The Art of Data

 Structures

Agenda

- Why algorithm analysis is important
- Use Big-O to describe execution time
- Examine the Big-O execution time of common operations on Python lists and dictionaries
- Understand how the implementation of Python data impacts algorithm analysis
- Benchmark simple Python programs

Algorithm Analysis

Algorithm Analysis

- Given an algorithm can you estimate how much time and memory it will take to process a given amount of data?

Algorithm Analysis

- I have two programs
- They both do the same thing
- I measure their run time

Algorithm Analysis

prog1 takes 3 sec to process a 1GB array and 3.585 sec to process a 1.5 GB array.

- prog2 takes 1 sec to process a 1GB array and 2.25 sec to process a 1.5 GB array.
- Which should I use on my 100GB array?

Algorithm Analysis

Algorithm Analysis

- This example captures the notion of asymptotic complexity
- how much time (and sometimes space) it takes to solve a problem of a given input size
- If you keep taking CS, you'll learn a lot more about this in 173, 280, or 282

Algorithm Analysis

- Sorting is a canonical example
- For lists of length N, we'll look at sorts that take time proportional to $2^{\mathrm{N}}, \mathrm{N}^{2}$, $N \log (N)$, and N (in special cases)
- Note that if N is big enough, $1000000 \mathrm{Nlog}(\mathrm{N})$ is still less than N^{2}
- We will cover sorting later in the course

Algorithm Analysis

- The following solves a familiar problem, computing the sum of the first n integers

```
def loop_sum(n):
    the_sum = 0
    for i in range(1, n+1):
        the_sum = the_sum + i
    return the_sum
```


Algorithm Analysis

```
import time
def loop_sum(n):
    start = time.time()
    the_sum = 0
    for i in range(1, n+1):
        the_sum = the_sum + i
    end = time.time()
    return the_sum, end-start
```


Algorithm Analysis

def formula_sum(n):
start $=$ time.time()
the_sum $=\left(n^{*}(n+1)\right) / / 2$
end $=$ time.time()
return the_sum, end-start

Algorithm Analysis

- Let's evaluate the execution (running) time of these algorithms as a good benchmarking of whether an algorithm is "good"

Algorithm Analysis

- Notice how the time it takes for loop_sum() to run when we scale the value of n to larger values
- Compare that with the results for formula_sum() using the same scaled values of n
- It seems to be unaffected the the size of our input

Algorithm Analysis

- While this is illustrative, it isn't concretely useful for analysis
- Many factors could affect the performance these same algorithms
- A different (faster, slower) computer
- A different language is used

Algorithm Analysis

- A characterization is needed that can describe algorithm performance regardless of these kinds of variability

Big-O

Big-O

- Try to quantify an algorithm on the number of operations, or steps taken
- A basic unit of computation needs to be considered

Big-O

- For example, we can consider assignment statements as a basic unit of computation
- In our function sum_of_n2, the number of assignments is 1 plus the value of n
- Call this $T(n)=1+n$
- " $T(n)$ is the time it takes to solve a problem of size n, name $1+n$ steps"

Big-O

- The characterization of the algorithm using a $T(n)$ relation shows something interesting
- If the problem size increases, certain terms dominate

Big-O

- The order of magnitude function describes the part of $T(n)$ that increases the fastest as n increases
- Big-O notation, written as $O(f(n))$
- This is a useful approximation
- $f(n)$ is a simple representation of the dominate part of $T(n)$

Mathematical Expression
Relative Rates of Growth

- Some examples:

$$
\begin{aligned}
& 10 n^{2}+50 n+100 \text { is } O\left(n^{2}\right) \\
& \bullet \quad \log (n)+7 \text { is } O(\log (n))
\end{aligned}
$$

- We only care about the term that increases the fastest, since eventually it will take most of our resources!

- Any Polynomial is big-O of its leading term with coefficient of 1
- The base of a logarithm doesn't matter.
- $\log _{a}(\mathrm{n})$ is $\mathrm{O}\left(\log _{b} \mathrm{n}\right)$ for any bases a and b because
- $\log _{a}(n)=\left(\log _{b} n\right)\left(\log _{a} b\right)$
- Logs grow slower than powers: $\log (\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{1 / 10}\right)$
- Exponentials ($\mathrm{c}^{\mathrm{n}}, \mathrm{c}>1$) grow faster than poly n^{10} is $\mathrm{O}\left(1.0001^{\mathrm{n}}\right)$
- Generally, polynomial time is tolerable
- Generally, exponential time is intolerable

Function	Name
c	Constant
$\log N$	Logarithmic
$\log ^{2} N$	log-squared
N	Linear
$N \log N$	Q log N
N^{2}	Quadratic
N^{3}	Cubic
2^{N}	Exponential

The Tale of Two Algorithms

- Slow Algorithm, Fast Computer - Fast Algorithm, Slow Computer

DEC Alpha workstation 500/400 (1995)

400 MHz Alpha 21164A

Radio Shack TRS-80
(1977)
1.78 MHz Zilog Z80

Two Algorithms

n	Alpha21164A, "C", O(n^3)	TRS-80, "BASIC", $\mathrm{O}(\mathrm{n})$
10	0.6 microsec	200 millisecs
100	0.6 millisecs	2.0 sec
1000	0.6 sec	20 sec
10,000	10 min	3.2 min
100,000	7 days	32 min
$1,000,000$	19 years	5.4 hrs

Programming Exercise

Programming Exercise

- Write a Python function to convert ints to strings containing the binary representation
- if ($\mathrm{n}==5$) return " 101 ";

$$
\text { if }(\mathrm{n}==12) \text { return " } 1100 \text { "; }
$$

- def int2bin(n)

Programming Exercise

```
def int2bin(n):
    rval = ""
    while (n>0) :
    if((n%2) == 1):
    else :
        rval +="0"
        n = n // 2
```

 return rval
 | | int2bin(n): |
| :---: | :---: |
| 2 | rval = "" |
| 3 | while ($\mathrm{n}>0$) : |
| 4 | if($(\mathrm{n} \% 2)==1)$ |
| 5 | rval += "1" |
| 6 | else : |
| 7 | rval +="0" |
| 8 | $\mathrm{n}=\mathrm{n} / \mathrm{l} 2$ |
| 9 | |
| 10 | return rval |


```
1 def int2bin(n):
2 rval = ""
3 while ( \(n>0\) ) :
\(4 \quad\) if( \((\mathrm{n} \% 2)==1)\) :
    rval += "1"
    else :
            rval +="0"
        \(\mathrm{n}=\mathrm{n} / / 2\)
```

9

10 return rval
$\begin{array}{ll}1 & \text { def } \begin{array}{l}\text { int2bin }(n): \\ 2\end{array} \quad \text { rval }=" " \\ 3 & \text { while }(n>0): \\ 4 & \text { if }((n \% 2)==1): \\ 5 & \text { rval }+=" 1 " \\ 6 & \text { else }: \\ 7 & \text { rval +=" } 0 " \\ 8 & n=n / / 2\end{array}$
9
10 return rval

9
10 return rval

9
10 return rval

9
10 return rval

9
10 return rval

- If we have time, discuss anagram examples in textbook
- We have a workshop to do during class, due date is a couple of days from now just in case
- There will also be a new lab assignment on Blackboard after class, due in 1 week

Questions? 量

