
The Art of Data
Structures

Queues

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

What Is a Queue?

The Queue Abstract Data Type

Implementing a Queue in Python

Simulation: Hot Potato

Simulation: Printing Tasks

Queues

Queues

 Heavily used for things that take turns
"first in, first out" -- FIFO

 Examples:

 “Ready” list for processes in your
computer

 Incoming messages from the Internet
(e.g. to web server)

 Pending requests to the disk drive

Queues
A Queue of Python Data Objects

Implementation

Implementation
Queue Operations

Queue() creates a new queue that is
empty; it needs no parameters and
returns an empty queue

enqueue(item) adds a new item to the
rear of the queue; it needs the item and
returns nothing

dequeue() removes the front item from
the queue; it needs no parameters,
returns the item and the queue is
modified

Implementation
Queue Operations

is_empty() tests to see whether the
queue is empty; it needs no parameters
and returns a boolean value

size() returns the number of items on
the queue; it needs no parameters and
returns an integer

Implementation
Queue Operations

Queue Operation Queue Contents Return
Value

q.is_empty() [] TRUE

q.enqueue(4) [4]

q.enqueue('dog') ['dog',4]

q.enqueue(True) [True,'dog',4]

q.size() [True,'dog',4] 3

q.isempty() [True,'dog',4] FALSE

q.enqueue(8.4) [8.4,True,'dog',4]

q.dequeue() [8.4,True,'dog'] 4

q.dequeue() [8.4,True] dog'

q.size() [8.4,True] 2

Implementation
Queue Implementation in

Python

class Queue:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def enqueue(self, item):
 self.items.insert(0, item)

 def dequeue(self):
 return self.items.pop()

 def size(self):
 return len(self.items)

Simulation: Hot Potato

Simulation: Hot Potato
A Six Person Game of Hot

Potato

Simulation: Hot Potato
A Six Person Game of Hot

Potato

 Whoever has the "potato" when the
"music" stops drops out simulation:

 person at head of queue "has the
potato"

 dequeue and enqueue to simulate
passing it to one person

Simulation: Hot Potato
A Queue Implementation of Hot

Potato

Simulation: Hot Potato
A Python Implementation

def hot_potato(namelist, num):
 simqueue = Queue()

 for name in namelist:
 simqueue.enqueue(name)

 while simqueue.size() > 1:
 for i in range(num):
 simqueue.enqueue(simqueue.dequeue())

 simqueue.dequeue()

 return simqueue.dequeue()

Simulation: Hot Potato
A Python Implementation

Round 1: cycles 7 times, producing:
["David", "Susan", "Jane", "Kent", "Brad", "Bill"]

then deletes David

Round 2: cycles 7 times, producing
["Kent", "Brad", "Bill", "Susan", "Jane"]

then deletes Kent

Round 3: cycles 7 times, producing
["Jane", "Brad", "Bill", "Susan"]

then deletes Jane

Round 4: cycles 7 times, producing
["Bill", "Susan", "Brad"]

then deletes Bill

Round 5: cycles 7 times, producing
["Brad", "Susan"]

then deletes Brad
leaving Susan

Simulation: Hot Potato
A Python Implementation

 It might make more sense just to have a
list, cycle a cursor through it, and
eliminate the "person" it points at…

Simulation: Printing
Tasks

Simulation: Printing Tasks
Computer Science Lab Printing Queue

Simulation: Printing Tasks
Printer Queue Simulation: Printer Class

class Printer:
 def __init__(self, ppm):
 self.pagerate = ppm
 self.currentTask = None
 self.timeRemaining = 0

 def tick(self):
 if self.currentTask != None:
 self.timeRemaining = self.timeRemaining - 1
 if self.timeRemaining <= 0:
 self.currentTask = None

 def busy(self):
 if self.currentTask != None:
 return True
 else:
 return False

 def startNext(self, newtask):
 self.currentTask = newtask
 self.timeRemaining = newtask.getPages() * 60/self.pagerate

import random

class Task:
 def __init__(self,time):
 self.timestamp = time
 self.pages = random.randrange(1,21)

 def getStamp(self):
 return self.timestamp

 def getPages(self):
 return self.pages

 def waitTime(self, currenttime):
 return currenttime - self.timestamp

Simulation: Printing Tasks
Printer Queue Simulation: Printer Class

import random

def simulation(numSeconds, pagesPerMinute):

 labprinter = Printer(pagesPerMinute)
 printQueue = Queue()
 waitingtimes = []

 for currentSecond in range(numSeconds):

 if newPrintTask():
 task = Task(currentSecond)
 printQueue.enqueue(task)

 if (not labprinter.busy()) and (not printQueue.isEmpty()):
 nexttask = printQueue.dequeue()
 waitingtimes.append(nexttask.waitTime(currentSecond))
 labprinter.startNext(nexttask)

 labprinter.tick()

 averageWait=sum(waitingtimes)/len(waitingtimes)
 print("Average Wait %6.2f secs %3d tasks remaining."%
(averageWait,printQueue.size()))

Simulation: Printing Tasks
Printer Queue Simulation: Printer Class

def newPrintTask():
 num = random.randrange(1,181)
 if num == 180:
 return True
 else:
 return False

for i in range(10):
 simulation(3600,5)

Simulation: Printing Tasks
Printer Queue Simulation: Printer Class

 This simulation could be used to answer
questions such as:

 Will the available printer keep up if
enrollment increases?

 What if the size of the average print task
decreases since Python is such a
powerful language and programs tend to
be much shorter?

Simulation: Printing Tasks
Discussion

 However, it is important to remember
that a simulation is only as good as the
assumptions that are used to build it

 Real data about the number of print
tasks per hour and the number of
students per hour is necessary to
construct a robust simulation

 Also, the printer might jam sometimes

Simulation: Printing Tasks
Discussion

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

