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Orthographic similarities across languages provide a strong signal for unsupervised probabilis-
tic transduction (decipherment) for closely related language pairs. The existing decipherment
models, however, are not well-suited for exploiting these orthographic similarities. We propose a
log-linear model with latent variables that incorporates orthographic similarity features. Max-
imum likelihood training is computationally expensive for the proposed log-linear model. To
address this challenge, we perform approximate inference via MCMC sampling and contrastive
divergence. Our results show that the proposed log-linear model with contrastive divergence
outperforms the existing generative decipherment models by exploiting the orthographic features.
The model both scales to large vocabularies and preserves accuracy in low- and no-resource
contexts.

1. Introduction

Word-level translation models are typically learned by applying statistical word align-
ment algorithms on large scale bilingual parallel corpora (Brown et al. 1993). Building
a parallel corpus, however, is expensive and time consuming. As a result, parallel data
is limited or even unavailable for many language pairs. In the absence of a sufficient
amount of parallel data, the accuracy of standard word alignment algorithms drops sig-
nificantly. This is also true of supervised neural methods: even with hundreds of thou-
sands of parallel training sentences, neural methods only achieve modest results (Zoph
et al. 2016). Low- and no-resource languages generally do not have parallel corpora, and
even their monolingual corpora tend to be small. However, these monolingual corpora
can often be downloaded from the internet, and are much easier to obtain or produce
than parallel corpora. Leveraging useful information from monolingual corpora can be
extremely helpful for learning translation models for low- and no-resource language
pairs.

Decipherment algorithms (so called because of the assumption that one language
is a cipher for the other) aim to exploit such monolingual corpora in order to learn
translation model parameters, when parallel data is limited or unavailable (Koehn and
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Knight 2000; Ravi and Knight 2011; Dou, Vaswani, and Knight 2014). The key intuition
is that similar words and n-grams tend to have similar distributional properties across
languages. For example, if a bigram appears frequently in the monolingual source cor-
pus, its translation is likely to appear frequently in the monolingual target corpus, and
vice versa. This is especially true when the corpora share similar topics and context. Fur-
thermore, for many such language pairs, we observe similar monotonic word ordering,
i.e. the translation of a bigram is often the same as the concatenation of the translations
of individual unigrams: consider the shared use of postnominal adjectives in the French
maison bleu and Spanish casa azul. While this certainly is not always true, we assume that
it is common enough to provide a useful signal. The goal of decipherment algorithms
is to leverage such statistical similarities across languages, and effectively learn word
level translation probabilities from monolingual data.

Existing decipherment methods are predominantly based on probabilistic gener-
ative models (Koehn and Knight 2000; Ravi and Knight 2011; Nuhn and Ney 2014;
Dou and Knight 2012). These models primarily focus on the statistical similarities
between the n-gram frequencies in the source and the target language, and rely on
the Expectation Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) or
its faster approximations. However, there can be many other types of statistical and
linguistic similarities across languages – beyond n-gram frequencies (e.g., similarities
in spelling, word-length distribution, syntactic structure, etc.). Unfortunately, existing
generative models do not allow incorporating such a wide range of linguistically
motivated features. Previous research has shown the effectiveness of incorporating
linguistically motivated features for many different unsupervised learning tasks, such
as: unsupervised part-of-speech induction (Berg-Kirkpatrick et al. 2010; Haghighi and
Klein 2006), word alignment (Ammar, Dyer, and Smith 2014; Dyer et al. 2011), and
grammar induction (Berg-Kirkpatrick et al. 2010).

Many pairs of related languages share vocabulary or grammatical structure due
to borrowing or inheritance: the English aquatic and Spanish agua share the Latin root
aqua, and the English beige was borrowed from French. As a result, orthographic fea-
tures provide crucial information for determining word-level translations for closely
related language pairs. Church (1993) leveraged orthographic similarity for character
alignment. Haghighi, Berg-Kirkpatrick, and Klein (2008) proposed a generative model
for inducing a bilingual lexicon from monolingual text by exploiting orthographic
and contextual similarities among the words in two different languages. The model
proposed by Haghighi et al. learns a one-to-one mapping between the words in two
languages by analyzing type-level features only, while ignoring the token-level n-gram
frequencies. We propose a decipherment model that unifies the type-level feature-based
approach of Haghighi et al. with token-level EM-based approaches such as Koehn and
Knight (2000) and Ravi and Knight (2011).

In addition to orthographic similarity, we also often observe similarity in the dis-
tribution of word lengths across different languages. Linguists have long noted the
relationship between word frequency and length (Zipf 1949), so the tendency of words
and their translations to have similar frequencies (Rapp 1995) may apply to length
as well. Our feature-rich log-linear model can easily incorporate such length based
similarity features.

One of the key challenges with the proposed latent variable log-linear model is
the high computational complexity of training, as it requires normalizing globally via
summing over all possible observations and latent variables. As a result, an exact
implementation is impractical even for the moderate vocabulary size of most low-
resource languages. To address this challenge, we perform approximate inference using
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Markov Chain Monte Carlo (MCMC) sampling for scalable training of the log-linear
decipherment models. We present a series of increasingly scalable approximations, each
most suitable for a different amount of available data. They are applicable in contexts
ranging from no-resource languages (such as “lost” languages, a context considered by
Snyder, Barzilay, and Knight (2010)) to languages with a modest amount of data that is
still insufficient for state-of-the-art unsupervised methods based on word embeddings.

The main contributions of this article are:

• We propose a feature-based decipherment model for low- and no-resource
languages that combines both type-level orthographic features and
token-level distributional similarities. Our proposed model outperforms
the existing EM-based decipherment models.

• We apply three different MCMC sampling strategies for scalable training
and compare them in terms of running time and accuracy. Our results
show that contrastive divergence (Hinton 2002) based MCMC sampling
can dramatically improve the speed of the training, while achieving
comparable accuracy.

• We extend the contrastive divergence method to sample entire sentences,
rather than bigram pairs, allowing more context to be used in
reconstructing latent translations.

• Finally, we extend the model to exploit parallel as well as monolingual
data, for situations in which limited amounts of parallel data may be
available.

The remainder of the article is organized as follows. In Section 2, we introduce the
general problem formulation for monolingual decipherment, and present our notations.
We discuss the background literature on different decipherment models for machine
translation in Section 3. Section 4 describes the proposed feature-based decipherment
model. A detailed discussion of MCMC sampling based approximations follows in
Section 5. We extend the fully monolingual model to exploit parallel data in Section 6.
Our orthographic features are described in Section 7. Finally, we present our detailed
results in Section 8 and conclude with our findings and discuss our future work in
Section 9.

2. Problem Formulation

Given a source text F and an independent target corpus E , our goal is to translate the
source text F by learning the mapping between the words in the source and the target
language. Although the sentences in the source and target corpus are independent of
each other, there exist distributional and lexical similarities among the words of the
two languages. We aim to automatically learn the translation probabilities p(f |e) for all
source words f and target words e by exploiting the similarities between the bigrams in
F and E .

As a simplification step, we break down the sentences in the source and target
corpus as a collection of bigrams. Let F contain a collection of source bigrams f1f2,
and E contain a collection of target bigrams e1e2. Let the source and target vocabulary
be VF and VE respectively. Let NF and NE be the number of unique bigrams in F and
E respectively. We assume that the corpus F is an encrypted version of a plaintext in
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Symbol Meaning
NF Number of unique source bigrams
NE Number of unique target bigrams
VF Source Vocabulary
VE Target Vocabulary
V max(|VF |, |VE |)
N Number of samples
K Beam size for precomputed lists
φ Unigram level feature function
Φ Bigram level feature function: Φ = φ1 + φ2

Table 1
Our notations and symbols.

the target language. Each source word f ∈ VF is obtained by substituting one of the
words e ∈ VE in the plaintext. However, the mappings between the words in the two
languages are unknown, and are learned as latent variables. Table 1 summarizes the
notations and symbols used in this paper.

3. Background Research

Existing decipherment models assume that each source bigram f1f2 inF is generated by
first generating a target bigram e1e2 according to the target language model, and then
substituting e1 and e2 with f1 and f2 respectively. The generative process is typically
modeled via a Hidden Markov Model (HMM) as shown in Figure 1(a). The target
bigram language model p(e1e2) is trained from the given monolingual target corpus E .
The unknown translation probabilities p(f |e) are learned by maximizing the likelihood
of the observed source corpus F :

P (F) =
∏

f1f2∈F

p(f1f2) (1)

=
∏

f1f2∈F

∑
e1e2

p(e1e2)p(f1|e1)p(f2|e2),

where e1 and e2 are the latent variables, indicating the target words in VE corresponding
to f1 and f2 respectively. The log-likelihood function with latent variables is non-
convex, and several methods have been proposed for maximizing it. In this work, we
seek to combine a number of them for improved performance.

3.1 Expectation-Maximization (EM)

The Expectation-Maximization (EM) (Dempster, Laird, and Rubin 1977) algorithm has
been widely applied for solving the decipherment problem (Knight and Yamada 1999;
Koehn and Knight 2000; Knight and Graehl 1998). In the E-step, for each source bigram
f1f2, we estimate the expected counts of the latent variables e1 and e2 over all the target
words in VE . In the M-step, the expected counts are normalized to obtain the translation
probabilities p(f |e). The computational complexity of the EM algorithm is O(NFV

2)
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and the memory complexity is O(V 2), where NF is the number of unique bigrams in
F and V = max(|VF |, |VE |). As a result, the regular EM algorithm does not scale well to
large vocabulary sizes, both in terms of running time and memory.

To address this challenge, Ravi and Knight (2011) proposed the Iterative EM algo-
rithm, which starts with the K most frequent words from F and E and performs EM-
based decipherment. Next, the source and target vocabularies are iteratively extended
by K new words, while pruning low probability entries from the probability table. The
computational complexity of each iteration becomes O(NFK

2).

3.2 Bayesian Decipherment using Gibbs Sampling

Ravi and Knight (2011) proposed a Gibbs sampling based Bayesian decipherment strat-
egy. For each observed source bigram f1f2, the Gibbs sampling approach starts with an
initial target bigram e1e2, and alternately fixes one of the target words and replaces the
other with a randomly chosen sample. When e1 is fixed, a new sample enew2 is drawn
with probability proportional to p(e1enew2 )p(f2|enew2 ). Next, we fix e2 and sample enew1 ,
and continue alternating until n samples are collected. Bayesian decipherment reduces
memory consumption via Gibbs sampling. The probability table remains sparse, since
only a small number of word pairs (f, e) will be observed together in the samples.

3.3 Slice Sampling

Each Gibbs sampling operation requires estimating the probability of choosing every
target word e ∈ VE , which requires O(V ) operations. To address this issue, Dou and
Knight (2012) proposed a slice sampling approach with precomputed top-K lists for
p(e|f) and p(e1e2). Slice sampling involves selecting a threshold T between 0 and the
probability of the current sample, and then uniformly picking a random new sample
from all candidates with probability greater than T. Using sorted top-K lists makes
this faster than Gibbs sampling on average, although sometimes the top-K lists fail to
provide all the candidates, in which case the method has to fall back to sampling from
the entire vocabulary, which requires O(V ) operations.

3.4 Beam Search

Nuhn, Schamper, and Ney (2013), Nuhn and Ney (2014), and Nuhn, Schamper, and Ney
(2015) showed that beam search can significantly improve the speed of EM-based de-
cipherment, while providing comparable or even slightly better accuracy. Beam search
prunes less promising latent states by maintaining two constant-sized beams, one for
the translation probabilities p(f |e) and one for the target bigram probabilities p(e1e2)
– reducing the computational complexity to O(NF ). Furthermore, it saves memory
because many of the word pairs (f, e) are never considered due to not being in the
beam.

3.5 Feature-based Generative Models

Haghighi, Berg-Kirkpatrick, and Klein (2008) proposed a Canonical Correlation Anal-
ysis (CCA) based model for automatically learning the mapping between the words
in two languages from monolingual corpora only. They used orthographic information
(character substring features) and context information (co-occurrence statistics within a
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window) for their features; we use edit distance as our orthographic information, and
we operate on bigrams for our context information. While their model uses an EM-style
algorithm, it does not iterate over the corpus data.

Ravi (2013) proposed a Bayesian decipherment model based on hash sampling,
which takes advantage of feature-based similarities between source and target words.
However, the feature representation was not integrated with their decipherment model,
and was only used for efficiently sampling candidate target translations for each source
word. Furthermore, the feature based hash sampling included only contextual features
(in the form of n-gram co-occurrence information), and did not consider orthographic
features. In contrast, our log-linear model integrates both type-level orthographic fea-
tures and token-level bigram frequencies.

3.6 Embedding-based Models

Recent work has explored the possibility of finding a mapping between word embed-
ding spaces using monolingual data. Artetxe, Labaka, and Agirre (2017) use a small
set of seed translations to learn this mapping. Zhang et al. (2017) do not use seed
translations, but do use document-aligned Wikipedia data, and only consider words
appearing at least 1,000 times. Both methods train word embeddings using datasets
with millions of words, limiting their applicability to low resource languages, even more
so for languages with the small amount of data that we experiment with in this work.

4. Feature-based Decipherment

Our feature-based decipherment model is based on a chain structured Markov Ran-
dom Field (Figure 1(b)), which jointly models the observed source bigrams f1f2 and
corresponding latent target bigram e1e2. For each source word f ∈ VF , we have a
latent variable e ∈ VE indicating the corresponding target word. The joint probability
distribution is:

p(f1f2, e1e2) =
1

Zw
p(e1e2) expwTΦ(f1f2, e1e2)

where Φ(f1f2, e1e2) is the feature function for the given source and the target bigrams,
w is the model parameters, and Zw is the normalization term. We assume that the
feature function decomposes into features of aligned word pairs (motivated by the ob-
servation in Section 1 that word order is generally preserved across bigram translations):

Φ(f1f2, e1e2) = φ(f1, e1) + φ(f2, e2) (2)

The features φ, which will be described in more detail in Section 7, include features
for orthographic similarity as well as indicator features φf,e for each word pair. The
normalization term is defined as:

Zw =
∑
f1f2

∑
e1e2

p(e1e2) expwTΦ(f1f2, e1e2)

This gives our model the CRF-like dependency structure shown in Figure 1. In our
model, however, the term p(e1, e2) is estimated from a monolingual target corpus, and
is held constant when training the weights w.
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a) b)

e1P (e1) e1

f1 f2

P (e2|e1)

P (f1|e1) P (f2|e2)

e1 e1

f1 f2

P (e1, e1)

expwTφ(f1, e1) expwTφ(f2, e2)

Figure 1
The graphical models for the existing directed HMM (a) and the proposed undirected MRF (b).

We train the model on a monolingual source corpus, treating the target words
as latent variables. This gives us a latent variable CRF model (Quattoni, Collins, and
Darrell 2004), where the likelihood of our monolingual source corpus is:

L =
1

|F|
∑

f1f2∈F

log
∑
e1e2

p(f1f2, e1e2) (3)

The gradient of the log-likelihood can be written as the difference of two expectations
of feature vectors:

∂L

∂w
=

∂

∂w

1

|F|
∑

f1f2∈F

log
∑
e1e2

p(f1f2, e1e2) (4)

=
∂

∂w

1

|F|
∑

f1f2∈F

log
∑
e1e2

1

Zw
p(e1e2) expwTΦ(f1f2, e1e2) (5)

=
1

|F|
∑

f1f2∈F

[
∂

∂w
log
∑
e1e2

p(e1e2) expwTΦ(f1f2, e1e2)−
∂

∂w
logZw

]
(6)

=
1

|F|
∑

f1f2∈F

[
1

Zw(f1f2)

∂

∂w

∑
e1e2

p(e1e2) expwTΦ(f1f2, e1e2)

]
− ∂

∂w
logZw (7)

=
1

|F|
∑

f1f2∈F

[
1

Zw(f1f2)

∑
e1e2

Φ(f1f2, e1e2)p(e1e2) expwTΦ(f1f2, e1e2)

]
− Zw

∂

∂w
Zw

=
1

|F|
∑

f1f2∈F

[∑
e1e2

Φ(f1f2, e1e2)p(f1f2|e1e2)

]
− 1

Zw

∂

∂w

∑
f1f2

∑
e1e2

p(e1e2) expwTΦ(f1f2, e1e2)

=
1

|F|
∑

f1f2∈F

Ee1e2|f1f2 [Φ(f1f2, e1e2)]−
1

Zw

∑
f1f2

∑
e1e2

Φ(f1f2, e1e2)p(e1e2) expwTΦ(f1f2, e1e2)

=
1

|F|
∑

f1f2∈F

Ee1e2|f1f2 [Φ(f1f2, e1e2)]− Ef1f2,e1e2 [Φ(f1f2, e1e2)] (8)

= EForced − EFull (9)
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Here, the first term is the expectation with respect to the empirical data distribution.
We refer to it as the “forced expectation,” as the source text is assumed to be given. The
second term is the expectation with respect to our model distribution, and referred to
as “full expectation."

4.1 Estimating Forced Expectation (EForced)

We first estimate the forced expectation, which we defined in eq. 8 to be:

EForced =
∑

f1f2∈F

1

Zw(f1f2)

∑
e1e2∈V 2

E

[
p(e1e2) expwTΦ(f1f2, e1e2)

]
Φ(f1f2, e1e2), (10)

where Z(f1f2) is the normalization term given f1f2:

Zw(f1f2) =
∑

e1e2∈V 2
E

p(e1e2) expwTΦ(f1f2, e1e2).

For each observed f1f2 ∈ F , we sum over all possible e1e2 ∈ V 2
E , which requires

O(NFV
2) computation.

4.2 Estimating Full Expectation (EFull)

For the full expectation, we assume that both the source text and latent variables are
unknown, resulting in a sum over all the possible source bigrams f1f2, and associated
latent variables e1e2:

EFull =
1

Zg

∑
f1f2∈V 2

F

∑
e1e2∈V 2

E

[
p(e1e2) expwTΦ(f1f2, e1e2)

]
Φ(f1f2, e1e2),

where Zg is the global normalization term:

Zg =
∑

f1f2∈V 2
F

∑
e1e2∈V 2

E

p(e1e2) expwTΦ(f1f2, e1e2).

The computational complexity is O(V 4).

5. MCMC Sampling for Faster Training

The overall computational complexity of estimating the exact gradient is O(NFV
2 +

V 4), which is impractical even for a modest-sized vocabulary. We apply several MCMC
sampling methods to approximate the forced and full expectations. We first propose
using Gibbs sampling for both the forced and full expectation terms. We then propose
a faster approximation using independent Metropolis Hastings sampling for just the
forced expectation term. We then propose an even faster approximation using con-
trastive divergence for estimating both terms. We then extend this method to sample
at the sentence level instead of the bigram level, with the goal of increasing accuracy.
Computation times for the methods presented in this section are summarized in Table 2.
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5.1 Gibbs Sampling
5.1.1 Gibbs Sampling for Forced Expectation. Instead of summing over all target
bigrams e1e2, we approximate the forced expectation by taking N samples of e1e2 for
each observed f1f2, and take an average of the features for these samples. For each
observed f1f2, the following steps are taken:

• Start with an initial target bigram e1e2.

• Fix e2 and sample e1 according to the following probability distribution:

P (e1|e2, f1f2) =
1

Zgibbs

[
p(e1e2) expwTΦ(f1f2, e1e2)

]

where Zgibbs is the normalization term over all possible e1 in the target
vocabulary.

• Next, fix e1 and draw a new sample e2 similarly according to
P (e2|e1, f1f2), and continue sampling e1 and e2 alternately until N
samples are drawn.

Drawing each sample requires O(V ) operations, as we need to estimate the normal-
ization term Zgibbs. The computational complexity of estimating the forced expectation
becomes: O(NFV N), which is expensive as V can be large (and NF generally scales
with V ).

5.1.2 Gibbs Sampling for Full Expectation. To efficiently estimate the full expectation,
we sample N source bigrams f1f2 from our model. The Gibbs sampling procedure is:

• Start with an initial random f1f2.

• Fix f2, and sample a new f1 according to p(f1|f2):

p(f1|f2) =
1

Z ′gibbs

∑
e1

∑
e2

[
p(e1e2) expwTΦ(f1f2, e1e2)

]

where

Z ′gibbs =
∑
f1

∑
e1

∑
e2

[
p(e1e2) expwTΦ(f1f2, e1e2)

]

• Next fix f1 and sample f2 according to P (f2|f1). Continue alternating until
N samples are drawn.

The computational complexity of exactly estimating p(f1|f2) is O(V 3), resulting in
the computational complexity O(V 3N), which is impractical for all but the smallest
vocabularies. However, instead of summing over all possible e1e2, we can approximate
via sampling. For each f1f2, we first sample N samples e1e2 according to p(e1e2). Let S
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be the set of N samples of target bigrams. Next, we approximate p(f1|f2) as:

p(f1|f2) =
1

Zapprox

∑
e1e2∈S

expwTΦ(f1f2, e1e2)

where Zapprox =
∑

f1

∑
e1e2∈S expwTΦ(f1f2, e1e2). This reduces the computational

complexity to O(V N2).

5.2 Independent Metropolis Hastings (IMH)

In our experiments, the Gibbs sampling for our log-linear model was still somewhat
slow, and will not scale well to larger experimental settings. To address this challenge,
we apply independent Metropolis Hastings (IMH) sampling, which relies on a pro-
posal distribution and does not require normalization. However, finding an appropriate
proposal distribution can sometimes be challenging, as it needs to be close to the true
distribution for faster mixing and must be easy to sample from.

For the forced expectation, one possibility is to use the bigram language model
p(e1e2) as a proposal distribution. However, the bigram language model did not work
well in practice. Since p(e1e2) does not depend on f1f2, it resulted in slow mixing and
exhibited a bias towards highly frequent target words.

Instead, we chose an approximation of p(e1e2|f1f2) as our proposal distribution.
To simplify sampling, we assume e1 and e2 to be independent of each other for any
given f1f2. Therefore, the proposal distribution q(e1e2|f1f2) = qu(e1|f1)qu(e2|f2), where
qu(e|f) is a probability distribution over target unigrams for a given source unigram. We
define qu(e|f) as follows:

qu(e|f) = (1− pb)qs(e|f) + pb
1

V

where pb is a small back-off probability with which we fall back to the uniform distribu-
tion over target unigrams. The other term qs(e|f) is a distribution over the target words
e for which the weight wf,e of the word pair feature φf,e is non-zero:

qs(e|f) =

{
1

Zimh
expwTφ(f, e), if wf,e 6= 0

0, otherwise.

Here, Zimh is a normalization term over all the e such that wf,e 6= 0. The weight vector
w is sparse, as only a small number of translation features (f, e) (Section 7) are observed
during sampling. Furthermore, we update qs only once every 5 iterations of gradient
descent.

The actual target distribution is:

p(e1e2|f1f2) ∝ p(e1e2) expwTΦ(f1f2, e1e2) (11)

For each f1f2 ∈ F , we take the following steps during sampling:

• Start with an initial English bigram: 〈e1e2〉0
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• Let the current sample be 〈e1e2〉i. Next, sample 〈e1e2〉i+1 from the proposal
distribution q(e1e2|f1f2).

• Accept the new sample with the probability:

Pa =
p(〈e1e2〉i+1|f1f2)
p(〈e1e2〉i|f1f2)

q(〈e1e2〉i|f1f2)
q(〈e1e2〉i+1|f1f2)

The IMH sampling reduces the complexity of the forced expectation estimation to
O(NFN),1 which is significantly less than the complexity of O(NFV N) in the case of
Gibbs sampling. However, we could not apply IMH while estimating the full expec-
tation, as finding a suitable proposal distribution is more complicated. Therefore, the
overall complexity remains: O(NFN + V N2).

5.3 Contrastive Divergence Based Sampling

The main reason for the slow training of the proposed log-linear MRF model is the
high computational cost of estimating the partition function Zg when estimating the
full expectation. A similar problem arises while training deep neural networks. An
increasingly popular technique to address this issue is to perform contrastive diver-
gence (Hinton 2002), which allows us to avoid estimating the partition function.

For each observed source bigram f1f2 ∈ F , contrastive divergence sampling works
as follows:

• Sample a target bigram e1e2 according to the distribution p(e1e2|f1f2). We
perform this step using independent Metropolis Hastings, as discussed in
the previous section.

• Sample a reconstructed source bigram 〈f1f2〉recon by sampling from the
distribution p(f1f2|e1e2), again via independent Metropolis Hastings.

We take n such samples of e1e2 and corresponding 〈f1f2〉recon. For each sample and
reconstruction pair, we update the weight vector by an approximation of the gradient:

∂L

∂w
≈ Φ(〈f1f2〉data, e1e2)−Φ(〈f1f2〉recon, e1e2)

5.4 Sentence-Level Sampling

Up to this point, we have considered parallel source/target bigram pairs in isolation,
but it may be helpful to take larger contexts into account in decipherment. In this
section, we extend the sampling procedures to resample an entire source/target sen-
tence pair at each iteration. While our features are functions of individual bigrams,
sentence-level sampling gives us the benefit of looking at an individual word’s left
and right context when considering alternative translations. More generally, the HMM-
like feature structure also allows information to flow through the entire sentence from
beginning to end.

1 Ignoring the cost of estimating qs(e|f), which occurs only once every 5 iterations.
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Mathematically, we assume, as we did in the bigram case, that our features can be
written as a function φ(f, e) of a pair of French and English words. We use the notation

Φ(f , e) =

|f |∑
i=0

φ(fi, ei)

to denote the feature vector for an entire sentence pair; we will assume that the French
and English sequences have the same length. Analogously to equation 4, the gradient
of the log-likelihood can be written as the difference between a forced expectation and
full expectation, now at the level of sentences rather than bigrams:

∂L

∂w
= Ee|f [Φ(f , e)]− Ee,f [Φ(f , e)]

= EForced − EFull

We estimate these two terms with a sentence-level sampling algorithm based on
contrastive divergence. At a high level, given an observed French sentence, it samples a
hidden English sequence according to p(e|f) in order to estimate the forced expectation
term of the update, and then samples a French sentence according to p(f |e) to estimate
the full expectation, as shown in Algorithm 1. However, because the individual English
words are not independent, due to the bigram language model, the sampling of p(e|f)
is itself broken down into a sequence of Gibbs sampling steps, sampling one word at a
time while holding the others fixed, as shown in Algorithm 2. This process is iterated
to produce a total of N samples of the English sequence, with each sample initialized
with the previous sample (line 4 of Algorithm 1). The entire process is initialized with
a Viterbi decoding of the best English sequence under the current parameters (line 2 of
Algorithm 1). Empirically, we found that this initialization sped up training by reducing
the number of samples necessary.

Algorithm 1 Sentence-level contrastive divergence algorithm
1: procedure SENTCONTRASTIVEDIVERGENCE(f )
2: e(0) ← VITERBI(f ,w)
3: for n in 1, . . . , N do
4: (e(n), f (n)) = SAMPLESENTENCEPAIR(e(n−1), f )
5: w← w + 1

N

∑
n

(
Φ(f , e(n))−Φ(f (n), e(n))

)

Algorithm 2 Sentence-level sampling algorithm
procedure SAMPLESENTENCEPAIR(e,f )

for i← 1, . . . , |f | do
ei ∼ 1

Z p(ei−1ei)p(eiei+1) expwTφ(ei, fi)

for i← 1, . . . , |f | do
fi ∼ 1

Z expwTφ(ei, fi)
return (e, f)

12
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6. Exploiting Parallel Data

We now turn to consider the setting in which a small amount of parallel data may be
available for the two languages in question, along with a larger amount of monolingual
data for each of the languages. Our hope is that even a small amount of parallel data
may allow the model to learn the correspondence between very frequent words, such
as function words. For many language pairs, including French-English, function words
do not exhibit orthographic similarity, despite the high proportion of orthographically
similar content words. Reducing errors among function words that are observed in the
parallel data may help prevent the decipherment model from aligning words that are
spuriously similar “false friends” when analyzing the monolingual data.

Mathematically, we wish to define a single probability model that can apply to both
parallel and monolingual data, and choose feature weights w that optimize the total
likelihood of the parallel and monolingual data together. Probability models for word
alignment of parallel data are one of the original problems studied in statistical machine
translation (Brown et al. 1993). We wish to apply our log-linear feature-based model
to parallel data, making the problem setting similar to that of Dyer et al. (2011). For
simplicity, we assume a bag of words model that does not take into account the order of
the words in the English sentence, resulting in a log-linear feature-based version of IBM
Model 1.

We implement training for this model by modifying our sentence-level contrastive
divergence method described in Section 5.4. We constrain the sampling of the English
words eforced used to approximate the EForced term by allowing only English words
that appear in the English side of the parallel sentence pair. We sample a separate
sequence of English words e for the EFull term as before. The algorithm for parallel
data is shown in Algorithm 3, where the English side of the parallel sentence pair is
provided as an additional argument ê. This set of words is used to constrain the choices
of the Viterbi initialization of eforced (line 2). The observed English sentence ê is also
used to constrain the choice of sample in Algorithm 4; the indicator function I(ei ∈ ê)
ensures that any English words not present in ê have zero probability of being sampled.

Algorithm 3 Constrained contrastive divergence algorithm
1: procedure CONSTRAINEDSENTCONTRASTIVEDIVERGENCE(f , ê)
2: e

(0)
forced ← CONSTRAINEDVITERBI(f ,w, ê)

3: e(0) ← VITERBI(f ,w)
4: for n in 1, . . . , N do
5: e

(n)
forced = CONSTRAINEDSAMPLESENTENCE(e(n−1)

forced, f , ê)
6: (e(n), f (n)) = SAMPLESENTENCEPAIR(e(n−1), f )
7: w← w + 1

N

∑
n

(
Φ(f , e

(n)
forced)−Φ(f (n), e(n))

)

Algorithm 4 Constrained sentence-level sampling algorithm
1: procedure CONSTRAINEDSAMPLESENTENCE(e, f , ê)
2: for i← 1, . . . , |f | do
3: ei ∼ 1

Z I(ei ∈ ê)p(ei−1ei)p(eiei+1) expwTφ(ei, fi)

4: return e

13
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Method Complexity
EM O(NFV

2)
Feature HMM O(NFV

2)
Log-linear/MRF Exact O(NFV

2 + V 4)
Log-linear + Gibbs O(NFV N + V N2)
Log-linear + IMH O(NFN + V N2)
Log-linear + CD O(NFN)
Log-linear + CD, Sentence O(|F|N)

Table 2
The worst case computational complexities per iteration for different decipherment algorithms.
Note that we observed that NF tended to scale linearly with V .

While our algorithm does not take into account the order of the observed English
sentence ê, we note that, unlike the training procedure for IBM Model 1, our algorithm
does take advantage of the English bigram language model in constructing the align-
ment between the English and French sentences. Thus, while an English word pair is
not more likely to align to adjacent French words if it is adjacent in the English sentence,
it is more likely to align to adjacent French words if the English words are frequently
adjacent in general; the motivation is that, as mentioned in Section 1, n-gram frequencies
between the two languages are assumed to be similar. This is beneficial both because
it provides the model with more information than is available to IBM Model 1, and
because it allows us to use a unified probability model for parallel and monolingual
data.

7. Feature Design

We included the following unigram-level features:

• Translation Features: each (f, e) word pair, where f ∈ VF and e ∈ VE , is a
potential feature in our model. While there are O(V 2) such possible
features, we only include the ones that are observed during sampling.
Therefore, our feature weights vector w is sparse, with most of the entries
zero.

• Orthographic Features: We incorporated an orthographic feature based on
the normalized edit-distance between two words. The normalized edit
distance between a word pair (f, e) is defined as follows:

NED(f, e) =
ED(e, f)

max(|e|, |f |)
,

where ED(e, f) is their string edit distance (minimum total number of
required insertions, deletions, and substitutions) and |e| and |f | represent
their lengths. When normalized edit distance between two words is larger
than a threshold, it usually indicates that the words are orthographically
dissimilar, and the exact value of the normalized edit distance does not
carry much information. Based on this intuition, we chose our
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Dataset Num. Sentences |VE | |VF |
OPUS 9.89K (997 unique) 375 530
Hansard-100 100 358 371
Hansard-1000 1000 2957 3082

Table 3
Statistics on the datasets used in our experiments.

Method OPUS Hansard-100 Hansard-1000
Time Acc (%) Time Acc (%) Time Acc (%)

EM 417.2s 2.63 188.0s 2.96 – –
Feature HMM 379.6s 7.71 189.9s 14.17 – –
Log-linear + Gibbs 738.1s 6.77 357.9s 14.01 – –
Log-linear + IMH 75.7s 6.77 53.0s 13.10 605.5s 12.45
Log-linear + CD 19.1s 6.13 10.6s 11.53 324.1s 11.19
Log-linear + CD, Sentence 21.6s 8.08 12.7s 12.60 458.3s 12.02
Log-linear + CD, Sentence, No ortho/len 22.4s 0.56 11.9s 1.88 492.2s 0.36

Table 4
The running time per iteration and accuracy of decipherment.

orthographic features to be boolean-valued features. For a word pair (f, e),
the orthographic feature is triggered if the normalized edit distance
NED(f, e) is less than a threshold (set to 0.3 in our experiments).

• Length Difference: Since source words and their target translations often
tend to have similar lengths, we added the absolute value of their length
difference as a feature.

The set of features can further be extended by including context window based fea-
tures (Haghighi, Berg-Kirkpatrick, and Klein 2008; Ravi 2013) and topic model and word
embedding features. Character rewriting features could be used to model when the two
languages use different characters for the same sound; these could be coupled with the
edit distance feature to approximate phonetic distance. Additionally, in this work we
did not perform any character normalization; a simple extension of this system could
treat similar characters (é, e, è) as identical for edit distance calculations.

8. Experiments and Results

8.1 Datasets

We experimented with two closely related language pairs: (1) Spanish and English and
(2) French and English. For Spanish/English, we experimented with a subset of the
OPUS Subtitle corpus (Tiedemann 2009). For French/English, we used the Hansard
corpus (Brown, Lai, and Mercer 1991), containing parallel French and English text from
the proceedings of the Canadian Parliament. In order to have a non-parallel setup, we
extracted monolingual text from different sections of the French and English text. A
detailed description of the two datasets is provided below:

15



Computational Linguistics Volume xx, Number xx

Accuracy (%) Opus Hansard-100 Hansard-1000 IBM Model 1 IBM Model 4
Monolingual-Only 8.08 12.60 12.02 0.00 0.00

10% Parallel 9.45 16.81 13.58 6.74 7.29
20% Parallel 10.81 17.62 13.41 9.67 10.75
50% Parallel 15.04 18.83 18.55 20.03 20.40

Table 5
The effect on accuracy of incorporating parallel data, for our model (first three columns) and
IBM Model 1 and Model 4 (on Hansard-1000 parallel data).

OPUS Subtitle Dataset: the OPUS dataset is a smaller pre-processed subset of the
original larger OPUS Spanish/English parallel corpora. The dataset consists of short
sentences in Spanish and English, each of which is a movie subtitle. The same dataset
has been used in several previous decipherment experiments (Ravi and Knight 2011;
Nuhn and Ney 2014). We use the first 9,885 French sentences and the second 9,885
English sentences.

Hansard Dataset: The Hansard dataset contains parallel text from the Canadian
Parliament Proceedings. We experimented with two datasets:

• Hansard-100: The French text consists of the first 100 sentences and the
English text consists of the second 100 sentences.

• Hansard-1000: The French text consists of the first 1000 sentences and the
English text consists of the second 1000 sentences.

Table 3 provides some statistics on the three datasets used in our experiments.
The OPUS and Hansard-100 datasets have relatively smaller vocabularies, whereas the
Hansard-1000 dataset has a significantly larger vocabulary.

For each dataset, we draw parallel data from a section that is disjoint from the
monolingual sections. This data is only used in the “X% Parallel" settings, for which X%
of the total data is drawn from the parallel section instead of the monolingual sections;
for example, the “10% Parallel" setting for Hansard-1000 consists of 900 monolingual
sentences in each language and 100 parallel sentence pairs.

8.2 Evaluation

We evaluate the accuracy of decipherment by the percentage of source words that are
mapped to the correct target translation. We find the maximum-probability mapping
for all source words; precision could be increased at the expense of recall by imposing
some threshold, below which no mapping would be made for a given source word.
The correct translation for each source word was determined automatically using the
Google Translation API. While the Google Translation API did a fair job of translating
the French and Spanish words to English, it returned only a single target translation.
We noticed occasional cases where the decipherment algorithm retrieved a correct
translation, but it did not get credit because of not matching the translation from the
API.

Additionally, we performed Viterbi decoding on the sentences in a small held-out
test corpus from the OPUS dataset, and compared the BLEU scores with the previously
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Method BLEU (%)
EM (Ravi and Knight, 2011) 15.3
EM + Beam (Nuhn and Ney, 2014) 15.7
Feature HMM 18.90
Log-linear + Gibbs 21.43
Log-linear + IMH 21.46
Log-linear + CD 21.36
Log-linear + CD, Sentence 20.71
Log-linear + CD, Sentence, No ortho/len 19.36
Log-linear + CD, Sentence, 10% Parallel 20.83
Log-linear + CD, Sentence, 20% Parallel 21.18
Log-linear + CD, Sentence, 50% Parallel 29.30

Table 6
Comparison of MT performance on the OPUS dataset using bigram language model.

published results on the same test set as (Ravi and Knight 2011; Nuhn and Ney 2014).
Our training set, however was different: their data was parallel, so we split the dataset
into two disjoint sections, one for each language. This reduced our model’s performance
(as expected), but we still achieve a higher BLEU score than the baselines.

8.3 Results

We experimented with three versions of our log-linear MRF decipherment models: (1)
Gibbs Sampling, (2) IMH Sampling, and (3) contrastive divergence (CD). We also tested
the effect of exploiting parallel data under the CD model. To determine the impact
of the orthographic and length features, the contrastive divergence based log-linear
model was tested both with and without these features. In addition to the proposed
undirected MRF models, we also explore the directed Feature-HMM model (Berg-
Kirkpatrick et al. 2010), which is trained via an EM-style algorithm, and has the same
computational complexity as EM. We compared the feature-based models with the exact
EM algorithm (Koehn and Knight 2000; Ravi and Knight 2011). We used Kneser-Ney
smoothing (Kneser and Ney 1995) for training bigram language models. The number
of iterations was fixed to 15 for all five methods; we did not see improvement beyond
roughly 10 iterations during development. For the sampling based methods, we set the
number of samples n = 50, which seemed to strike a good balance between accuracy
and speed during our small-scale experiments during development.

For the log-linear model with no orthographic/length features, we initialized all
the feature weights to zero. When we included the orthographic features, we initialized
the weight of the orthographic match feature to 1.0 to encourage translation pairs
with high orthographic similarity. Furthermore, for each word pair (f, e) with high
orthographic similarity, we assigned a small positive weight (0.1). This initialization
allowed the proposal distribution to sample orthographically similar target words for
each source word. The value 0.1 seemed to work well in initial small-scale experiments.
For exact EM, we initialized the translation probabilities uniformly and stored the entire
probability table.

Table 4 reports the accuracy and running time per iteration for exact EM, Fea-
ture HMM, and our log-linear models on the OPUS, Hansard-100, and Hansard-1000
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OPUS Hansard-1000
Spanish English French English
excelente excellent criminel criminal
minuto minute particulier particular
silencio silence sociaux social
perfecto perfect secteur sector

Table 7
A few examples for which orthographic features helped.

datasets. However, on the Hansard-1000 dataset, we only applied the contrastive di-
vergence and IMH based log-linear models due to its large vocabulary size. Table 2
summarizes the computational complexity of each method; recall that NF scales with V
(theoretically NF ∈ O(V 2), although empirically we found NF ∈ O(V )). From this, we
can loosely estimate that the Gibbs sampling would take roughly a week to execute 15
iterations, while the EM and Feature HMM methods would take roughly a month.

Table 5 reports the accuracy for the methods that utilize parallel data on the three
datasets. For comparison, the final two columns of Table 5 report the accuracy of IBM
Model 1 and Model 4 (Brown et al. 1993) when trained on the parallel data used in
the corresponding Hansard-1000 experiment; to allow for direct comparison, both were
evaluated over the same vocabulary as in the Hansard-1000 experiment. Because our
training procedure includes random sampling, the results of each run on a given dataset
can vary. We observe only very small variations between executions, but all reported
results for sampling-based methods are the average of 10 separate executions of the
system. A bigram language model was used for all the models.

The BLEU scores for translation on the OPUS dataset are reported in Table 6. We
outperform previous approaches on this dataset that use no parallel data. While we are
not aware of any work on the OPUS dataset using small amounts of parallel data, Zoph
et al. (2016) describe one recent alternative approach to translation with very limited
parallel data for Urdu-English. Their hybrid system using a string-to-tree statistical
translation model combined with a neural model achieved a BLEU score of 19.1. This
result utilized three times as much data as in our experiments, 100% of it was parallel,
and the model was pre-trained with a much larger corpus of parallel French-English
data.

Table 7 shows a few examples for which the log-linear model performed better due
to orthographic features.

9. Discussion and Future Work

We notice that all the feature-based models (both directed Feature-HMM and undi-
rected log-linear models) with orthographic and length features outperformed the EM-
based decipherment approach. The only log-linear model which performed much worse
was the one which lacked the orthographic and length features. This result emphasizes
the importance of orthographic features for decipherment between closely related lan-
guage pairs. The margin of improvement due to orthographic features was bigger for
the Hansard datasets than that for the OPUS dataset. This is expected, as French has
had a much larger historical influence on English than Spanish has, largely due to the
Norman Conquest; this is a major cause for the higher lexical similarity between French
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and English than between Spanish and English. Quantitatively, 42.72% of the pairs in
our English-French gold dictionary were within the normalized edit distance threshold
used for our corresponding feature, while only 20.97% of the English-Spanish pairs
were. The contrastive divergence based log-linear model achieved overall comparable
accuracy to the two other sampling approaches (Gibbs and IMH + Gibbs), despite being
orders of magnitude faster. Sentence-level sampling was slightly slower, but achieved
higher accuracy than bigram-only sampling. Furthermore, the feature-based models
resulted in better translations, as they obtained a higher BLEU score on the OPUS
dataset (Table 6).

While the orthographic features provide huge improvements in decipherment ac-
curacy, they also introduce new errors. For example, the Spanish word “madre" means
“mother" in English, but our model gave the highest score to the English word “made"
due to the high orthographic similarity. However, such error cases are rare compared to
the improvement.

The contrastive divergence model that was modified to incorporate parallel data
generally showed significant gains in accuracy as the proportion of parallel data was
increased. This is expected: parallel data provides a stronger signal for translation than
monolingual data. We notice that, even when parallel data is provided, the model still
learns additional information from the monolingual data. This is illustrated in Table 5,
where we compare IBM Model 1 and Model 4 (which can only make use of parallel
data) against our model and observe that more correct word translations are learned
when additional monolingual data is provided. The exception to this trend is in the
50% Parallel setting, where the addition of monolingual data results in fewer correct
translations. This may be because monolingual data is a noisy signal for translation,
and incorporating too little with the parallel data actually confuses the model. Given
that our technique is most applicable for low- and no-resource languages, for which
having 50% parallel data is less realistic, we do not believe that this is a serious concern.

The accuracies reported here are significantly lower than those achieved by modern
supervised methods (and unsupervised methods with large corpora). However, our
results required no more than 1000 lines of data from each language, and preserved
accuracy with as little as 100 lines of data. Thus, this method in its current form is most
applicable to languages with extremely limited available data. This can include "lost"
languages and any of the numerous modern languages that do not have much data
easily accessible online. Our model is also very scalable, and can be applied to settings
with more data than we experiment with here but still insufficient data for modern
embedding-based unsupervised methods.

For understudied languages, our system can also be used to infer the similarity
of two languages. The final weight of the edit distance feature can be interpreted as
the model’s estimate of similarity. In our experiments, the edit distance weight for
the Hansard experiments was roughly 4 times that of the OPUS experiments, which
matches our expectations given the increased lexical similarity between French and
English. For future work, our feature-based models can be extended by allowing local
reordering of neighboring words and considering word fertilities (Ravi 2013). We would
also like to extend the features to handle languages with different alphabets or sys-
tematically different use of certain characters, perhaps using transliteration techniques
such as in Knight and Graehl (1998). Finally, we would like to incorporate more flexible
non-local features in MRF, which may not be supported by the directed Feature-HMM
model.
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10. Conclusion

We presented a feature-based decipherment system using latent variable log-linear
models. The proposed models take advantage of the orthographic similarities between
closely related languages, and outperform the existing EM-based models. The con-
trastive divergence based variant with sentence-level sampling provided the best trade-
off between speed and accuracy. We also showed that it can be modified to incorporate
parallel data when available, resulting in increased accuracy.
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