The Art of Data Structures Runtime Analysis

Alan Beadle CSC 162: The Art of Data Structures

Acknowledgment:

Slides and course materials originally prepared by Richard E Sarkis for the previous offering of this course

Agenda

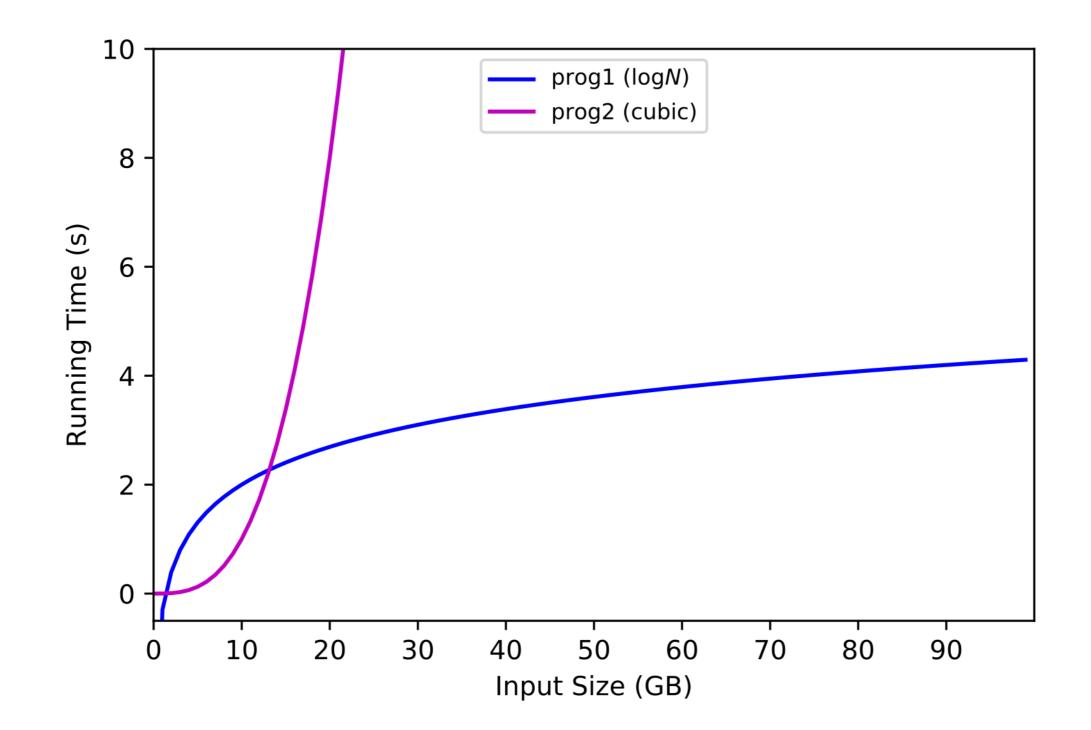
- •Why algorithm analysis is important
- •Use Big-O to describe execution time
- Examine the Big-O execution time of common operations on Python lists and dictionaries
- Understand how the implementation of Python data impacts algorithm analysis
- •Benchmark simple Python programs

 Given an algorithm can you estimate how much time and memory it will take to process a given amount of data?

- I have two programs
- They both do the same thing
- I measure their run time

- prog1 takes 3 sec to process a 1GB array and 3.585 sec to process a 1.5GB array.
- prog2 takes 1 sec to process a 1GB array and 2.25 sec to process a 1.5GB array.

• Which should I use on my 100GB array?



- This example captures the notion of asymptotic complexity
 - how much time (and sometimes space) it takes to solve a problem of a given input size
- If you keep taking CS, you'll learn a lot more about this in 173, 280, or 282

- Sorting is a canonical example
- For lists of length N, we'll look at sorts that take time proportional to 2^N, N², Nlog(N), and N (in special cases)
 - Note that if N is big enough, 1000000Nlog(N) is still less than N²
- We will cover sorting later in the course

 The following solves a familiar problem, computing the sum of the first n integers

```
def loop_sum(n):
    the_sum = 0
    for i in range(1, n+1):
        the_sum = the_sum + i
```

return the_sum

import time

def loop_sum(n):
 start = time.time()

```
the_sum = 0
for i in range(1, n+1):
    the_sum = the_sum + i
```

end = time.time()
return the_sum, end-start

def formula_sum(n):
 start = time.time()

the_sum = $(n^{*}(n+1))/2$

end = time.time()
return the_sum, end-start

 Let's evaluate the execution (running) time of these algorithms as a good benchmarking of whether an algorithm is "good"

- Notice how the time it takes for loop_sum() to run when we scale the value of n to larger values
- Compare that with the results for formula_sum() using the same scaled values of n
 - It seems to be unaffected the the size of our input

- While this is illustrative, it isn't concretely useful for analysis
- Many factors could affect the performance these same algorithms
 - A different (faster, slower) computer
 - A different language is used

 A characterization is needed that can describe algorithm performance regardless of these kinds of variability

- Try to quantify an algorithm on the number of operations, or steps taken
- A basic unit of computation needs to be considered

Big-O

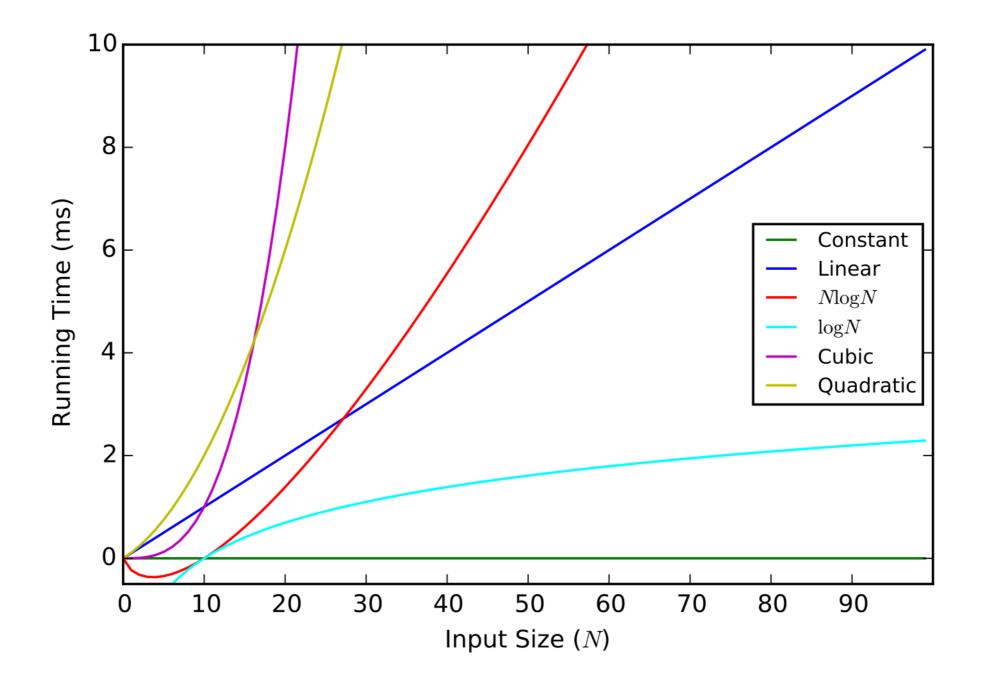
- For example, we can consider assignment statements as a basic unit of computation
- In our function sum_of_n2, the number of assignments is 1 plus the value of n
- Call this T(n) = 1 + n
- "T(n) is the time it takes to solve a problem of size n, name 1+n steps"

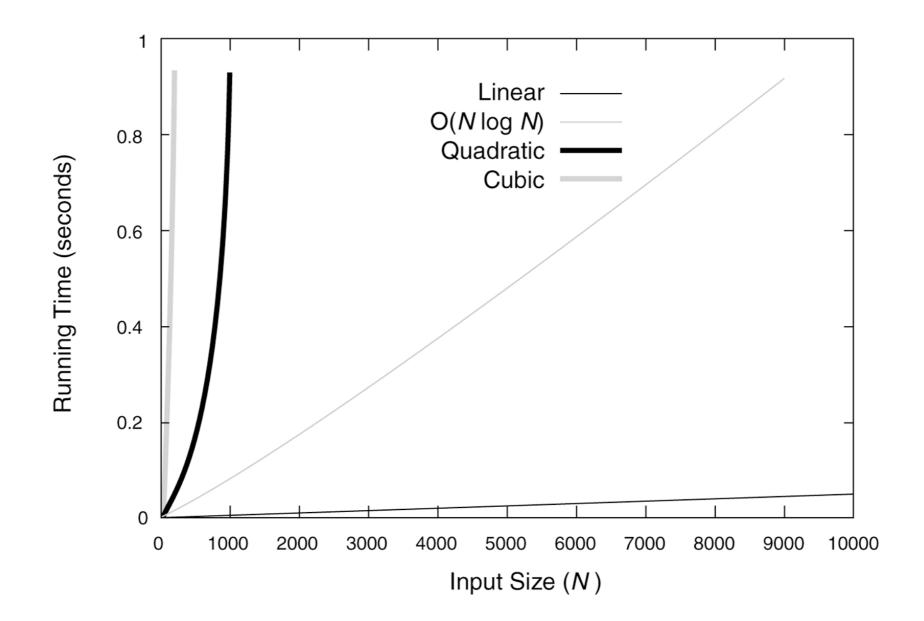
Big-O

- The characterization of the algorithm using a *T(n)* relation shows something interesting
- If the problem size increases, certain terms dominate

Big-O

- The order of magnitude function describes the part of *T(n)* that increases the fastest as *n* increases
- **Big-O** notation, written as O(f(n))
- This is a useful approximation
- f(n) is a simple representation of the dominate part of T(n)



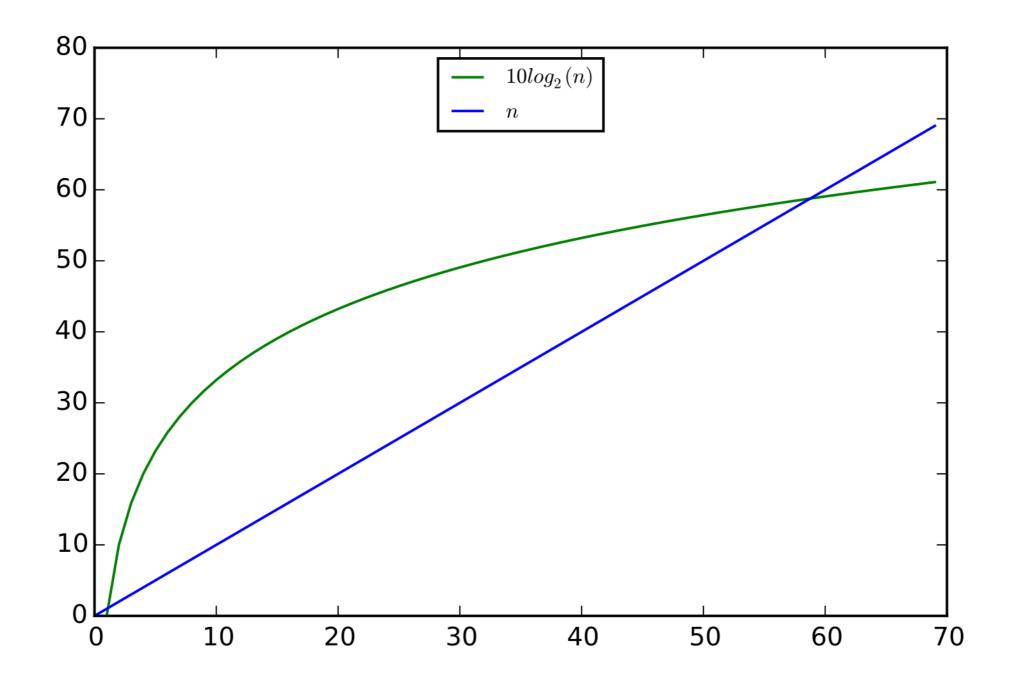


Mathematical Expression	Relative Rates of Growth
T(N) = O(F(N))	Growth of $T(N)$ is \leq growth of $F(N)$.
$T(N) = \Omega(F(N))$	Growth of $T(N)$ is \geq growth of $F(N)$.
$T(N) = \Theta(F(N))$	Growth of $T(N)$ is = growth of $F(N)$.
T(N) = o(F(N))	Growth of $T(N)$ is < growth of $F(N)$.

• Some examples:

10n² + 50n + 100 is O(n²) log(n)+7 is O(log(n))

• We only care about the term that increases the fastest, since eventually it will take most of our resources!



- Any Polynomial is big-O of its leading term with coefficient of 1
- The base of a logarithm doesn't matter.
- log_a(n) is O(log_bn) for any bases a and b because
- $\log_a(n) = (\log_b n)(\log_a b)$

- Logs grow slower than powers: log(n) is O(n^{1/10})
- Exponentials (cⁿ, c>1) grow faster than poly n¹⁰ is O(1.0001ⁿ)
- Generally, polynomial time is tolerable
- Generally, exponential time is intolerable

Function	Name
С	Constant
$\log N$	Logarithmic
$\log^2 N$	Log-squared
Ν	Linear
$N \log N$	N log N
N^2	Quadratic
N ³	Cubic
2^N	Exponential

The Tale of Two Algorithms

Slow Algorithm, Fast Computer

Fast Algorithm, Slow Computer

DEC Alpha workstation 500/400 (1995) 400 MHz Alpha 21164A

Radio Shack TRS-80 (1977) 1.78 MHz Zilog Z80

Two Algorithms

n	Alpha21164A, "C", O(n^3)	TRS-80, "BASIC", O(n)
10	0.6 microsec	200 millisecs
100	0.6 millisecs	2.0 sec
1000	0.6 sec	20 sec
10,000	10 min	3.2 min
100,000	7 days	32 min
1,000,000	19 years	5.4 hrs

Programming Exercise

Programming Exercise

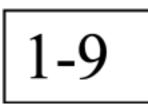
- Write a Python function to convert ints to strings containing the binary representation
- if (n = 5) return "101";
- if (n==12) return "1100";
- def int2bin(n)

Programming Exercise

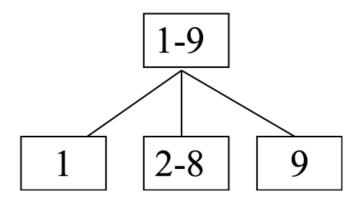
```
def int2bin(n):
    rval = ""
    while (n>0) :
        if((n%2) == 1) :
            rval += "1"
        else :
            rval +="0"
            n = n // 2
```

return rval

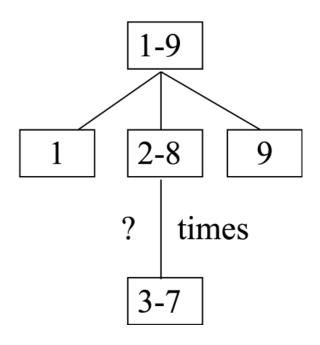
```
1 def int2bin(n):
2
      rval = ""
3
      while (n>0) :
4
           if((n%2) == 1) :
5
               rval += "1"
6
           else :
7
              rval +="0"
8
          n = n / / 2
9
      return rval
10
```



```
def int2bin(n):
1
2
      rval = ""
3
      while (n>0) :
4
5
           if((n%2) == 1) :
               rval += "1"
6
           else :
7
               rval +="0"
8
           n = n / / 2
9
10
      return rval
```

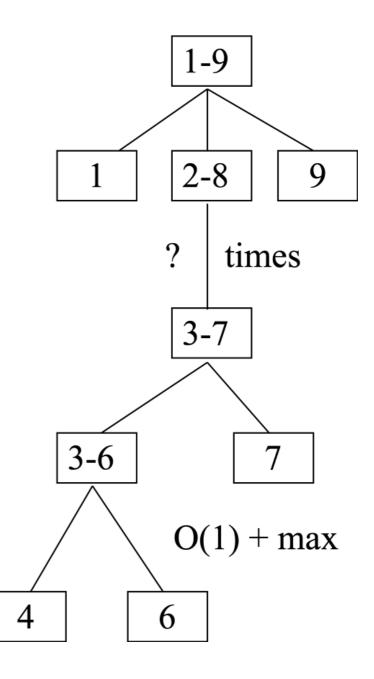


```
def int2bin(n):
1
2
      rval = ""
3
      while (n>0) :
4
           if((n%2) == 1) :
5
               rval += "1"
6
           else :
7
              rval +="0"
8
          n = n / / 2
9
10
      return rval
```

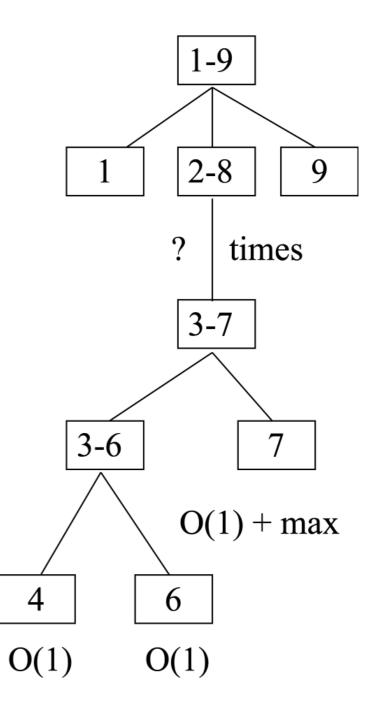


```
def int2bin(n):
1
                                            1-9
2
       rval = ""
3
       while (n>0) :
4
5
           if((n%2) == 1) :
                                            2-8
                                                   9
                                       1
                rval += "1"
6
           else :
                                           ?
                                              times
7
               rval +="0"
8
           n = n / / 2
                                            3-7
9
10
       return rval
                                     3-6
                                                7
```

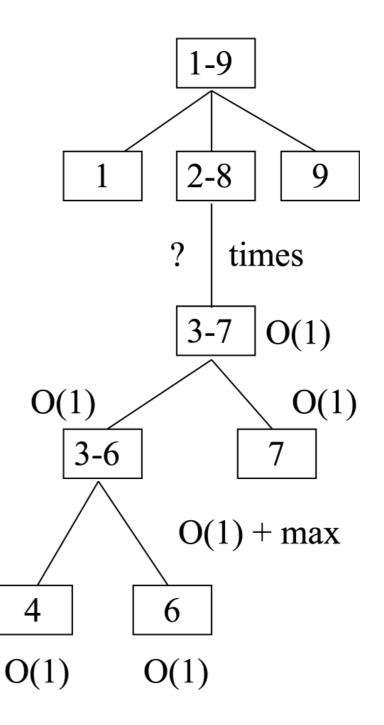
```
def int2bin(n):
1
2
      rval = ""
3
      while (n>0) :
4
5
           if((n%2) == 1) :
               rval += "1"
6
           else :
7
              rval +="0"
8
          n = n / / 2
9
10
      return rval
```



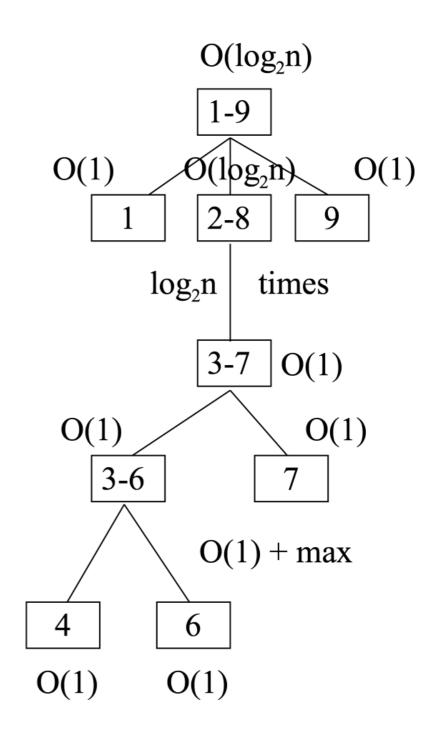
```
def int2bin(n):
1
2
      rval = ""
3
      while (n>0) :
4
           if((n%2) == 1) :
5
               rval += "1"
6
           else :
7
              rval +="0"
8
          n = n / / 2
9
10
      return rval
```



```
def int2bin(n):
1
2
      rval = ""
3
      while (n>0) :
4
           if((n%2) == 1) :
5
               rval += "1"
6
           else :
7
               rval +="0"
8
           n = n / / 2
9
10
      return rval
```



```
def int2bin(n):
1
2
      rval = ""
3
      while (n>0) :
4
           if((n%2) == 1) :
5
                rval += "1"
6
           else :
7
               rval +="0"
8
           n = n / / 2
9
10
      return rval
```



- If we have time, discuss anagram examples in textbook
- •We have a workshop to do during class, due date is a couple of days from now just in case
- There will also be a new lab assignment on Blackboard after class, due in 1 week

