
The Art of Data
Structures

Runtime Analysis

Alan Beadle
CSC 162: The Art of Data
Structures

Acknowledgment:
Slides and course materials
originally prepared by Richard
E Sarkis for the previous
offering of this course

Agenda

Why algorithm analysis is important

Use Big-O to describe execution time

Examine the Big-O execution time of
common operations on Python lists and
dictionaries

Understand how the implementation of
Python data impacts algorithm analysis

Benchmark simple Python programs

Algorithm Analysis

Algorithm Analysis

 Given an algorithm can you estimate
how much time and memory it will take
to process a given amount of data?

Algorithm Analysis

 I have two programs

 They both do the same thing

 I measure their run time

Algorithm Analysis

 prog1 takes 3 sec to process a 1GB array
and 3.585 sec to process a 1.5GB array.

 prog2 takes 1 sec to process a 1GB array
and 2.25 sec to process a 1.5GB array.

 Which should I use on my 100GB array?

Algorithm Analysis

Algorithm Analysis

 This example captures the notion of
asymptotic complexity

 how much time (and sometimes
space) it takes to solve a problem of a
given input size

 If you keep taking CS, you'll learn a lot
more about this in 173, 280, or 282

Algorithm Analysis

 Sorting is a canonical example

 For lists of length N, we'll look at sorts
that take time proportional to 2N, N2,
Nlog(N), and N (in special cases)

 Note that if N is big enough,
1000000Nlog(N) is still less than N2

 We will cover sorting later in the course

Algorithm Analysis

 The following solves a familiar problem,
computing the sum of the first n integers

def loop_sum(n):
 the_sum = 0
 for i in range(1, n+1):
 the_sum = the_sum + i

 return the_sum

Algorithm Analysis

import time

def loop_sum(n):
 start = time.time()

 the_sum = 0
 for i in range(1, n+1):
 the_sum = the_sum + i

 end = time.time()
 return the_sum, end-start

Algorithm Analysis

def formula_sum(n):
 start = time.time()

 the_sum = (n*(n+1))//2

 end = time.time()
 return the_sum, end-start

Algorithm Analysis

 Let’s evaluate the execution (running)
time of these algorithms as a good
benchmarking of whether an algorithm
is “good”

Algorithm Analysis

 Notice how the time it takes for
loop_sum() to run when we scale the value
of n to larger values

 Compare that with the results for
formula_sum() using the same scaled
values of n

 It seems to be unaffected the the size
of our input

Algorithm Analysis

 While this is illustrative, it isn’t
concretely useful for analysis

 Many factors could affect the
performance these same algorithms

 A different (faster, slower) computer

 A different language is used

Algorithm Analysis

 A characterization is needed that can
describe algorithm performance
regardless of these kinds of variability

Big-O

Big-O

 Try to quantify an algorithm on the
number of operations, or steps taken

 A basic unit of computation needs to be
considered

Big-O

 For example, we can consider
assignment statements as a basic unit of
computation

 In our function sum_of_n2, the number of
assignments is 1 plus the value of n

 Call this T(n) = 1 + n

 “T(n) is the time it takes to solve a
problem of size n, name 1+n steps”

Big-O

 The characterization of the algorithm
using a T(n) relation shows something
interesting

 If the problem size increases, certain
terms dominate

Big-O

 The order of magnitude function
describes the part of T(n) that increases
the fastest as n increases

 Big-O notation, written as O(f(n))

 This is a useful approximation

 f(n) is a simple representation of the
dominate part of T(n)

 Some examples:

 10n2 + 50n + 100 is O(n2)

 log(n)+7 is O(log(n))

 We only care about the term that
increases the fastest, since eventually it

will take most of our resources!

 Any Polynomial is big-O of its leading
term with coefficient of 1

 The base of a logarithm doesn’t matter.

 loga(n) is O(logbn) for any bases a and b
because

 loga(n)=(logbn)(logab)

 Logs grow slower than powers:
log(n) is O(n1/10)

 Exponentials (cn, c>1) grow faster than
poly n10 is O(1.0001n)

 Generally, polynomial time is tolerable

 Generally, exponential time is intolerable

The Tale of Two
Algorithms

 Slow Algorithm, Fast Computer

 Fast Algorithm, Slow Computer

DEC Alpha workstation 500/400
(1995)
400 MHz Alpha 21164A

Radio Shack TRS-80
(1977)
1.78 MHz Zilog Z80

Two Algorithms

Programming Exercise

Programming Exercise

 Write a Python function to convert ints to
strings containing the binary
representation

 if (n == 5) return “101”;

 if (n==12) return “1100”;

 def int2bin(n)

Programming Exercise

def int2bin(n):
 rval = ""
 while (n>0) :
 if((n%2) == 1) :
 rval += “1”
 else :
 rval +=“0”
 n = n // 2

 return rval

1 def int2bin(n):
2 rval = ""
3 while (n>0) :
4 if((n%2) == 1) :
5 rval += “1”
6 else :
7 rval +=“0”
8 n = n // 2
9
10 return rval

1 def int2bin(n):
2 rval = ""
3 while (n>0) :
4 if((n%2) == 1) :
5 rval += “1”
6 else :
7 rval +=“0”
8 n = n // 2
9
10 return rval

1 def int2bin(n):
2 rval = ""
3 while (n>0) :
4 if((n%2) == 1) :
5 rval += “1”
6 else :
7 rval +=“0”
8 n = n // 2
9
10 return rval

1 def int2bin(n):
2 rval = ""
3 while (n>0) :
4 if((n%2) == 1) :
5 rval += “1”
6 else :
7 rval +=“0”
8 n = n // 2
9
10 return rval

1 def int2bin(n):
2 rval = ""
3 while (n>0) :
4 if((n%2) == 1) :
5 rval += “1”
6 else :
7 rval +=“0”
8 n = n // 2
9
10 return rval

1 def int2bin(n):
2 rval = ""
3 while (n>0) :
4 if((n%2) == 1) :
5 rval += “1”
6 else :
7 rval +=“0”
8 n = n // 2
9
10 return rval

1 def int2bin(n):
2 rval = ""
3 while (n>0) :
4 if((n%2) == 1) :
5 rval += “1”
6 else :
7 rval +=“0”
8 n = n // 2
9
10 return rval

1 def int2bin(n):
2 rval = ""
3 while (n>0) :
4 if((n%2) == 1) :
5 rval += “1”
6 else :
7 rval +=“0”
8 n = n // 2
9
10 return rval

If we have time, discuss
anagram examples in textbook

We have a workshop to do
during class, due date is a
couple of days from now just in
case

There will also be a new lab
assignment on Blackboard after
class, due in 1 week

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

