
The Art of Data
Structures

Deques

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

What Is a Deque?

The Deque Abstract Data Type

Implementing a Deque in Python

Palindrome-Checker

Deques

Deques

 Not as widely used as queues, but still
handy for some important applications

Deques
A Deque of Python Data Objects

Implementation

Implementation
Queue Operations

Deque() creates a new deque that is
empty; it needs no parameters and
returns an empty sequence

add_front(item) adds a new item to the
front of the deque; it needs the item
and returns nothing

add_rear(item) adds a new item to the
rear of the deque; it needs the item and
returns nothing

Implementation
Queue Operations

remove_front() removes the front item
from the deque; it needs no parameters
and returns the item; the deque is
modified

remove_rear() removes the rear item
from the deque; it needs no parameters
and returns the item; the deque is
modified

Implementation
Queue Operations

is_empty() tests to see whether the
deque is empty; it needs no parameters
and returns a boolean value

size() returns the number of items in
the deque; it needs no parameters and
returns an integer

Implementation
Deque OperationsDeque Operation Deque Contents Return

Value

d.is_empty() [] TRUE

d.add_rear(4) [4]

d.add_rear('dog') ['dog',4,]

d.add_front('cat') ['dog',4,'cat']

d.add_front(True) ['dog',4,'cat',True]

d.size() ['dog',4,'cat',True] 4

d.is_empty() ['dog',4,'cat',True] FALSE

d.add_rear(8.4) [8.4,'dog',4,'cat',True]

d.remove_rear() ['dog',4,'cat',True] 8.4

Implementation
Queue Implementation in

Python
class Deque:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def add_front(self, item):
 self.items.append(item)

 def add_rear(self, item):
 self.items.insert(0, item)

 def remove_front(self):
 return self.items.pop()

 def remove_rear(self):
 return self.items.pop(0)

 def size(self):
 return len(self.items)

Palindrome-Checker

Palindrome-Checker
A Deque

Palindrome-Checker
A Python Implementation

def pal_checker(a_str):
 char_deque = Deque()

 for ch in a_str:
 char_deque.add_rear(ch)

 still_equal = True

 while char_deque.size() > 1 and still_equal:
 first = char_deque.remove_front()
 last = char_deque.remove_rear()
 if first != last:
 still_equal = False

 return still_equal

print(pal_checker("lsdkjfskf"))
print(pal_checker("radar"))

Palindrome-Checker
Discussion

 The palindrome checker is cute, but not
really compelling

 We could simply start indices at the start
and end of the string and read toward
the middle

 If we were reading from stdin instead of
a string, we'd need to store the
characters somewhere, but we could use
a string just as easily as a deque

Palindrome-Checker
Discussion: Web Browser

 A slightly more compelling example:
browser history

 We mostly work at the front of the
deque, but when it gets too long we
delete off the back

 (We never insert at the back, though)

Palindrome-Checker
Discussion: Cilk

 A more compelling example: work
queues in the Cilk parallel programming
language

 Every thread has a deque containing
work to do

 A thread pushes new tasks onto, and
pulls tasks off of, the front of its own
deque

 This LIFO strategy maximizes locality,
which makes caches work well

Palindrome-Checker
Discussion: Cilk

 If a thread runs out of work, it steals
from the tail of some other thread's
deque

 Using the other end avoids interfering
with the other thread whenever possible

 NB: this is the same access pattern as
the browser history: no insertions at the
back

Questions?

Next class, linked data structures!

A Linked List of Integers

Stacks, queues, deques, and lists can all be
implemented by linking together one node for
each entry

This has some advantages and is a very common
and important technique

We have a workshop today, but no new
lab

Use the time to work on finishing the labs
you already have, read the book, etc

Friday will have two new labs, both due
after 1 week.

One will be to implement queues/deques
as a linked data structure and the other
will be about linked lists

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

