
The Art of Data
Structures

Stacks

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

What is a Stack?

The Stack Abstract Data Type

Implementing a Stack in Python

String reversal

Balanced Parentheses/symbols

Infix, Prefix and Postfix Expressions

Linear Data Structures

Linear Data Structures
What are they?

 Data collections where items are ordered
depending on how they are
added/removed

 They stay in that order, relative to other
elements before and after it

Linear Data Structures
What are they?

 Two ends (left, right, top, bottom, front,
rear, etc…)

 Adding and removing is the
distinguishing characteristic

 May be limited on which end data is
removed from or added to

Linear Data Structures
What are they?

 Simple, but powerful data structures will
be covered

 Stacks, Queues, Deques, and Lists

 Very useful in computer science

 Appear in many algorithms, and solve
important problems

Stacks

Stacks
Definition

 Also known as a "push-down stack"

 Ordered collection where items are
added, or removed from the same end

 This means the last item added is the
first one removed, also called a LIFO
(last-in, first-out)

 The newest items are at the top/front
and the oldest items are in the
bottom/rear

Stacks
A Stack of Books

Stacks
A Stack of Primitive Python

Objects

Stacks
The Reversal Property of Stacks

Implementation

Implementation
Stack Abstract Data Type

 The stack abstract data type is defined
by:

 The underlying data structure

 The exposed actions that operate on it

 Items are removed, and added from the
end called the "top"

 They are an ordered LIFO

Implementation
Stack Abstract Data Type

 When an ADT is given a physical
implementation, we refer to that
implementation as a data structure

 We will be using Python classes to
implement this ADT, where the stack
operations will be methods

 A Python list will be the underlying data
structure, as it is a powerful, and simply
primitive collection structure

Implementation
Stack Operations

Stack() creates a new stack that is
empty; it needs no parameters and
returns an empty stack

push(item) adds a new item to the top
of the stack; it needs the item and
returns nothing

pop() removes the top item from the
stack; it needs no parameters, returns
the item and the stack is modified

Implementation
Stack Operations

peek() returns the top item from the
stack but does not remove it; it needs
no parameters; the stack is not
modified

is_empty() tests to see whether the
stack is empty; it needs no parameters
and returns a boolean value

size() returns the number of items on
the stack. It needs no parameters and
returns an integer

Implementation
Stack Operations

Stack Operation Stack Contents Return
Value

s.is_empty() []
True

s.push(4) [4]

s.push('dog') [4, 'dog']

s.peek() [4, 'dog'] dog'

s.push(True) [4, 'dog', True]

s.size() [4, 'dog', True] 3

s.is_empty() [4, 'dog', True]
False

s.push(8.4) [4, 'dog', True, 8.4]

s.pop() [4, 'dog', True] 8.4

s.pop() [4, 'dog']
True

s.size() [4, 'dog'] 2

Implementation
Stack Implementation in Python

class Stack:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item):
 self.items.append(item)

 def pop(self):
 return self.items.pop()

 def peek(self):
 return self.items[-1]

 def size(self):
 return len(self.items)

Implementation
Alternate Implementation

 The abstract nature of an ADT can allow
us to change the underlying physical
implementation without affecting the
logical characteristics

 The performance, however, may differ
wildly

 The following alternate implementation
will have push() and pop() methods that
run in O(n), for a stack of size n

Implementation
Stack Implementation in Python

(Alternate, Slower)
class Stack:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item):
 self.items.insert(0, item)

 def pop(self):
 return self.items.pop(0)

 def peek(self):
 return self.items[0]

 def size(self):
 return len(self.items)

String reversal example

(In notebook)

Simple Balanced
Parentheses

Simple Balanced Parentheses
Matching Parentheses

(5+6)*(7+8)/(4+3)

LISP code example:
(defun square(n)

(* n n))

“LISt Processing” or “Lost In
Senseless Parentheses”?

Simple Balanced Parentheses
Parentheses Checker
def par_checker(symbol_string):
 s = Stack()
 balanced = True
 index = 0

 while index < len(symbol_string) and
balanced:
 symbol = symbol_string[index]
 if symbol == "(":
 s.push(symbol)
 else:
 # the case for a right/closing parens
 if s.is_empty():
 balanced = False
 else:
 s.pop()

 index += 1

 if balanced and s.is_empty():
 return True
 else:
 return False

Simple Balanced Parentheses
Parentheses Checker

 That could have been done more easily
with just a counter

 If we extend to handle brackets and
braces, too, we really need the stack…

Balanced Symbols
(A General Case)

Balanced Symbols
(A General Case)

def symbol_checker(symbol_string):
 s = Stack()
 balanced = True
 index = 0

 while index < len(symbol_string) and balanced:
 symbol = symbol_string[index]
 if symbol in '([{<':
 s.push(symbol)
 else:
 if s.is_empty():
 balanced = False
 else:
 top = s.pop()
 print(s.items, top, symbol)
 if not matches(top, symbol):
 balanced = False
 index += 1

 return (balanced and s.is_empty())

Balanced Symbols
(A General Case)

def matches(_open, close):
 openers = "([{<"
 closers = ")]}>"
 return openers.index(_open) == closers.index(close)

print(par_checker('{{([][])}()}'))
print(par_checker('[{()]'))

Infix, Prefix, Postfix Exps.

This stuff can be confusing at first, so let’s
start with a demonstration of postfix notation

FORTH is a whole programming language
based on stacks and postfix notation!

As a hobby, I re-implemented an extinct
dialect of FORTH called DSSP

Let’s see how DSSP does math using a
stack...

Infix, Prefix, Postfix Exps.
Moving Operators Rightward for Postfix

Notation

 We're used to infix: A + B

 We're also used to prefix, perhaps with
parentheses:

 add(A, B)

 + A B

Infix, Prefix, Postfix Exps.
Moving Operators Leftward for Postfix

Notation

 Postfix may seem a little strange: A B +

Infix, Prefix, Postfix Exps.
Converting a Complex Expression to Prefix

and Postfix Notations

Infix, Prefix, Postfix Exps.
Converting a Complex Expression to Prefix

and Postfix Notations

 With infix, we need parentheses to
determine order of operations

 We sometimes leave them out if the
order can be implied by rules for
precedence:

 2 + 3 * 4 == 2 + (3 * 4) ==> 14

 2 + 3 * 4 == (2 + 3) * 4 ==> 20

Infix, Prefix, Postfix Exps.
Converting a Complex Expression to Prefix

and Postfix Notations

 We sometimes leave them out if the
order can be implied by rules for
associativity:

 10 - 4 - 3 == (10 - 4) - 3 ==> 3

 10 - 4 - 3 == 10 - (4 - 3) ==> 9

Infix, Prefix, Postfix Exps.
Converting a Complex Expression to Prefix

and Postfix Notations

 Prefix and postfix have no need for
parentheses; the order is manifest

 M&R point out that this is because we've
effectively placed the operator in the
position of the left or right paren, so it
implies the grouping

Infix, Prefix, Postfix Exps.
Converting a Complex Expression to Prefix

and Postfix Notations

 (A + (B * C)) ← infix

 + A * B C ← prefix

 A B C * + ← postfix

Infix, Prefix, Postfix Exps.
Converting a Complex Expression to Prefix

and Postfix Notations

 ((A + B) * C) ← infix

 * + A B C ← prefix

 A B + C * ← postfix

Infix, Prefix, Postfix Exps.
Converting a Complex Expression to Prefix

and Postfix Notations

 So what does this have to do with
stacks?

 We can build on the balanced parens
example to convert among the three
representations and to evaluate
expressions in any of the three notations

 Compilers and interpreters (like the
Python interpreter) do a lot of this sort of
thing

Infix, Prefix, Postfix Exps.
Converting a Complex Expression to Prefix

and Postfix Notations

 We'll show to convert infix to postfix
using a stack

 One handles precedence, the other
does not

 Both have left associativity

 Neither example handles right
associativity (e.g., for exponentiation)

Infix, Prefix, Postfix Exps.
Infix to Postfix Notation (No Precedence)

import string

def infix_to_postfix(infix_expr):
 operand_stack = Stack()
 postfix_list = []
 token_list = infix_expr.split()

 for token in token_list:
 if token in string.ascii_uppercase:
 postfix_list.append(token)
 elif token == '(':
 operand_stack.push(token)
 elif token == ')':
 top_token = operand_stack.pop()
 while top_token != '(':
 postfix_list.append(top_token)
 top_token = operand_stack.pop()
 else: # Operator
 if not operand_stack.is_empty() and operand_stack.peek() != '(':
 postfix_list.append(operand_stack.pop())
 operand_stack.push(token)

 while not operand_stack.is_empty():
 postfix_list.append(operand_stack.pop())

 return "".join(postfix_list)

Infix, Prefix, Postfix Exps.
Converting A * B + C * D to Postfix Notation

1. The following algorithm handles
precedence; still implicitly left associative

2. Create an empty stack called opstack for
keeping operators

3. Create an empty list for output

4. Convert the input infix string to a list by
using the string method split

Infix, Prefix, Postfix Exps.
Converting A * B + C * D to Postfix Notation

4. Scan the token list from left to right

 If the token is an operand, append it to
the end of the output list

 If the token is a left parenthesis,
push it on the opstack

Infix, Prefix, Postfix Exps.
Converting A * B + C * D to Postfix Notation

4. (cont.) Scan the token list from left to
right

 If the token is a right parenthesis, pop
the opstack until the corresponding left
parenthesis is removed

 Append each operator to the end of
the output list

Infix, Prefix, Postfix Exps.
Converting A * B + C * D to Postfix Notation

4. (cont.) Scan the token list from left to
right

 If the token is an operator, *, /, +, or -,
push it on the opstack

 However, first remove any operators
already on the opstack that have higher
or equal precedence and append them
to the output list

Infix, Prefix, Postfix Exps.
Converting A * B + C * D to Postfix Notation

5. When the input expression has been
completely processed, check the opstack

 Any operators still on the stack can be
removed and appended to the end of
the output list

Infix, Prefix, Postfix Exps.
Converting A * B + C * D to Postfix Notation

Infix, Prefix, Postfix Exps.
Infix to Postfix Notation (With Precedence)

def infix_to_postfix2(infix_expr):
 prec = {'*': 3, '/': 3, '+': 2, '-': 2, '(': 1}

 operand_stack = Stack()
 postfix_list = []
 token_list = infix_expr.split() # our infix_expr should have spaces in it!

 for token in token_list:
 if token in string.ascii_uppercase or token in string.digits:
 postfix_list.append(token)
 elif token == '(':
 operand_stack.push(token)
 elif token == ')':
 top_token = operand_stack.pop()
 while top_token != '(':
 postfix_list.append(top_token)
 top_token = operand_stack.pop()
 else:
 while (not operand_stack.is_empty() and
 prec[operand_stack.peek()] >= prec[token]):
 postfix_list.append(operand_stack.pop())

 operand_stack.push(token)

 while not operand_stack.is_empty():
 postfix_list.append(operand_stack.pop())

 return " ".join(postfix_list)

Infix, Prefix, Postfix Exps.
Stack Contents During Evaluation

Infix, Prefix, Postfix Exps.
A More Complex Example of Evaluation

Infix, Prefix, Postfix Exps.

1. Create an empty stack called
operand_stack

2. Convert the string to a list by using the
string method split

Now let’s write some Python code to
evaluate postfix expressions!

Infix, Prefix, Postfix Exps.
A More Complex Example of Evaluation

3. Scan the token list from left to right

 If the token is an operand, convert it
from a str to an int, then push onto
the operand_stack

 If the token is an operator, *, /, +, or -,
it will need two operands

 Pop the operand_stack twice

 The first pop is the second operand
and the second pop is the first operand

Infix, Prefix, Postfix Exps.
A More Complex Example of Evaluation

4. Scan the token list from left to right
(cont.)

 The first pop is the second operand
and the second pop is the first operand

 Perform the arithmetic operation

 Push the result back on the
operand_stack

Infix, Prefix, Postfix Exps.
Postfix Evaluation

def postfix_eval(postfix_expr):
 operand_stack = Stack() # operAND stack
 token_list = postfix_expr.split()

 for token in token_list:
 if token in string.digits:
 operand_stack.push(int(token))
 else:
 operand2 = operand_stack.pop()
 operand1 = operand_stack.pop()
 result = do_math(token, operand1, operand2)
 # Can you eliminate `do_math` with a one-liner?
 operand_stack.push(result)

 return operand_stack.pop()

Infix, Prefix, Postfix Exps.
Postfix Evaluation

def do_math(op, op1, op2):
 if op == '*':
 return op1 * op2
 elif op == '/':
 return op1 / op2
 elif op == '+':
 return op1 + op2
 else:
 return op1 - op2

print(postfixEval('7 8 + 3 2 + /'))

Questions?

Next, a workshop where you will add some
methods to our Stack class

A new lab assignment will appear at 11:55,
due in 1 week

Recall that your first lab is due in 2 days,
and submissions for Friday’s workshop close
tonight!

Email me anytime for advice or to schedule
a Zoom meeting

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

