. Rule r is then processed by the
nested loops at line 9, which use index k and α(r) to indicate the boundary between the
spans of B and C. We choose a mapping φr from r’s vertices to the input vertices, with
the proviso that if r is anchored then r’s anchored vertex is mapped to vk. We then select
optimal subgraphs derived by B and C that are compatible with φr, compute the score
of a new subgraph derived from A via r at line 13, and update table δ at line 14.

The running time of Algorithm 3 is O(|G||V|3+dr ). Here |G| is the number of rules
in the input HRG, |V| is the length of the input string, and dr is the maximum number
of unanchored vertices in an HRG rule, since anchored vertices have their positions
already fixed by the indices of the rule boundaries i, k and j. We observe that dr is at
most one plus the treewidth of the tree decomposition from which the grammar was
extracted, since we use at most one anchored vertex per rule. Both Algorithm 1 and
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algorithm average treewidth rule types (labeled) rule types (direction only) rule types (unlabeled)
inside 1.97 20772 5788 3902

outside 1.81 21147 5745 4108

Table 1
Rule and width statistics for the SemEval 2016 dataset using inside and outside algorithms.

want-01

person

go-01

ARG0

ARG0

ARG1

name

“John”

name

op1

Figure 10
An example of AMR graph representing the meaning of: “John wants to go”

Algorithm 2 can be easily extended to minimize the number of unanchored vertices per
rule. For simplicity, the versions presented in this article minimize the total number of
vertices per rule. Thus, we conclude that string-to-graph parsing can be carried out
in polynomial time for HRGs extracted from inside or outside tree decompositions of
bounded treewidth. Furthermore, finding low treewidth decompositions during gram-
mar extraction leads to efficient parsing. Both the inside and outside algorithms for find-
ing tree decompositions provide heuristics for efficiently finding tree decompositions of
low treewidth.

6. Experiments

We evaluate our tree decomposition algorithms on Abstract Meaning Representation
(AMR) (Banarescu et al. 2013). Figure 10 shows an example of an AMR in which the
nodes represent the AMR concepts, and the edges represent the relations between the
concepts. We can also see the reentrancy to the concept “person” for the control verb
structure “want to go”, where “want-01” and “go-01” have the same subject. AMR
has been used in various applications such as text summarization (Liu et al. 2015),
sentence compression (Takase et al. 2016), and event extraction (Huang et al. 2016). We
use the training set of LDC2015E86 for SemEval 2016 task 8 on meaning representation
parsing (May 2016), which contains 16,833 pairs of sentence and AMR graph. This
dataset covers various domains including newswire and web discussion forums.
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Figure 11
Distribution of treewidths of AMR graphs.

We generate the vertex order for each AMR graph using the automatically gener-
ated alignments from an aligner by Pourdamghani et al. (2014), which aligns sentence
tokens to concepts or relations in the graph. We collapse subgraphs of named entities,
dates and verbalization2 to a single node of the graph. For example, in Figure 10 the
subgraph corresponding to the word “John” is collapsed to a single node “person-
John”. AMR also uses predicate-argument structure extensively: for example, “teacher”
is verbalized as “(person: ARG0-of teach-01)”. We represent this verbalization as a single
node “person-ARG0of-teach-01”. We want to generate the vertex order of the graph in
a way that preserves as much as possible the order of the sentence tokens. To this end,
we sort all aligned vertices of the AMR graph according to the position of the associated
token in the input sentence, and insert the unaligned vertices according to their order
in the depth-first traversal of the graph.

Some error is introduced by the use of automatically generated alignments; unfor-
tunately, we have no gold alignments against which to measure the automatic aligner.
Anecdotally, aligner errors seem to increase treewidth, because alignment errors create
spurious cases of complex reordering between the AMR and the string.

After we have generated the vertex order for each AMR graph, we run Algorithm 1
and Algorithm 2 to compute the optimal inside and outside statistics, reported in
Table 1. We can see that the average treewidth for both algorithms is smaller than 2: such
small values provide efficient time bounds for the string-to-graph parsing algorithm of
Section 5.4. Furthermore, outside tree decompositions have treewidth slightly smaller
than inside tree decompositions on average. The full distribution of widths is shown
in Figure 11. (Treewidth of zero results from graphs with one vertex and no edges.)
Allowing a maximum width of 5 covers 99% of sentences using either inside tree
decompositions or outside tree decompositions. The maximum width is 14 for the inside
algorithm and 11 for the outside.

As a term of comparison, the cache transition-based system for string-to-graph
parsing presented by Gildea, Satta, and Peng (2018) also entails a tree decomposition of

2 http://amr.isi.edu/download/lists/verbalization-list-v2.06.txt
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1:I 2:go-02 3:store 4:and 5:return-01

Inside tree decomposition:

1, 3, 4, 5

[0, 5]

5

[4, 5]

1, 2, 3, 4

[0, 4]

4
[3, 4]

1, 2, 3

[0, 3]

3

[2, 3]

1, 2

[0, 2]

2
[1, 2]

1
[0, 1]

Outside tree decomposition:

5

[0, 5]

4, 5

[0, 4]

2, 4, 5

[0, 3]

2, 3, 5

[2, 3]

1, 2, 5

[0, 1]

Figure 12
AMR graph for the sentence “I went to the store and back” (edge directions omitted) along with
inside and outside tree decompositions. The outside decomposition has smaller width in this
case.

the parsed graph. We report here that the average treewidth from the cache transition
system is 2.8, a value considerably larger than those in Table 1, in relative terms. This is
because the cache transition-based system processes vertices strictly from left to right,
and the associated tree decomposition has a left to right bias. In contrast, the inside and
outside algorithms for optimizing tree decompositions use more flexible bi-directional
strategies in their search.

We also extract HRG rules from the optimal tree decompositions of Algorithm 1 and
Algorithm 2, using a single HRG nonterminal for each possible number of attachment
vertices, and count the number of distinct rules generated. The edges in the AMR graph
are labeled and directed. If we keep the labels and directions of the edges, outside tree
decomposition produces a larger number of rule types than inside tree decomposition,
even though the treewidth is smaller. This might be because the rules of the outside
decomposition usually have additional labeled outgoing edges which connect to the
attachment vertices. If we ignore the edge labels and only account for the directions,
the outside generates slightly fewer rule types than the inside tree decomposition. If
we ignore both the labels and the directions of the edges, inside tree decomposition
produces a smaller number of rule types.

39



Computational Linguistics Volume xx, Number xx

1:amr-unknown 2:possible-01 3:country 4:stake-01 5:claim-01 6:right

Inside tree decomposition:

3, 4, 6
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5

[4, 5]

1, 3, 4
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1
[0, 1]

Outside tree decomposition:
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3, 4, 5, 6

[0, 3]

2, 4

[0, 2]

1, 4
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Figure 13
AMR graph for the sentence “How can a country stake its claim to its right?” (edge directions
omitted) along with inside and outside tree decompositions. The inside decomposition has
smaller width in this case.

In Figure 12 we show the AMR graph from our dataset for the sentence “I went
to the store and back.” For this graph outside treewidth is 2 while inside treewidth
is 3. The problem here is that we cannot find an inside decomposition where each span
has a total number of connections to vertices outside the span itself (the attachment
vertices) which is smaller than 3. For instance, if we parse the sentence into spans [0, 4]
and [4, 5], we have I(0, 4) = {1, 3, 4} and I(4, 5) = {5}, which adds up to a bag of 4
vertices at the node with span [0, 5]. However, we also observe that while the span [0, 4]
has three connection to outside vertices, all of the connections are made to the same
vertex 5. In the outside decomposition, the outside connections of span [0, 4] would not
be repeatedly counted and the span would have a contribution of 1 to the total width,
resulting in a decomposition with smaller width.

In contrast, an inside tree decomposition can also produce a treewidth smaller than
an outside tree decomposition. In Figure 13 we show the AMR graph from our dataset
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Language # sents width (inside) width (outside) rule types (inside) rule types (outside)
English 18577 1.07 1.06 734 1137
Czech 25364 1.15 1.07 2736 3429
Italian 3110 1.05 1.02 348 475
Arabic 2912 1.09 1.03 562 868

Table 2
Rule and width statistics for the 2007 CoNLL Shared Task on dependency parsing

for the sentence “How can a country stake its claim to its right?”. While the reported
inside decomposition has width 2, there is no outside decomposition that has width
lower than 3. This is because when we introduce vertex 3 from left to right, it connects
to every vertex on its right, resulting in a width of 3. This also goes to vertex 4 when
we introduce it from right to left, since vertex 4 has connection to every vertex to its
left. Finally, we could parse the graph bidirectionally, introducing vertices 3 and 4 at the
bottom of our parse tree and then proceeding in an outward fashion, but we will face
the same problem since vertices 3 and 4 have connections to each other vertex outside
the span [2, 4]. We then see that one factor that contributes to higher outside width is
when a single vertex in a span has many connections to vertices outside of the span
itself. In a sense, this problem represents the symmetrical scenario with respect to the
problem discussed for the example in Figure 12. What we learn then from our statistics
in Table 1 is that, for the dataset at hand, the first scenario is more frequent than the
second one.

We also experiment on four datasets from the 2007 CoNLL Shared Task on depen-
dency parsing: English, Czech, Italian and Arabic. For these datasets, the structures
at hand are always trees, and might be projective as well as non-projective. Table 2
shows the width statistics for these four languages. We observe that the outside tree
decomposition consistently produces smaller width than the inside tree decomposition
on average. As for the extracted HRG rules, we only consider labeled rules here. We can
see that the number of rule types using inside tree decomposition is lower than outside
tree decomposition.

7. Discussion

Gildea, Satta, and Peng (2018) define a cache transition system for string-to-graph
parsing, and Peng et al. (2018) apply the system to the task of AMR parsing. This system
is also based on tree decompositions of the graphs being produced, where the structure
of the tree decomposition can be read off of the sequence of push and pop operations
of the transition system. This family of tree decompositions is called here cache tree
decomposition. It is possible to show that, if we restrict the anchored rules of our outside
tree decomposition to rules anchored at the leftmost vertex in the span, we obtain a
binary version of the cache tree decomposition that preserves its width. This means that
outside grammars implement a generalization of the parsing strategy exploited by the
cache transition system. The algorithms presented in this article often result in simpler
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analyses of the graphs than those provided by cache tree decompositions, as evidenced
by lower treewidth. One area for future research is the design of parsers that combine
the advantages of linear-time left-to-right processing from the cache transition system
and lower complexity of states and graph-building operations from the algorithms in
this article.

We have pointed out that inside and outside decompositions are complementary to
each other, in the sense that in an inside decomposition the attachment vertices of a span
are those vertices inside the span that connect to outside vertices, while, in an outside
decomposition, the attachment vertices of a span are those vertices outside the span
that connect to inside vertices. In Section 6 we have also discussed specific graphs that
challenge either the first or else the second features above. In this respect, it would be
interesting to investigate more sophisticated strategies for tree decomposition that mix
the two features above, in order to achieve an even smaller treewidth on average. As
a general problem definition for these strategies, we wish to find the decomposition
of the input graph with minimal width, such that the vertices appear as anchored
vertices at leaves of the tree decomposition in the input vertex order. (While the outside
decomposition has anchored vertices in internal nodes of the tree, this can be converted
to a normal form with anchored vertices only at leaves.) It is an open question whether
a polynomial-time algorithm can be found for this problem, or, alternatively, whether it
can be shown to be NP-hard.
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