
UofR at SemEval-2016 Task 8: Learning Synchronous Hyperedge
Replacement Grammar for AMR Parsing

Xiaochang Peng and Daniel Gildea
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

In this paper, we apply a synchronous-graph-
grammar-based approach to SemEval-2016
Task 8, Meaning Representation Parsing. In
particular, we learn Synchronous Hyperedge
Replacement Grammar (SHRG) rules from
aligned pairs of sentences and AMR graphs.
Then we use the Earley algorithm with cube-
pruning for AMR parsing given new sentences
and the learned SHRG. Experiments on the
evaluation dataset demonstrate that competi-
tive results can be achieved using an SHRG-
based approach.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism where
the meaning of a sentence is encoded as a rooted,
directed graph. Figure 1 shows an example of
the edge-labeled representation of an AMR graph,
where the edges are labeled while the nodes are not.
AMR utilizes PropBank frames, non-core seman-
tic roles, coreference, named entity annotations, and
other semantic phenomena to represent the semantic
structure of a sentence and abstracts away its syn-
tactic form. These properties render AMR represen-
tation useful in applications like question answering
and semantics-based machine translation.

SemEval-2016 Task 8 is the task of recovering
this type of semantic formalism for plain text. A
large corpus of annotated English/AMR pairs is pro-
vided to learn this mapping. Hyperedge replacement
grammar (HRG) is a context-free rewriting formal-
ism for generating graphs (Drewes et al., 1997). Its

want-01

believe-01

ARG1

ARG0

girl

boy

ARG0

ARG1

Figure 1: An example of AMR graph representing the meaning

of: “The boy wants the girl to believe him”

synchronous counterpart, SHRG, can be used for
transforming a graph from/to another structured rep-
resentation such as a string or tree structure. There-
fore, an SHRG-based approach can be used for
AMR parsing. Previous approaches usually first
map the components of the sentence to components
of the graph. Then different supervised algorithms
are used to assemble these graph components to gen-
erate a complete AMR graph (Flanigan et al., 2014;
Wang et al., 2015b; Wang et al., 2015a).

Previously, we have developed a system that
learns SHRG rules from sentence/AMR graph
pairs (Peng et al., 2015), with automatic alignments
extracted from JAMR (Flanigan et al., 2014). Dur-
ing the decoding procedure, we also use the concept
identification results from Flanigan et al. (2014).
The system is evaluated on the newswire section of
LDC2013E117, which has around 4000 sentence-
AMR pairs as training data.

In this paper, we extend this system by using the
alignments from Ulf Hermjakob’s automatic aligner
and building a perceptron-based concept identifier
where the boundary information of the mapped frag-
ments is captured. We first introduce the overall

want-01
believe-01

ARG1

ARG0

girl

boy

ARG0

ARG1

ARG0

X0
X2

X3

X1

X3

1 2

want-01

1

ARG1

2

X1 boy

ARG0
ARG1

X2

boy

X2

X3

X1
1 1

ARG0
ARG1

boy

X3

X1

ARG0
X3

2 2

ARG1

1

X1 girl

1

want-01

want-01
believe-01

Figure 2: The series of HRG rules applied to derive the AMR

graph of “The boy wants the girl to believe him”. The first rule

is directly shown. The other HRG rules are either above or be-

low each right arrow. The white circle shows the root of each

hyperedge. The indexes in each rule show the one-to-one map-

ping between the attachment nodes of l.h.s. nonterminal edges

and the external nodes of the r.h.s. subgraph

pipeline of our parser. Then we describe the SHRG
learning and the AMR parsing procedure in detail in
Section 4 and Section 5. Finally we show the ex-
perimental results on the SemEval-2016 evaluation
datasets.

2 Overall System Description

Our system is divided into two major components:
SHRG learning and AMR parsing. Given En-
glish/AMR pairs and the automatic alignments from
Ulf Hermjakob, we build a derivation forest rep-
resentation of possible derivations. Markov Chain
Monte Carlo (MCMC) algorithms are applied to
sample a series of SHRG rules that generate each
sentence/AMR pair.

Given the extracted SHRG and new sentences, we
first identify the component spans on the string side.
Then we use a perceptron classifier to find the graph
fragment aligned to each of these spans. Finally, we
use a decoder similar to those used for Synchronous
Context-Free Grammar (SCFG) in machine transla-
tion, where the graph-side derivation is composed
using HRG derivation instead of CFG, to get the
AMR graphs for these sentences.

3 Hyperedge Replacement Grammar

HRG is similar to CFG in that it rewrites nontermi-
nals independently. While CFG generates natural
language strings by successively rewriting nonter-
minal tokens, the nonterminals in HRG are hyper-
edges, and each rewriting step in HRG replaces a

hyperedge nonterminal with a subgraph instead of a
span of a string.

The rewriting mechanism replaces a nonterminal
hyperedge with the graph fragment specified by a
production’s righthand side (r.h.s.), attaching each
external node of the r.h.s. to the corresponding at-
tachment node of the lefthand side. Take Figure 2
as an example. Starting from our initial hypergraph
with one edge labeled with the start symbol “X0”,
we select one edge with a nonterminal label in our
current hypergraph, and rewrite it using a rule in our
HRG. The first rule rewrites the start symbol with a
subgraph shown on the r.h.s. We continue the rewrit-
ing steps until there are no more nonterminal-labeled
edges.

We use the synchronous counterpart of HRG
where the source side is a CFG and the target side is
an HRG. Given such a synchronous grammar and a
string as input, we can parse the string with the CFG
side and then derive the counterpart graph by deduc-
tion from the derivation. The benefit of parsing with
SHRG is that the complexity is bounded by that of
CFG parsing. Table 2 shows the rule format of our
SHRG. For each nonterminal Xi-b1 · · · bi, i defines
the type of the nonterminal, while each bi indicates
whether the i-th external node will have a concept
edge in the rewriting result. This design guarantees
that there is exactly one concept edge going out of
each node.

4 Learning Synchronous Hyperedge
Replacement Grammar

The fragment decomposition forest represents all
possible ways to decompose the sentence-AMR
pairs into component-level alignments. It also en-
codes a compact representation of possible SHRG
derivations that are consistent with the alignments.

Therefore, starting with the component-level
alignment pairs, we keep composing large
span/fragment pairs from bottom up to build
the derivation forest. Then we use Gibbs sam-
pling to sample one derivation from the forest
representation.

4.1 Constructing Derivation Forests

We use the alignments from Ulf Hermjakob’s
aligner, which are provided for the training data.

JAMR Ulf Hermjakob
string side span, can be multiple single token
graph side concept fragments single concept/relation
prepositions usually not aligned relation edges
mapping type one-to-one multiple-to-multiple

Table 1: Comparisons of English-AMR alignments from

JAMR and Ulf Hermjakob

boy
ARG0

ARG1

ARG0
ARG1girl

ARG0
ARG1

boy
ARG0

ARG1

girl
ARG0

ARG1
girl

ARG0
ARG1

boy
girl ARG0

ARG1

ARG0ARG1

girl

ARG0

ARG1
want-01

ARG0
ARG1

believe-01

girl
boy

 The boy wants the girl to believe him.

believe-01

want-01

want-01

want-01

want-01

want-01

believe-01

believe-01

Figure 3: The fragment decomposition forest for the (sentence,

AMR graph) pair for “The boy wants the girl to believe him”

Some differences between this alignment and the
alignment from JAMR (Flanigan et al., 2014) are
summarized in Table 1. As the alignment is be-
tween a single token and a single concept/relation,
we first heuristically identify the mappings of named
entities by tracing the :op and :name relations. For
each of the other aligned tokens, we compose its
aligned concept or fragment.1 There are also situ-
ations where multiple tokens are aligned to the same
concept or relation. If they are adjacent, we compose
them on the string side to form a larger span. Other-
wise we delete the alignment of the shorter span to
make the alignment one-to-one. We additionally use
lemma information to retrieve some mappings from
unaligned tokens to unaligned concepts.2

After we have extracted these alignments, we
build the fragment decomposition forest from bot-
tom up and left to right, gradually composing larger
(span, fragment) pairs from smaller ones until we
have reached the root of the forest: the whole
sentence-AMR pair. We maintain an ordered list of
external nodes for each fragment, which will be used

1Our parser currently does not support multi-root graph
fragments, so for alignments that align one token to multiple
disconnected fragments, we only choose the largest fragment as
the aligned fragment.

2Following Peng et al. (2015), we attach :ARGs and :ops to
their head concepts and :ARGx-ofs to their tail concepts.

[A1-1]→ ordinary people | (. :p/person :mod (. :o/ordinary))
[A0-1]→ [A1-1,1] say that [A1-1,2] |
(. :s/say-01 :ARG0 (. :[A1-1,1]) :ARG1 (. :[A1-1,2]))
[A0-1]→ Do [A1-1,1] ? | (. :[A1-1,1] :mode (. :interrogative))

Table 2: Some example of learned rules

to track the order of the external nodes during the
rule extraction phase. Figure 3 shows an example
of a fragment decomposition forest. The forest con-
struction procedure is described in detail in Peng et
al. (2015).

Each node in the forest represents a span-
fragment pair. We extract all span-fragment pairs
of length smaller than 7 to construct a span to frag-
ments alignment table Φ, which will be used during
the concept identification procedure in Section 5.1

4.2 SHRG Learning Using MCMC

The fragment decomposition forest represents possi-
ble derivations of the sentence/AMR pairs in terms
of minimal rules extracted from the alignments. We
use an MCMC algorithm to learn a grammar of
larger rules, by sampling both which minimal rules
are used, and how minimal rules combine to form
larger composed rules.

We sample two types of variables: an edge vari-
able en representing which incoming hyperedge is
chosen at a given node n in the forest (allowing us to
sample one tree from a forest) and a cut variable zn
representing whether node n in the forest is a bound-
ary between two SHRG rules or is internal to an
SHRG rule (allowing us to sample rules/fragments
from a tree). We use an MCMC algorithm to sample
from top-down and one variable at a time (Peng and
Gildea, 2014). Sampling tree fragments from forests
is described in detail in Chung et al. (2014). Table 2
shows some examples of the sampled SHRG rules.

5 AMR parsing

In Section 4, we have described how we extract the
SHRG from the training data. Now given a new sen-
tence, we first use the perceptron algorithm to iden-
tify the graph fragments each span in the sentence
aligns to. Then we use the Earley algorithm to de-
code the sentence and recover its AMR graph.

5.1 Concept Identification
First we identify the segmentation of the sen-
tence. We use the Illinois Named Entity Tagger
(NER) (Ratinov and Roth, 2009) to identify all the
named entities. We also use heuristic rules to iden-
tify dates, time expressions, etc. We heuristically
build the AMR fragments for these spans and add
the mappings to Φ.3 The other spans are of length 1.
Then we use the perceptron algorithm to predict the
AMR fragment for each span:

ĝ[e] = arg max
g∈Φ(e)

wT f(e, g, c) (1)

where w is the weights, and f is the feature function.
e is the current span, g is a candidate graph fragment
from the span to fragment table Φ or matched using
regular expressions. c is the context of span e. We
use the following context features:

1. 3 words, pos tags, lemmas before and after the
current span

2. 3 word, pos tag or lemma bigrams before and
after the current span

3. the words, pos tags and lemmas in the current
span

4. length of the span
Our concept identification result is different
from Flanigan et al. (2014) in that we are predicting
not only the graph fragments but also the external
nodes of each fragment. Therefore, each identified
mapping is essentially a lexical SHRG rule at the
leaf-level of the derivation tree. We add these iden-
tified lexical rules to the extracted SHRG locally
before decoding each sentence. For lexical rules in
Φ that cover more than 1 span of the sentence on the
string side, we also add them to the SHRG locally.4

5.2 Decoding
Given the learned SHRG, we are simply parsing on
the string side. We use the Earley algorithm with
cube-pruning (Chiang, 2007) for the string-to-AMR
parsing. For each synchronous rule with N nonter-
minals on its l.h.s., we build an N + 1 dimensional

3As the named entity labels from Illinois NER is only a few,
we predict their entity label from an entity label set built on the
training data.

4We filter some rules that have non-content words on the
left or right because such rules introduce a lot of errors from the
alignments.

Precision Recall F-score
Dev 0.57 0.55 0.56
Test 0.56 0.55 0.55

Task 8 eval - - 0.50
Table 3: Parsing results on dev and test LDC2015E86 and the

evaluation data of SemEval-2016 Task 8

cube and generate the top K candidates. Out of all
the hypotheses generated by all satisfied rules within
each span (i, j), we keep at most K candidates for
this span. Our glue rules generate a pseudo m/multi-
sentence concept and use ARG relations to connect
disconnected components to make the result graph
connected. The features used are described in Peng
et al. (2015).

6 Experiments

We evaluate our parser on the LDC2015E86 dataset,
which includes 16833 training, 1368 dev, and 1371
test sentences.

During the sampling procedure, all the cut vari-
ables in the derivation forest are initialized as 1 and
an incoming hyperedge is sampled uniformly for
each node. We run the sampler for 160 iterations
and combine the grammar dumped every 10th itera-
tion.

The performance of our SHRG-based parser is
evaluated using Smatch v2.0.2 (Cai and Knight,
2013), which evaluates the precision, recall, and F1
of the concepts and relations all together. Table 3
shows the results on the dev and test set. We also re-
port smatch score on the shared task evaluation data,
which includes 1053 sentences. The smatch score
on the evaluation data is 0.50. This score is much
lower than the performance on the dev and test data.
The reason might be that the evaluation data is much
harder and includes more noise, which can break
down the structure of the learned grammar.

The results show that SHRG-based parsing can be
a viable approach for AMR parsing. Currently our
system only uses a few simple features and all the
weights are tuned by hand. The performance could
be improved by using more complicated features
and tuning their weights automatically. It would also
be helpful to use external resources such as the com-
mon organizational roles, relational roles and the

verbalization lists,5 and to use fallback techniques
to deal with unknown words.

7 Conclusion

In this paper, we have presented our SHRG-based
AMR parsing system for SemEval-2016 Task 8. Our
system extends the work of Peng et al. (2015) and
has shown some competitive results for a graph-
grammar-based approach for AMR parsing. Cur-
rently our system only uses local features for de-
coding; it would be interesting to extend this sys-
tem to incorporate a language model on the graph
side and to use discriminative models to incorporate
more global features and tune the weights automati-
cally.

Acknowledgments

Funded in part by NSF IIS-1446996, and a Google
Faculty Research Award.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceedings
of the 51st Annual Meeting of the Association for Com-
putational Linguistics (ACL-13), pages 748–752.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Tagyoung Chung, Licheng Fang, Daniel Gildea, and
Daniel Štefankovič. 2014. Sampling tree fragments
from forests. Computational Linguistics, 40(1):203–
229.

Frank Drewes, Hans-Jörg Kreowski, and Annegret Ha-
bel. 1997. Hyperedge replacement, graph grammars.
In Handbook of Graph Grammars, volume 1, pages
95–162. World Scientific, Singapore.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A Smith. 2014. A discriminative
graph-based parser for the abstract meaning represen-
tation. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (ACL-
14), pages 1426–1436.
5http://amr.isi.edu/download.html

Xiaochang Peng and Daniel Gildea. 2014. Type-based
MCMC for sampling tree fragments from forests. In
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-14).

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning (CoNLL-15), pages 32–
41, Beijing, China.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009),
pages 147–155, Boulder, Colorado, June. Association
for Computational Linguistics.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based AMR parsing with
refined actions and auxiliary analyzers. In Proceed-
ings of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL-15), pages 857–862,
Beijing, China, July.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for AMR parsing.
In Proceedings of the 2015 Meeting of the North Amer-
ican chapter of the Association for Computational Lin-
guistics (NAACL-15), pages 366–375, Denver, Col-
orado, May–June.

