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Abstract

In this paper, we present a sequence-
to-sequence based approach for mapping
natural language sentences to AMR se-
mantic graphs. We transform the se-
quence to graph mapping problem to a
word sequence to transition action se-
quence problem using a special transi-
tion system called a cache transition sys-
tem. To address the sparsity issue of neu-
ral AMR parsing, we feed feature embed-
dings from the transition state to provide
relevant local information for each de-
coder state. We present a monotonic hard
attention model for the transition frame-
work to handle the strictly left-to-right
alignment between each transition state
and the current buffer input focus. We
evaluate our neural transition model on the
AMR parsing task, and our parser out-
performs other sequence-to-sequence ap-
proaches and achieves competitive results
in comparison with the best-performing
models.1

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism
where the meaning of a sentence is encoded as a
rooted, directed graph. Figure 1 shows an example
of an AMR in which the nodes represent the AMR
concepts and the edges represent the relations be-
tween the concepts. AMR has been used in vari-
ous applications such as text summarization (Liu
et al., 2015), sentence compression (Takase et al.,
2016), and event extraction (Huang et al., 2016).

1The implementation of our parser is available at
https://github.com/xiaochang13/CacheTransition-Seq2seq
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Figure 1: An example of AMR graph representing
the meaning of: “John wants to go”

The task of AMR graph parsing is to map nat-
ural language strings to AMR semantic graphs.
Different parsers have been developed to tackle
this problem (Flanigan et al., 2014; Wang et al.,
2015b,a; Peng et al., 2015; Artzi et al., 2015;
Pust et al., 2015; van Noord and Bos, 2017). On
the other hand, due to the limited amount of la-
beled data and the large output vocabulary, the
sequence-to-sequence model has not been very
successful on AMR parsing. Peng et al. (2017)
propose a linearization approach that encodes la-
beled graphs as sequences. To address the data
sparsity issue, low-frequency entities and tokens
are mapped to special categories to reduce the vo-
cabulary size for the neural models. Konstas et al.
(2017) use self-training on a huge amount of un-
labeled text to lower the out-of-vocabulary rate.
However, the final performance still falls behind
the best-performing models.

The best performing AMR parsers model graph
structures directly. One approach to modeling
graph structures is to use a transition system to
build graphs step by step, as shown by the system

https://github.com/xiaochang13/CacheTransition-Seq2seq


of Wang and Xue (2017), which is currently the
top performing system. This raises the question of
whether the advantages of neural and transition-
based system can be combined, as for example
with the syntactic parser of Dyer et al. (2015),
who use stack LSTMs to capture action history in-
formation in the transition state of the transition
system. Ballesteros and Al-Onaizan (2017) ap-
ply stack-LSTM to transition-based AMR parsing
and achieve competitive results, which shows that
local transition state information is important for
predicting transition actions.

Instead of linearizing the target AMR graph to
a sequence structure, Buys and Blunsom (2017)
propose a sequence-to-action-sequence approach
where the reference AMR graph is replaced with
an action derivation sequence by running a deter-
ministic oracle algorithm on the training sentence,
AMR graph pairs. They use a separate alignment
probability to explicitly model the hard alignment
from graph nodes to sentence tokens in the buffer.

Gildea et al. (2018) propose a special transition
framework called a cache transition system to gen-
erate the set of semantic graphs. They adapt the
stack-based parsing system by adding a working
set, which they refer to as a cache, to the tradi-
tional stack and buffer. Peng et al. (2018) apply
the cache transition system to AMR parsing and
design refined action phases, each modeled with a
separate feedforward neural network, to deal with
some practical implementation issues.

In this paper, we propose a sequence-to-action-
sequence approach for AMR parsing with cache
transition systems. We want to take advantage of
the sequence-to-sequence model to encode whole-
sentence context information and the history ac-
tion sequence, while using the transition system
to constrain the possible output. The transition
system can also provide better local context in-
formation than the linearized graph representation,
which is important for neural AMR parsing given
the limited amount of data.

More specifically, we use bi-LSTM to encode
two levels of input information for AMR pars-
ing: word level and concept level, each refined
with more general category information such as
lemmatization, POS tags, and concept categories.

We also want to make better use of the complex
transition system to address the data sparsity is-
sue for neural AMR parsing. We extend the hard
attention model of Aharoni and Goldberg (2017),

which deals with the nearly-monotonic alignment
in the morphological inflection task, to the more
general scenario of transition systems where the
input buffer is processed from left-to-right. When
we process the buffer in this ordered manner,
the sequence of target transition actions are also
strictly aligned left-to-right according to the in-
put order. On the decoder side, we augment the
prediction of output action with embedding fea-
tures from the current transition state. Our exper-
iments show that encoding information from the
transition state significantly improves sequence-
to-sequence models for AMR parsing.

2 Cache Transition Parser

We adopt the transition system of Gildea et al.
(2018), which has been shown to have good cov-
erage of the graphs found in AMR.

A cache transition parser consists of a stack, a
cache, and an input buffer. The stack is a sequence
σ of (integer, concept) pairs, as explained below,
with the topmost element always at the rightmost
position. The buffer is a sequence of ordered con-
cepts β containing a suffix of the input concept se-
quence, with the first element to be read as a newly
introduced concept/vertex of the graph. (We use
the terms concept and vertex interchangeably in
this paper.) Finally, the cache is a sequence of
concepts η = [v1, . . . , vm]. The element at the
leftmost position is called the first element of the
cache, and the element at the rightmost position is
called the last element.

Operationally, the functioning of the parser can
be described in terms of configurations and transi-
tions. A configuration of our parser has the form:

C = (σ, η, β,Gp)

where σ, η and β are as described above, and
Gp is the partial graph that has been built so
far. The initial configuration of the parser is
([], [$, . . . , $], [c1, . . . , cn], ∅), meaning that the
stack and the partial graph are initially empty,
and the cache is filled with m occurrences of the
special symbol $. The buffer is initialized with
all the graph vertices constrained by the order
of the input sentence. The final configuration is
([], [$, . . . , $], [], G), where the stack and the cache
are as in the initial configuration and the buffer is
empty. The constructed graph is the target AMR
graph.



stack cache buffer edges actions taken
[] [$, $, $] [Per, want-01, go-01] ∅ —
[1, $] [$, $, Per] [want-01, go-01] ∅ Shift; PushIndex(1)
[1, $] [$, $, Per] [want-01, go-01] ∅ Arc(1, -, NULL); Arc(2, -, NULL)
[1, $, 1, $] [$, Per, want-01] [go-01] ∅ Shift; PushIndex(1)
[1, $, 1, $] [$, Per, want-01] [go-01] E1 Arc(1, -, NULL); Arc(2, L, ARG0)
[1, $, 1, $, 1, $] [Per, want-01, go-01] [] E1 Shift; PushIndex(1)
[1, $, 1, $, 1, $] [Per, want-01, go-01] [] E2 Arc(1, L, ARG0); Arc(2, R, ARG1)
[1, $, 1, $] [$, Per, want-01 ] [] E2 Pop
[1, $] [$, $, Per] [] E2 Pop
[] [$, $, $] [] E2 Pop

Figure 2: Example run of the cache transition system constructing the graph for the sentence
“John wants to go” with cache size of 3. The left four columns show the parser configura-
tions after taking the actions shown in the last column. E1 = {(Per,want-01,L-ARG0)}, E2 =
{(Per,want-01,L-ARG0), (Per, go-01,L-ARG0), (want-01, go-01,R-ARG1)}.

In the first step, which is called concept iden-
tification, we map the input sentence w1:n′ =
w1, . . . , wn′ to a sequence of concepts c1:n =
c1, . . . , cn. We decouple the problem of concept
identification from the transition system and ini-
tialize the buffer with a recognized concept se-
quence from another classifier, which we will in-
troduce later. As the sequence-to-sequence model
uses all possible output actions as the target vo-
cabulary, this can significantly reduce the target
vocabulary size. The transitions of the parser are
specified as follows.

1. Pop pops a pair (i, v) from the stack, where
the integer i records the position in the cache
that it originally came from. We place con-
cept v in position i in the cache, shifting the
remainder of the cache one position to the
right, and discarding the last element in the
cache.

2. Shift signals that we will start processing the
next input concept, which will become a new
vertex in the output graph.

3. PushIndex(i) shifts the next input concept out
of the buffer and moves it into the last posi-
tion of the cache. We also take out the con-
cept vi appearing at position i in the cache
and push it onto the stack σ, along with the
integer i recording its original position in the
cache.2

2Our transition design is different from Peng et al. (2018)
in two ways: the PushIndex phase is initiated before making
all the arc decisions; the newly introduced concept is placed
at the last cache position instead of the leftmost buffer posi-
tion, which essentially increases the cache size by 1.

4. Arc(i, d, l) builds an arc with direction d and
label l between the rightmost concept and
the i-th concept in the cache. The label l is
NULL if no arc is made and we use the action
NOARC in this case. Otherwise we decom-
pose the arc decision into two actions ARC
and d-l. We consider all arc decisions be-
tween the rightmost cache concept and each
of the other concepts in the cache. We can
consider this phase as first making a binary
decision whether there is an arc, and then pre-
dicting the label in case there is one, between
each concept pair.

Given the sentence “John wants to go” and the
recognized concept sequence “Per want-01 go-01”
(person name category Per for “John”), our cache
transition parser can construct the AMR graph
shown in Figure 1 using the run shown in Figure 2
with cache size of 3.

2.1 Oracle Extraction Algorithm

We use the following oracle algorithm (Nivre,
2008) to derive the sequence of actions that leads
to the gold AMR graph for a cache transition
parser with cache size m. The correctness of the
oracle is shown by Gildea et al. (2018).

Let EG be the set of edges of the gold graph
G. We maintain the set of vertices that is not yet
shifted into the cache as S, which is initialized
with all vertices in G. The vertices are ordered
according to their aligned position in the word se-
quence and the unaligned vertices are listed ac-
cording to their order in the depth-first traversal
of the graph. The oracle algorithm can look into
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Figure 3: Sequence-to-sequence model with soft
attention, encoding a word sequence and concept
sequence separately by two BiLSTM encoders.

EG to decide which transition to take next, or else
to decide that it should fail. This decision is based
on the mutually exclusive rules listed below.

1. ShiftOrPop phase: the oracle chooses transi-
tion Pop, in case there is no edge (vm, v) in
EG such that vertex v is in S, or chooses tran-
sition Shift and proceeds to the next phase.

2. PushIndex phase: in this phase, the oracle
first chooses a position i (as explained below)
in the cache to place the candidate concept
and removes the vertex at this position and
places its index, vertex pair onto the stack.
The oracle chooses transition PushIndex(i)
and proceeds to the next phase.

3. ArcBinary, ArcLabel phases: between the
rightmost cache concept and each concept in
the cache, we make a binary decision about
whether there is an arc between them. If there
is an arc, the oracle chooses its direction and
label. After arc decisions tom−1 cache con-
cepts are made, we jump to the next step.

4. If the stack and buffer are both empty, and
the cache is in the initial state, the oracle fin-
ishes with success, otherwise we proceed to
the first step.

We use the equation below to choose the cache
concept to take out in the step PushIndex(i). For
j ∈ [|β|], we write βj to denote the j-th vertex in
β. We choose a vertex vi∗ in η such that:

i∗ = argmax
i∈[m]

min {j | (vi, βj) ∈ EG}

John        wants           to            go  Per         want-01     go-01

...

Input sequence Concept sequence

ARC L-ARG0

...

NOARC SHIFT PushIndex(1)

Figure 4: Sequence-to-sequence model with
monotonic hard attention. Different colors show
the changes of hard attention focus.

In words, vi∗ is the concept from the cache whose
closest neighbor in the buffer β is furthest forward
in β. We move out of the cache vertex vi∗ and push
it onto the stack, for later processing.

For each training example (x1:n, g), the tran-
sition system generates the output AMR graph g
from the input sequence x1:n through an oracle se-
quence a1:q ∈ Σ∗a, where Σa is the union of all
possible actions. We model the probability of the
output with the action sequence:

P (a1:q|x1:n) =

q∏
t=1

P (at|a1, . . . , at−1, x1:n; θ)

which we estimate using a sequence-to-sequence
model, as we will describe in the next section.

3 Soft vs Hard Attention for
Sequence-to-action-sequence

Shown in Figure 3, our sequence-to-sequence
model takes a word sequencew1:n′ and its mapped
concept sequence c1:n as the input, and the action
sequence a1:q as the output. It uses two BiLSTM
encoders, each encoding an input sequence. As
the two encoders have the same structure, we only
introduce the encoder for the word sequence in de-
tail below.

3.1 BiLSTM Encoder

Given an input word sequencew1:n′ , we use a bidi-
rectional LSTM to encode it. At each step j, the
current hidden states

←−
h w

j and
−→
h w

j are generated

from the previous hidden states
←−
h w

j+1 and
−→
h w

j−1,



and the representation vector xj of the current in-
put word wj :

←−
h w

j = LSTM(
←−
h w

j+1, xj)
−→
h w

j = LSTM(
−→
h w

j−1, xj)

The representation vector xj is the concatenation
of the embeddings of its word, lemma, and POS
tag, respectively. Then the hidden states of both
directions are concatenated as the final hidden
state for word wj :

hwj = [
←−
h w

j ;
−→
h w

j ]

Similarly, for the concept sequence, the final
hidden state for concept cj is:

hcj = [
←−
h c

j ;
−→
h c

j ]

3.2 LSTM Decoder with Soft Attention
We use an attention-based LSTM decoder (Bah-
danau et al., 2014) with two attention memories
Hw and Hc, where Hw is the concatenation of the
state vectors of all input words, and Hc for input
concepts correspondingly:

Hw = [hw1 ;hw2 ; . . . ;hwn′ ] (1)

Hc = [hc1;hc2; . . . ;hcn] (2)

The decoder yields an action sequence
a1, a2, . . . , aq as the output by calculating a se-
quence of hidden states s1, s2 . . . , sq recurrently.
While generating the t-th output action, the
decoder considers three factors: (1) the previous
hidden state of the LSTM model st−1; (2) the
embedding of the previous generated action et−1;
and (3) the previous context vectors for words
µwt−1 and concepts µct−1, which are calculated
using Hw and Hc, respectively. When t = 1, we
initialize µ0 as a zero vector, and set e0 to the
embedding of the start token “〈s〉”. The hidden
state s0 is initialized as:

s0 = Wd[
←−
h w

1 ;
−→
h w

n ;
←−
h c

1;
−→
h c

n] + bd,

where Wd and bd are model parameters.
For each time-step t, the decoder feeds the con-

catenation of the embedding of previous action
et−1 and the previous context vectors for words
µwt−1 and concepts µct−1 into the LSTM model to
update its hidden state.

st = LSTM(st−1, [et−1;µwt−1;µct−1]) (3)

Then the attention probabilities for the word se-
quence and the concept sequence are calculated
similarly. Take the word sequence as an example,
αw
t,i on hwi ∈ Hw for time-step t is calculated as:

εt,i = vTc tanh(Whh
w
i +Wsst + bc)

αw
t,i =

exp(εt,i)∑N
j=1 exp(εt,j)

Wh,Ws, vc and bc are model parameters. The new
context vector µwt =

∑n
i=1 α

w
t,ih

w
i . The calcula-

tion of µct follows the same procedure, but with a
different set of model parameters.

The output probability distribution over all ac-
tions at the current state is calculated by:

PΣa = softmax(Va[st;µ
w
t ;µct ] + ba), (4)

where Va and ba are learnable parameters, and the
number of rows in Va represents the number of all
actions. The symbol Σa is the set of all actions.

3.3 Monotonic Hard Attention for Transition
Systems

When we process each buffer input, the next few
transition actions are closely related to this input
position. The buffer maintains the order informa-
tion of the input sequence and is processed strictly
left-to-right, which essentially encodes a mono-
tone alignment between the transition action se-
quence and the input sequence.

As we have generated a concept sequence from
the input word sequence, we maintain two hard
attention pointers, lw and lc, to model monotonic
attention to word and concept sequences respec-
tively. The update to the decoder state now relies
on a single position of each input sequence in con-
trast to Equation 3:

st = LSTM(st−1, [et−1;hwlw ;hclc ]) (5)

Control Mechanism. Both pointers are initial-
ized as 0 and advanced to the next position deter-
ministically. We move the concept attention focus
lc to the next position after arc decisions to all the
other m − 1 cache concepts are made. We move
the word attention focus lw to its aligned position
in case the new concept is aligned, otherwise we
don’t move the word focus. As shown in Figure 4,
after we have made arc decisions from concept
want-01 to the other cache concepts, we move the
concept focus to the next concept go-01. As this
concept is aligned, we move the word focus to its
aligned position go in the word sequence and skip
the unaligned word to.



3.4 Transition State Features for Decoder
Another difference of our model with Buys and
Blunsom (2017) is that we extract features from
the current transition state configuration Ct:

ef (Ct) = [ef1(Ct); ef2(Ct); · · · ; efl(Ct)]

where l is the number of features extracted from
Ct and efk(Ct) (k = 1, . . . , l) represents the em-
bedding for the k-th feature, which is learned dur-
ing training. These feature embeddings are con-
catenated as ef (Ct), and fed as additional input to
the decoder. For the soft attention decoder:

st = LSTM(st−1, [et−1;µwt−1;µct−1; ef (Ct)])

and for the hard attention decoder:

st = LSTM(st−1, [et−1;hwlw ;hclc ; ef (Ct)])

We use the following features in our experiments:

1. Phase type: indicator features showing which
phase the next transition is.

2. ShiftOrPop features: token features3 for the
rightmost cache concept and the leftmost
buffer concept. Number of dependencies to
words on the right, and the top three depen-
dency labels for them.

3. ArcBinary or ArcLabel features: token fea-
tures for the rightmost concept and the cur-
rent cache concept it makes arc decisions to.
Word, concept and dependency distance be-
tween the two concepts. The labels for the
two most recent outgoing arcs for these two
concepts and their first incoming arc and the
number of incoming arcs. Dependency label
between the two positions if there is a depen-
dency arc between them.

4. PushIndex features: token features for the
leftmost buffer concept and all the concepts
in the cache.

The phase type features are deterministic from the
last action output. For example, if the last action
output is Shift, the current phase type would be
PushIndex. We only extract corresponding fea-
tures for this phase and fill all the other feature
types with -NULL- as placeholders. The features
for other phases are similar.

3Concept, concept category at the specified position in
concept sequence. And the word, lemma, POS tag at the
aligned input position.

4 AMR Parsing

4.1 Training and Decoding
We train our models using the cross-entropy loss,
over each oracle action sequence a∗1, . . . , a

∗
q :

L = −
q∑

t=1

logP (a∗t |a∗1, . . . , a∗t−1, X; θ), (6)

where X represents the input word and concept
sequences, and θ is the model parameters. Adam
(Kingma and Ba, 2014) with a learning rate of
0.001 is used as the optimizer, and the model that
yields the best performance on the dev set is se-
lected to evaluate on the test set. Dropout with
rate 0.3 is used during training. Beam search with
a beam size of 10 is used for decoding. Both train-
ing and decoding use a Tesla K20X GPU.

Hidden state sizes for both encoder and decoder
are set to 100. The word embeddings are ini-
tialized from Glove pretrained word embeddings
(Pennington et al., 2014) on Common Crawl, and
are not updated during training. The embeddings
for POS tags and features are randomly initialized,
with the sizes of 20 and 50, respectively.

4.2 Preprocessing and Postprocessing
As the AMR data is very sparse, we collapse
some subgraphs or spans into categories based
on the alignment. We define some special cate-
gories such as named entities (NE), dates (DATE),
single rooted subgraphs involving multiple con-
cepts (MULT)4, numbers (NUMBER) and phrases
(PHRASE). The phrases are extracted based on
the multiple-to-one alignment in the training data.
One example phrase is more than which aligns to a
single concept more-than. We first collapse spans
and subgraphs into these categories based on the
alignment from the JAMR aligner (Flanigan et al.,
2014), which greedily aligns a span of words to
AMR subgraphs using a set of heuristics. This cat-
egorization procedure enables the parser to capture
mappings from continuous spans on the sentence
side to connected subgraphs on the AMR side.

We use the semi-Markov model from Flanigan
et al. (2016) as the concept identifier, which jointly
segments the sentence into a sequence of spans
and maps each span to a subgraph. During decod-
ing, our output has categories, and we need to map

4For example, verbalization of “teacher” as “(person
:ARG0-of teach-01)”, or “minister” as “(person :ARG0-of
(have-org-role-91 :ARG2 minister))”.



ShiftOrPop PushIndex ArcBinary ArcLabel
Peng et al. (2018) 0.87 0.87 0.83 0.81
Soft+feats 0.93 0.84 0.91 0.75
Hard+feats 0.94 0.85 0.93 0.77

Table 1: Performance breakdown of each transi-
tion phase.

each category to the corresponding AMR concept
or subgraph. We save a table Q which shows the
original subgraph each category is collapsed from,
and map each category to its original subgraph
representation. We also use heuristic rules to gen-
erate the target-side AMR subgraph representation
for NE, DATE, and NUMBER based on the source
side tokens.

5 Experiments

We evaluate our system on the released dataset
(LDC2015E86) for SemEval 2016 task 8 on mean-
ing representation parsing (May, 2016). The
dataset contains 16,833 training, 1,368 develop-
ment, and 1,371 test sentences which mainly cover
domains like newswire, discussion forum, etc. All
parsing results are measured by Smatch (version
2.0.2) (Cai and Knight, 2013).

5.1 Experiment Settings

We categorize the training data using the auto-
matic alignment and dump a template for date en-
tities and frequent phrases from the multiple to one
alignment. We also generate an alignment table
from tokens or phrases to their candidate target-
side subgraphs. For the dev and test data, we first
extract the named entities using the Illinois Named
Entity Tagger (Ratinov and Roth, 2009) and ex-
tract date entities by matching spans with the date
template. We further categorize the dataset with
the categories we have defined. After categoriza-
tion, we use Stanford CoreNLP (Manning et al.,
2014) to get the POS tags and dependencies of the
categorized dataset. We run the oracle algorithm
separately for training and dev data (with align-
ment) to get the statistics of individual phases. We
use a cache size of 5 in our experiments.

5.2 Results

Individual Phase Accuracy We first evaluate
the prediction accuracy of individual phases on the
dev oracle data assuming gold prediction history.
The four transition phases ShiftOrPop, PushIndex,
ArcBinary, and ArcLabel account for 25%, 12.5%,

50.1%, and 12.4% of the total transition actions
respectively. Table 1 shows the phase-wise ac-
curacy of our sequence-to-sequence model. Peng
et al. (2018) use a separate feedforward network
to predict each phase independently. We use the
same alignment from the SemEval dataset as in
Peng et al. (2018) to avoid differences resulting
from the aligner. Soft+feats shows the perfor-
mance of our sequence-to-sequence model with
soft attention and transition state features, while
Hard+feats is using hard attention. We can see
that the hard attention model outperforms the soft
attention model in all phases, which shows that
the single-pointer attention finds more relevant in-
formation than the soft attention on the relatively
small dataset. The sequence-to-sequence mod-
els perform better than the feedforward model of
Peng et al. (2018) on ShiftOrPop and ArcBinary,
which shows that the whole-sentence context in-
formation is important for the prediction of these
two phases. On the other hand, the sequence-to-
sequence models perform worse than the feedfor-
ward models on PushIndex and ArcLabel. One
possible reason is that the model tries to optimize
the overall accuracy, while these two phases ac-
count for fewer than 25% of the total transition
actions and might be less attended to during the
update.

Impact of Different Components Table 2
shows the impact of different components for the
sequence-to-sequence model. We can see that the
transition state features play a very important role
for predicting the correct transition action. This
is because different transition phases have very
different prediction behaviors and need different
types of local information for the prediction. Rely-
ing on the sequence-to-sequence model alone does
not perform well in disambiguating these choices,
while the transition state can enforce direct con-
straints. We can also see that while the hard at-
tention only attends to one position of the input,
it performs slightly better than the soft attention
model, while the time complexity is lower.

Impact of Different Cache Sizes The cache
size of the transition system can be optimized as
a trade-off between coverage of AMR graphs and
the prediction accuracy. While larger cache size
increases the coverage of AMR graphs, it com-
plicates the prediction procedure with more cache
decisions to make. From Table 3 we can see that



System P R F
Soft 0.55 0.51 0.53
Soft+feats 0.69 0.63 0.66
Hard+feats 0.70 0.64 0.67

Table 2: Impact of various components for the
sequence-to-sequence model (dev).

Cache Size P R F
4 0.69 0.63 0.66
5 0.70 0.64 0.67
6 0.69 0.64 0.66

Table 3: Impact of cache size for the sequence-
to-sequence model, hard attention (dev).

the hard attention model performs best with cache
size 5. The soft attention model also achieves best
performance with the same cache size.

Comparison with other Parsers Table 4 shows
the comparison with other AMR parsers. The first
three systems are some competitive neural models.
We can see that our parser significantly outper-
forms the sequence-to-action-sequence model of
Buys and Blunsom (2017). Konstas et al. (2017)
use a linearization approach that linearizes the
AMR graph to a sequence structure and use self-
training on 20M unlabeled Gigaword sentences.
Our model achieves better results without using
additional unlabeled data, which shows that rele-
vant information from the transition system is very
useful for the prediction. Our model also outper-
forms the stack-LSTM model by Ballesteros and
Al-Onaizan (2017), while their model is evaluated
on the previous release of LDC2014T12.

System P R F
Buys and Blunsom (2017) – – 0.60
Konstas et al. (2017) 0.60 0.65 0.62
Ballesteros and Al-Onaizan (2017)* – – 0.64
Damonte et al. (2017) – – 0.64
Peng et al. (2018) 0.69 0.59 0.64
Wang et al. (2015b) 0.64 0.62 0.63
Wang et al. (2015a) 0.70 0.63 0.66
Flanigan et al. (2016) 0.70 0.65 0.67
Wang and Xue (2017) 0.72 0.65 0.68
Ours soft attention 0.68 0.63 0.65
Ours hard attention 0.69 0.64 0.66

Table 4: Comparison to other AMR parsers.
*Model has been trained on the previous release
of the corpus (LDC2014T12).

System P R F
Peng et al. (2018) 0.44 0.28 0.34
Damonte et al. (2017) – – 0.41
JAMR 0.47 0.38 0.42
Ours 0.58 0.34 0.43

Table 5: Reentrancy statistics.

We also show the performance of some of the
best-performing models. While our hard attention
achieves slightly lower performance in compari-
son with Wang et al. (2015a) and Wang and Xue
(2017), it is worth noting that their approaches
of using WordNet, semantic role labels and word
cluster features are complimentary to ours. The
alignment from the aligner and the concept iden-
tification identifier also play an important role for
improving the performance. Wang and Xue (2017)
propose to improve AMR parsing by improving
the alignment and concept identification, which
can also be combined with our system to im-
prove the performance of a sequence-to-sequence
model.

Dealing with Reentrancy Reentrancy is an im-
portant characteristic of AMR, and we evaluate
the Smatch score only on the reentrant edges fol-
lowing Damonte et al. (2017). From Table 5 we
can see that our hard attention model significantly
outperforms the feedforward model of Peng et al.
(2018) in predicting reentrancies. This is because
predicting reentrancy is directly related to the Ar-
cBinary phase of the cache transition system since
it decides to make multiple arc decisions to the
same vertex, and we can see from Table 1 that
the hard attention model has significantly better
prediction accuracy in this phase. We also com-
pare the reentrancy results of our transition system
with two other systems, Damonte et al. (2017) and
JAMR, where these statistics are available. From
Table 5, we can see that our cache transition sys-
tem slightly outperforms these two systems in pre-
dicting reentrancies.

Figure 5 shows a reentrancy example where
JAMR and the feedforward network of Peng et al.
(2018) do not predict well, while our system pre-
dicts the correct output. JAMR fails to predict the
reentrancy arc from desire-01 to i, and connects
the wrong arc from “live-01” to “-” instead of from
“desire-01”. The feedforward model of Peng et al.
(2018) fails to predict the two arcs from desire-01
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Figure 5: An example showing how our system predicts the correct reentrancy.

and live-01 to i. This error is because their feed-
forward ArcBinary classifier does not model long-
term dependency and usually prefers making arcs
between words that are close and not if they are
distant. Our classifier, which encodes both word
and concept sequence information, can accurately
predict the reentrancy through the two arc deci-
sions shown in Figure 5. When desire-01 and live-
01 are shifted into the cache respectively, the tran-
sition system makes a left-going arc from each of
them to the same concept i, thus creating the reen-
trancy as desired.

6 Conclusion

In this paper, we have presented a sequence-to-
action-sequence approach for cache transition sys-
tems and applied it to AMR parsing. To address
the data sparsity issue for neural AMR parsing,
we show that the transition state features are very
helpful in constraining the possible output and im-
proving the performance of sequence-to-sequence
models. We also show that the monotonic hard at-
tention model can be generalized to the transition-
based framework and outperforms the soft atten-
tion model when limited data is available. While

we are focused on AMR parsing in this paper,
in future work our cache transition system and
the presented sequence-to-sequence models can be
potentially applied to other semantic graph parsing
tasks (Oepen et al., 2015; Du et al., 2015; Zhang
et al., 2016; Cao et al., 2017).
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