The Art of Data
Structures
Deques

Alan Beadle
CSC 162: The Art of Data

Structures
@ UNIVERSITY of

N ROCHESTER

Agenda

*What Is a Deque?
*The Deque Abstract Data Type
*Implementing a Deque in Python

* Palindrome-Checker

Deques

Deqgues

® Not as widely used as queues, but still
handy for some important applications

Deqgues
A Deque of Python Data Objects

rear front
add to rear add to front

’/ “dog” 4 “cat” True
L—\

remove from rear items remove from front

Implementation

Queue Operations

*Deque() creates a new deque that is
empty; it needs no parameters and
returns an empty sequence

*add front(item) adds a new item to the
front of the deque; it needs the item
and returns nothing

*add rear(item) adds a new item to the

rear of the deque; it needs the item and
returns nothing

Queue Operations

*remove front() removes the front item

from the deque; it needs no parameters

and returns the item; the deque is
modified

*remove rear() removes the rear item

from the deque; it needs no parameters

and returns the item; the deque is
modified

Queue Operations

*is empty() tests to see whether the
deque is empty; it needs no parameters
and returns a boolean value

*size() returns the number of items in
the deque; it needs no parameters and
returns an integer

Deque Operation

Deque Contents

.add rear(8.4)

[8.4,'dog',4, " 'cat',True]

.remove rear()

d.is empty() [] TRUE
d.add rear(4) [4]

d.add rear('dog') 'dog',4,]

d.add front('cat') 'dog',4, 'cat']

d.add front(True) 'dog',4,'cat',True.

d.size() ' 'dog’ ,4, 'cat',True] 4
d.is empty() ['dog',4, 'cat',True] FALSE
d

d

['dog',4, 'cat',True] 8.4

Implementation

Queue Implementation in
Python

class Deque:
def _init_ (self):
self.items = []

def is_empty(self):
return self.items == []

def add_front(self, item):
self.items.append(item)

def add_rear(self, item):
self.items.insert(0, item)

def remove_front(self):
return self.items.pop()

def remove_rear(self):
return self.items.pop(0)

def size(self):
return len(self.items)

Palindrome-Checker

Palindrome-Checker
A Deque

Add "radar” to the rear

rear front
add to rear

rear front

remove from rear items remove from front

r r
Remove from front and rear

Palindrome-Checker
A Python Implementation

def pal_checker(a_str):
char _deque = Deque()

for ch in a_str:
char _deque.add rear(ch)

still_equal = True

while char _deque.size() > 1 and still equal:
first = char _deque.remove_front()
last = char_deque.remove_rear()
If first != last:
still_ equal = False

return still_equal

print(pal_checker("Isdkjfskf"))
print(pal_checker("radar"))

Palindrome-Checker
Discussion

® The palindrome checker is cute, but not

really compelling

We could simply start indices at the start
and end of the string and read toward
the middle

If we were reading from stdin instead of
a string, we'd need to store the
characters somewhere, but we could use
a string just as easily as a deque

Palindrome-Checker
Discussion: Web Browser

® A slightly more compelling example:
browser history

® \We mostly work at the front of the
deque, but when it gets too long we
delete off the back

® (We never insert at the back, though)

Palindrome-Checker

Discussion: Cilk

A more compelling example: work
gueues in the Cilk parallel programming
language

Every thread has a deque containing
work to do

A thread pushes new tasks onto, and
pulls tasks off of, the front of its own

deque

This LIFO strategy maximizes locality,
which makes caches work well

Palindrome-Checker
Discussion: Cilk

® |f 3 thread runs out of work, it steals
from the tail of some other thread's
deque

® Using the other end avoids interfering
with the other thread whenever possible

NB: this is the same access pattern as

the browser history: no insertions at the
back

Questions:

Next class, linked data structures!

1>z

A Linked List of Integers

* Stacks, queues, deques, and lists can all be

e

17 4

—>|||

Implemented by linking together one node for

each entry

* This has some advantages and Is a very common
and important technigue

*We have a workshop today, but no new
lab

*Use the time to work on finishing the labs
you already have, read the book, etc

*Friday will have two new labs, both due
after 1 week.

*One will be to Implement queues/deques
as a linked data structure and the other
will be about linked lists

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

