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Agenda

Why algorithm analysis is important

Use Big-O to describe execution time

Examine the Big-O execution time of 
common operations on Python lists and 
dictionaries

Understand how the implementation of 
Python data impacts algorithm analysis

Benchmark simple Python programs



Algorithm Analysis



Algorithm Analysis

 Given an algorithm can you estimate 
how much time and memory it will take 
to process a given amount of data?



Algorithm Analysis

 I have two programs

 They both do the same thing

 I measure their run time



Algorithm Analysis

 prog1 takes 3 sec to process a 1GB array 
and 3.585 sec to process a 1.5GB array. 

 prog2 takes 1 sec to process a 1GB array 
and 2.25 sec  to process a 1.5GB array.

 Which should I use on my 100GB array?



Algorithm Analysis



Algorithm Analysis

 This example captures the notion of 
asymptotic complexity

 how much time (and sometimes 
space) it takes to solve a problem of a 
given input size

 If you keep taking CS, you'll learn a lot 
more about this in 173, 280, or 282



Algorithm Analysis

 Sorting is a canonical example

 For lists of length N, we'll look at sorts 
that take time proportional to 2N, N2, 
Nlog(N), and N (in special cases)

 Note that if N is big enough, 
1000000Nlog(N) is still less than N2

 We will cover sorting later in the course



Algorithm Analysis

 The following solves a familiar problem, 
computing the sum of the first n integers

def loop_sum(n):
    the_sum = 0
    for i in range(1, n+1):
        the_sum = the_sum + i

    return the_sum



Algorithm Analysis

import time

def loop_sum(n):
    start = time.time()

    the_sum = 0
    for i in range(1, n+1):
        the_sum = the_sum + i

    end = time.time()
    return the_sum, end-start



Algorithm Analysis

def formula_sum(n):
    start = time.time()

    the_sum = (n*(n+1))//2

    end = time.time()
    return the_sum, end-start



Algorithm Analysis

 Let’s evaluate the execution (running) 
time of these algorithms as a good 
benchmarking of whether an algorithm 
is  “good”



Algorithm Analysis

 Notice how the time it takes for 
loop_sum() to run when we scale the value 
of n to larger values

 Compare that with  the results for 
formula_sum() using the same scaled 
values of n

 It seems to be unaffected the the size 
of our input



Algorithm Analysis

 While this is illustrative, it isn’t 
concretely useful for analysis

 Many factors could affect the 
performance these same algorithms

 A different (faster, slower) computer

 A different language is used



Algorithm Analysis

 A characterization is needed that can 
describe algorithm performance 
regardless of these kinds of variability



Big-O



Big-O

 Try to quantify an algorithm on the 
number of operations, or steps taken

 A basic unit of computation needs to be 
considered



Big-O

 For example, we can consider 
assignment statements as a basic unit of 
computation

 In our function sum_of_n2, the number of 
assignments is 1 plus the value of n

 Call this T(n) = 1 + n

 “T(n) is the time it takes to solve a 
problem of size n, name 1+n steps”



Big-O

 The characterization of the algorithm 
using a T(n) relation shows something 
interesting

 If the problem size increases, certain 
terms dominate



Big-O

 The order of magnitude function 
describes the part of T(n) that increases 
the fastest as n increases

 Big-O notation, written as O(f(n))

 This is a useful approximation

 f(n) is a simple representation of the 
dominate part of T(n)









 Some examples:

 10n2 + 50n + 100 is O(n2)

 log(n)+7 is O(log(n))

 We only care about the term that 
increases the fastest, since eventually it 

will take most of our resources!





 Any Polynomial is big-O of its leading 
term with coefficient of 1

 The base of a logarithm doesn’t matter. 

 loga(n) is O(logbn) for any bases a and b 
because 

 loga(n)=(logbn)(logab)



 Logs grow slower than powers:
log(n) is O(n1/10)

 Exponentials (cn, c>1) grow faster than 
poly n10 is O(1.0001n)

 Generally, polynomial time is tolerable

 Generally, exponential time is intolerable





The Tale of Two 
Algorithms



 Slow Algorithm, Fast Computer

 Fast Algorithm, Slow Computer

DEC Alpha workstation 500/400
(1995)
400 MHz Alpha 21164A

Radio Shack TRS-80
(1977)
1.78 MHz Zilog Z80



Two Algorithms



Programming Exercise



Programming Exercise

 Write a Python function to convert ints to 
strings containing the binary 
representation

 if (n == 5) return “101”;

 if (n==12) return “1100”;

 def int2bin( n ) 



Programming Exercise

def int2bin(n):
    rval = ""
    while (n>0) :
        if((n%2) == 1) :
            rval += “1”
        else :
            rval +=“0”
        n = n // 2
    
    return rval
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1 def int2bin(n):
2     rval = ""
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9     
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If we have time, discuss 
anagram examples in textbook

We have a workshop to do 
during class, due date is a 
couple of days from now just in 
case

There will also be a new lab 
assignment on Blackboard after 
class, due in 1 week



Questions?
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