
The Art of Data
Structures

Deques

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

What Is a Deque?

The Deque Abstract Data Type

Implementing a Deque in Python

Palindrome-Checker

Deques

Deques

 Not as widely used as queues, but still
handy for some important applications

Deques
A Deque of Python Data Objects

Implementation

Implementation
Queue Operations

Deque() creates a new deque that is
empty; it needs no parameters and
returns an empty sequence

add_front(item) adds a new item to the
front of the deque; it needs the item
and returns nothing

add_rear(item) adds a new item to the
rear of the deque; it needs the item and
returns nothing

Implementation
Queue Operations

remove_front() removes the front item
from the deque; it needs no parameters
and returns the item; the deque is
modified

remove_rear() removes the rear item
from the deque; it needs no parameters
and returns the item; the deque is
modified

Implementation
Queue Operations

is_empty() tests to see whether the
deque is empty; it needs no parameters
and returns a boolean value

size() returns the number of items in
the deque; it needs no parameters and
returns an integer

Implementation
Deque OperationsDeque Operation Deque Contents Return

Value

d.is_empty() [] TRUE

d.add_rear(4) [4]

d.add_rear('dog') ['dog',4,]

d.add_front('cat') ['dog',4,'cat']

d.add_front(True) ['dog',4,'cat',True]

d.size() ['dog',4,'cat',True] 4

d.is_empty() ['dog',4,'cat',True] FALSE

d.add_rear(8.4) [8.4,'dog',4,'cat',True]

d.remove_rear() ['dog',4,'cat',True] 8.4

Implementation
Queue Implementation in

Python
class Deque:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def add_front(self, item):
 self.items.append(item)

 def add_rear(self, item):
 self.items.insert(0, item)

 def remove_front(self):
 return self.items.pop()

 def remove_rear(self):
 return self.items.pop(0)

 def size(self):
 return len(self.items)

Palindrome-Checker

Palindrome-Checker
A Deque

Palindrome-Checker
A Python Implementation

def pal_checker(a_str):
 char_deque = Deque()

 for ch in a_str:
 char_deque.add_rear(ch)

 still_equal = True

 while char_deque.size() > 1 and still_equal:
 first = char_deque.remove_front()
 last = char_deque.remove_rear()
 if first != last:
 still_equal = False

 return still_equal

print(pal_checker("lsdkjfskf"))
print(pal_checker("radar"))

Palindrome-Checker
Discussion

 The palindrome checker is cute, but not
really compelling

 We could simply start indices at the start
and end of the string and read toward
the middle

 If we were reading from stdin instead of
a string, we'd need to store the
characters somewhere, but we could use
a string just as easily as a deque

Palindrome-Checker
Discussion: Web Browser

 A slightly more compelling example:
browser history

 We mostly work at the front of the
deque, but when it gets too long we
delete off the back

 (We never insert at the back, though)

Palindrome-Checker
Discussion: Cilk

 A more compelling example: work
queues in the Cilk parallel programming
language

 Every thread has a deque containing
work to do

 A thread pushes new tasks onto, and
pulls tasks off of, the front of its own
deque

 This LIFO strategy maximizes locality,
which makes caches work well

Palindrome-Checker
Discussion: Cilk

 If a thread runs out of work, it steals
from the tail of some other thread's
deque

 Using the other end avoids interfering
with the other thread whenever possible

 NB: this is the same access pattern as
the browser history: no insertions at the
back

Questions?

Next class, linked data structures!

A Linked List of Integers

Stacks, queues, deques, and lists can all be
implemented by linking together one node for
each entry

This has some advantages and is a very common
and important technique

We have a workshop today, but no new
lab

Use the time to work on finishing the labs
you already have, read the book, etc

Friday will have two new labs, both due
after 1 week.

One will be to implement queues/deques
as a linked data structure and the other
will be about linked lists

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

