
The Art of Data
Structures

Introduction

Alan Beadle
CSC 162: The Art of Data
Structures

Acknowledgment:
Slides and course materials
originally prepared by Richard
E Sarkis for the previous
offering of this course

Agenda

To review the ideas of computer
science, programming, and problem-
solving

To understand abstraction and the role
it plays in the problem-solving process

To understand and implement the
notion of an abstract data type

Class
Overview

Course Instructor

 Alan Beadle (he/him/his)

 hbeadle@cs.rochester.edu

 PhD student in computer
science

 Contact me via email, can
meet over zoom

mailto:hbeadle@cs.rochester.edu

Class Organization

 Class content provided mostly through a
class website, and the rest through
Blackboard

 Course components are:

 Lectures

 Lab Assignments

 Workshops

Lectures

 See class website for schedule…

 Course will include

 Lecture slides (i.e. my lecture notes)

 Code samples and some live coding

 Discussions from the class

 Class participation is vital

 We are a small class (v.s. 150+ people)

Lectures

 Per current University policy, online lectures
will be recorded and uploaded.

 Please email me after class if you have
concerns about this.

Syllabus, schedule,
etc

(On website)

What is
Computer Science?

Why Computer Science?
 Everything is bits and computation!

 Astronomy - simulation and
observation data

 Biology – Protein folding

 Music – Sound processing

 Mechanical Engineering – Load bearing

 Literature – Text analysis

 What are you studying?

Lies, damned lies…

 Common misconceptions about
Computer Science:

 ”Computer science is the study of
computers”

 ”Computer science is the study of how
to write computer programs”

 ”Computer science is the study of the
uses and applications of computers
and software”

“The possibility of a science in which all the world is
thought of computationally casts the study of computers
in an important new light. As its practitioners are fond of
saying, computer science is not about computers, any
more than astronomy is about telescopes, or biology

about microscopes. These devices are tools for observing
worlds otherwise inaccessible. The computer is a tool for
exploring the world of complex processes, whether they

involve cells, stars, or the human mind.”

1986, Machinery of the Mind: Inside the New Science of Artificial Intelligence by George
Johnson, Chapter 4: The Art of Programming, Quote Page 81 and 82, Times Books: A Division

of Random House Inc., New York.

Computer science is…

 …the study of computation.

 Feasibility, structure, expression, and
mechanization of the methodical
processes (or algorithms) that underlie
the acquisition, representation,
processing, storage, communication of,
and access to information

What a tool

The computer is just a
tool, described and
realized by the
concepts computer
science

Why Programming?

“The art of programming is the art of
organizing complexity, of mastering
multitude and avoiding its bastard
chaos as effectively as possible.”

Edsger W. Dijkstra (1970) “Notes On Structured Programming”
(EWD249), Section 3 (“On The Reliability of Mechanisms”), p. 7.

Why Programming?

 Using off-the-shelf applications will move
you a along most days, e.g.:

 Spreadsheets, Photo editors, word
processors

 However, if you are doing novel, creative
work, sooner or later, you will need to
solve a new problem

 Learning good principles of programming
will make it possible with more fun and
less frustration

Programming

 Take a computing problem and create an
executable program

1. Analyze and understand the problem

2. Design a data model and an algorithm

 Data model: way to represent the
information

 Algorithm: formal computation steps

3. Implement the algorithm in a
computer language

Programming

 Programming != solving a problem

 Programming is teaching somebody else
how to solve a problem

 “Somebody else” is a computer

 A computer is a device that can be
programmed to carry out a finite set of
operations on binary numbers

 Computers can’t do anything that they
are not programmed to do

Why Python?

Why Python?

 It’s powerful, accessible and
used in many fields

Why Python?

 Python is a language of choice for:

 Scientists (NASA)

 Web site builders (Reddit)

 Researchers in the humanities
(Somebody…)

 Application developers (Dropbox)

Why Python?

 We'll be using
Version 3.7 or later

 http://www.python.o
rg

http://www.python.org/
http://www.python.org/

Why Python?

 Python can be used in
a variety of contexts,
we'll be using Jupyter
notebooks

 https://jupyter.org/

 This class will use
Jupyter notebooks
exclusively!

https://jupyter.org/

 Body Level One

 Body Level Two

 Body Level
Three

 Body Level
Four

 Body
Level Five

Why Python?
 Python installations can be complex with

the large number of third-party
packages (Jupyter, NumPy, matplotlib,
etc.)

 Anaconda is a great re-packaging of
Python and a variety of packages

Why Data Structures
and Algorithms?

Why Data Structures and
Algorithms?

 Our goal is to write efficient, and correct
programs

 Write computer programs in a language,
e.g. Python

 Develop mathematical maturity to
understand analytical proofs

 Implement good abstractions

Why Data Structures
and Algorithms?

Imagine it’s 1943. You’re a law clerk,
charged with organizing the records of a
newly created law firm.

How do you expect people to use the files?
What sorts of questions will they want to
answer — what sorts of things will they want
to look up?

 Body Level One

 Body Level Two

 Body Level
Three

 Body Level
Four

 Body
Level Five

Why Data Structures
and Algorithms?

 Records of a particular case, by:

 Date

 Plaintif

 Defendant

 client name Court docket #

 All cases with given:

 Plaintiff

 Defendant

 Judge

 Point of law

 Size of award

Why Data Structures
and Algorithms?

 What other indices would you keep?

 How hard would it be to find things for
which you don't have an index?

 What shortcuts might be possible?

Why Data Structures
and Algorithms?

 The list of operations you want the files
to support is analogous to an Abstract
Data Type (ADT)

 The physical organization is analogous to
a Data Structure (DS)

Why Data Structures
and Algorithms?

 It’s very important to distinguish
between these two concepts

 We will look at three main things this
semester: ADTs, DSes, and algorithms

Why Data Structures
and Algorithms?

 An ADT represents a particular set of
behaviors

 You can formally define, perhaps using
mathematical logic what an ADT is/does

 For example, a Stack is a list implements
a LIFO policy on additions/deletions

Why Data Structures
and Algorithms?

 A DS is more concrete

 Typically, it is a technique or strategy for
implementing an ADT

 Use a linked list or an array to
implement a stack class

 Body Level One

 Body Level Two

 Body Level
Three

 Body Level
Four

 Body
Level Five

Why Data Structures
and Algorithms?

Some common ADTs that all trained
programmers know about:

 stack

 queue

 priority queue

 dictionary

 sequence

 set

 Body Level One

 Body Level Two

 Body Level
Three

 Body Level
Four

 Body
Level Five

Why Data Structures
and Algorithms?

Some common DSs used to implement
those ADTs:
 Array

 Linked list

 Hash table (open, closed, circular

 Trees (binary search trees, heaps, AVL trees, 2-3, tries, red/black

trees, B-trees)

Conclusion
Topics covered…

 This course will cover a variety of
intermediate topics:

 Analytical Process

 Standard (Pythonic) Techniques

Conclusion
Topics covered…

 Data Structures

 Lists, Stacks, Queues, Trees, Heaps,
Hashes, Graphs, Sets

 Algorithms

 Sorting, Greedy, Backtracking,
Randomized, Dynamic Programming

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

