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Lists



Lists
Unordered Lists

 The list is a powerful, yet simple, 
collection mechanism

 Not all programming languages include a 
list collection 

 A list is a collection of items where each 
item holds a relative position with 
respect to the others

 We will refer to this type of list as an 
unordered list

 A linked list will be the basis of this ADT



Lists
Ordered Lists

 An ordered list is a collection of items 
where each item holds a relative position 
that is based upon some underlying 
characteristic of the item 

 Ascending or Descending, typically

 List items should have meaningful 
comparison operators should be 
defined

 A linked list is also the basis of this ADT



Implementation
Singly Linked List: Node



Implementation
Visualization

Items Not Constrained in Their Physical Placement in Memory



Implementation
Visualization

Relative Position of Items Maintained by Explicit Links



Implementation
Linked-List: Node

 A node is the basic building block for the 
linked list implementation 

 Each node object must hold at least two 
pieces of information:

 The list item (value, data field)

 Reference to next node

 None is a useful object here



Implementation
Empty Linked-List

A Node Object Contains the Item and a Reference to the Next Node



Implementation
Empty Linked-List

A Typical Representation for a Node



Implementation
Empty Linked-List

An Empty List



Implementation
Node Implementation in Python

>>> temp = Node(93)
>>> temp.get_data()
93



Implementation
Node Implementation in Python

class Node:
   def __init__(self, init_data):
      self.data = init_data
      self.next = None

   def get_data(self):
      return self.data

   def get_next(self):
      return self.next

   def set_data(self, new_data):
      self.data = new_data

   def set_next(self, new_next):
      self.next = new_next



Implementation
Unordered List



Implementation
Unordered List

UnorderedList() creates a new list that is 
empty. It needs no parameters and 
returns an empty list

add(item) adds a new item to the list. It 
needs the item and returns nothing; 
assume the item is not already in the 
list

remove(item) removes the item from the 
list; It needs the item and modifies the 
list; assume the item is present in the 
list



Implementation
Unordered List

search(item) searches for the item in the 
list; it needs the item and returns a 
boolean value

is_empty() tests to see whether the list 
is empty; it needs no parameters and 
returns a boolean value

length() returns the number of items in 
the list; it needs no parameters and 
returns an integer



Implementation
Unordered List

append(item) adds a new item to the end 
of the list making it the last item in the 
collection; it needs the item and returns 
nothing; assume the item is not already 
in the list

index(item) returns the position of item 
in the list. It needs the item and returns 
the index; assume the item is in the list



Implementation
Unordered List

insert(pos, item) adds a new item to 
the list at position pos; it needs the 
item and returns nothing; assume the 
item is not already in the list and there 
are enough existing items to have 
position pos

pop() removes and returns the last item 
in the list.; it needs nothing and returns 
an item; assume the list has at least 
one item



Implementation
Unordered List

pop(pos) removes and returns the item 
at position pos; it needs the position 
and returns the item; assume the item 
is in the list



Implementation
Unordered List

 Implementation in Python

>>> mylist = UnorderedList()



Implementation
Unordered List

 Implementation in Python

>>> mylist.add(31)
>>> mylist.add(77)
>>> mylist.add(17)
>>> mylist.add(93)
>>> mylist.add(26)
>>> mylist.add(54)



Implementation
Populated Linked-List

A Linked List of Integers



Implementation
Unordered List

 Implementation in Python

class UnorderedList:
    def __init__(self):
        self.head = None

    def add(self, item):
        temp = Node(item)
        temp.set_next(self.head)
        self.head = temp

    def length(self):
        current = self.head
        count = 0
        while current != None:
            count = count + 1
            current = current.get_next()

        return count



Implementation
Unordered List

 Implementation in Python

    def search(self, item):
        current = self.head
        found = False
        while current != None and not found:
            if current.get_data() == item:
                found = True
            else:
                current = current.get_next()
        return found



Implementation
Unordered List

 Implementation in Python

   def remove(self, item):
        current = self.head
        previous = None
        found = False
        while not found:
            if current.get_data() == item:
                found = True
            else:
                previous = current
                current = current.get_next()

        if previous == None:
            self.head = current.get_next()
        else:
            previous.set_next(current.get_next())



Implementation
Ordered List



Implementation
Ordered List

OrderedList() creates a new ordered list 
that is empty; it needs no parameters 
and returns an empty list

add(item) adds a new item to the list 
making sure that the order is preserved; 
it needs the item and returns nothing; 
assume the item is not already in the 
list



Implementation
Ordered List

remove(item) removes the item from the 
list; it needs the item and modifies the 
list; assume the item is present in the 
list

search(item) searches for the item in the 
list; it needs the item and returns a 
boolean value

is_empty() tests to see whether the list 
is empty; it needs no parameters and 
returns a boolean value



Implementation
Ordered List

length() returns the number of items in 
the list; it needs no parameters and 
returns an integer

index(item) returns the position of item 
in the list; it needs the item and returns 
the index; assume the item is in the list

pop() removes and returns the last item 
in the list; it needs nothing and returns 
an item; assume the list has at least 
one item



Implementation
Ordered List

pop(pos) removes and returns the item 
at position pos; it needs the position 
and returns the item; assume the item 
is in the list



Implementation
Ordered List

An  Ordered Linked List



Implementation
Ordered List

 Implementation in Python

class OrderedList:
    def __init__(self):
        self.head = None

    def search(self, item):
        current = self.head
        found = False
        stop = False
        while current != None and not found and not stop:
            if current.get_data() == item:
                found = True
            else:
                if current.get_data() > item:
                    stop = True
                else:
                    current = current.get_next()

        return found



Implementation
Ordered List

 Implementation in Python

    def add(self, item):
        current = self.head
        previous = None
        stop = False
        while current != None and not stop:
            if current.get_data() > item:
                stop = True
            else:
                previous = current
                current = current.get_next()

        temp = Node(item)
        if previous == None:
            temp.set_next(self.head)
            self.head = temp
        else:
            temp.set_next(current)
            previous.set_next(temp)



Analysis of Singly LL



Analysis of Singly LL
Performance Complexity

 Initialization

  UnorderedList(): O(1)

  OrderedList(): O(1)

  add(item)

 Unordered: O(1) 

 Ordered: O(n)



Analysis of Singly LL
Performance Complexity

  remove(item): O(n) 

  search(item): O(n)

  is_empty(): O(1)

  length(): O(n)

  append(item) 

 Unordered list, only: O(n)



Analysis of Singly LL
Performance Complexity

  index(item): O(n)

  insert(pos, item): 

 Unordered list, only: O(n)

  pop(): 

 Unordered list: O(1)

 Ordered list: O(1)

  pop(pos): O(n)



Implementation
Doubly Linked List: DNode



Implementation
Doubly Linked List: DNode

 We extend the node concept for a 
doubly linked list implementation

 Now, each node object must hold at 
least three pieces of information:

 The list item (value, data field)

 Reference to next node

 Reference to the previous node



Implementation
Doubly Linked List: DNode

 The time complexity is pretty similar to a 
singly linked list

 Benefits occur if a program holds a 
reference to any one node in a linked list

 Given this reference, a node can be 
removed very quickly, O(1).

 If only values are known, a O(n) search 
is still required



Implementation
Doubly Linked List: DNode

 The code complexity is also less, as now 
you won't need to track previous and 
current as in the remove method

 A doubly linked list now has a head and 
tail, and can be used traverse the list 
forward or backwards 



Implementation
DNode Implementation in Python

class DNode:
    def __init__(self, init_data):
        self.data = init_data
        self.next = None
        self.prev = None

    def get_data(self):
        return self.data

    def get_next(self):
        return self.next

    def get_prev(self):
        return self.prev

    def set_data(self, new_data):
        self.data = new_data

    def set_next(self, new_next):
        self.next = new_next

    def set_prev(self, new_prev):
        self.prev = new_prev



Analysis of Doubly LL



Analysis of Doubly LL
Performance Complexity

 Initialization

  UnorderedList(): O(1)

  OrderedList(): O(1)

  add(item)

 Unordered: O(1) 

 Ordered: O(n)



Analysis of Doubly LL
Performance Complexity

  remove(item): O(n) or O(1)

  search(item): O(n)

  is_empty(): O(1)

  length(): O(n)

  append(item) 

 Unordered list, only: O(1)



Analysis of Doubly LL
Performance Complexity

  index(item): O(n)

  insert(pos, item): 

 Unordered list, only: O(n)

  pop(): 

 Unordered list: O(1)

 Ordered list: O(1)

  pop(pos): O(n)



Questions?



Workshop about lists, and two new labs

Runtime lab (lab 2) due tonight

Lab 4 is to re-implement a queue using linked nodes

Lab 6 is to add some methods to the UnorderedList 
from the textbook

Lab 6 is probably easier than lab 4 so consider doing 
6 first to gain understanding of linked nodes

There is no lab 5 (deques)

Labs 4 & 6 are due in 1 week
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