
The Art of Data
Structures

Lists

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

What is a List?

Singly linked list DS

The unordered list ADT

The ordered list ADT

Doubly linked list DS

Lists

Lists
Unordered Lists

 The list is a powerful, yet simple,
collection mechanism

 Not all programming languages include a
list collection

 A list is a collection of items where each
item holds a relative position with
respect to the others

 We will refer to this type of list as an
unordered list

 A linked list will be the basis of this ADT

Lists
Ordered Lists

 An ordered list is a collection of items
where each item holds a relative position
that is based upon some underlying
characteristic of the item

 Ascending or Descending, typically

 List items should have meaningful
comparison operators should be
defined

 A linked list is also the basis of this ADT

Implementation
Singly Linked List: Node

Implementation
Visualization

Items Not Constrained in Their Physical Placement in Memory

Implementation
Visualization

Relative Position of Items Maintained by Explicit Links

Implementation
Linked-List: Node

 A node is the basic building block for the
linked list implementation

 Each node object must hold at least two
pieces of information:

 The list item (value, data field)

 Reference to next node

 None is a useful object here

Implementation
Empty Linked-List

A Node Object Contains the Item and a Reference to the Next Node

Implementation
Empty Linked-List

A Typical Representation for a Node

Implementation
Empty Linked-List

An Empty List

Implementation
Node Implementation in Python

>>> temp = Node(93)
>>> temp.get_data()
93

Implementation
Node Implementation in Python

class Node:
 def __init__(self, init_data):
 self.data = init_data
 self.next = None

 def get_data(self):
 return self.data

 def get_next(self):
 return self.next

 def set_data(self, new_data):
 self.data = new_data

 def set_next(self, new_next):
 self.next = new_next

Implementation
Unordered List

Implementation
Unordered List

UnorderedList() creates a new list that is
empty. It needs no parameters and
returns an empty list

add(item) adds a new item to the list. It
needs the item and returns nothing;
assume the item is not already in the
list

remove(item) removes the item from the
list; It needs the item and modifies the
list; assume the item is present in the
list

Implementation
Unordered List

search(item) searches for the item in the
list; it needs the item and returns a
boolean value

is_empty() tests to see whether the list
is empty; it needs no parameters and
returns a boolean value

length() returns the number of items in
the list; it needs no parameters and
returns an integer

Implementation
Unordered List

append(item) adds a new item to the end
of the list making it the last item in the
collection; it needs the item and returns
nothing; assume the item is not already
in the list

index(item) returns the position of item
in the list. It needs the item and returns
the index; assume the item is in the list

Implementation
Unordered List

insert(pos, item) adds a new item to
the list at position pos; it needs the
item and returns nothing; assume the
item is not already in the list and there
are enough existing items to have
position pos

pop() removes and returns the last item
in the list.; it needs nothing and returns
an item; assume the list has at least
one item

Implementation
Unordered List

pop(pos) removes and returns the item
at position pos; it needs the position
and returns the item; assume the item
is in the list

Implementation
Unordered List

 Implementation in Python

>>> mylist = UnorderedList()

Implementation
Unordered List

 Implementation in Python

>>> mylist.add(31)
>>> mylist.add(77)
>>> mylist.add(17)
>>> mylist.add(93)
>>> mylist.add(26)
>>> mylist.add(54)

Implementation
Populated Linked-List

A Linked List of Integers

Implementation
Unordered List

 Implementation in Python

class UnorderedList:
 def __init__(self):
 self.head = None

 def add(self, item):
 temp = Node(item)
 temp.set_next(self.head)
 self.head = temp

 def length(self):
 current = self.head
 count = 0
 while current != None:
 count = count + 1
 current = current.get_next()

 return count

Implementation
Unordered List

 Implementation in Python

 def search(self, item):
 current = self.head
 found = False
 while current != None and not found:
 if current.get_data() == item:
 found = True
 else:
 current = current.get_next()
 return found

Implementation
Unordered List

 Implementation in Python

 def remove(self, item):
 current = self.head
 previous = None
 found = False
 while not found:
 if current.get_data() == item:
 found = True
 else:
 previous = current
 current = current.get_next()

 if previous == None:
 self.head = current.get_next()
 else:
 previous.set_next(current.get_next())

Implementation
Ordered List

Implementation
Ordered List

OrderedList() creates a new ordered list
that is empty; it needs no parameters
and returns an empty list

add(item) adds a new item to the list
making sure that the order is preserved;
it needs the item and returns nothing;
assume the item is not already in the
list

Implementation
Ordered List

remove(item) removes the item from the
list; it needs the item and modifies the
list; assume the item is present in the
list

search(item) searches for the item in the
list; it needs the item and returns a
boolean value

is_empty() tests to see whether the list
is empty; it needs no parameters and
returns a boolean value

Implementation
Ordered List

length() returns the number of items in
the list; it needs no parameters and
returns an integer

index(item) returns the position of item
in the list; it needs the item and returns
the index; assume the item is in the list

pop() removes and returns the last item
in the list; it needs nothing and returns
an item; assume the list has at least
one item

Implementation
Ordered List

pop(pos) removes and returns the item
at position pos; it needs the position
and returns the item; assume the item
is in the list

Implementation
Ordered List

An Ordered Linked List

Implementation
Ordered List

 Implementation in Python

class OrderedList:
 def __init__(self):
 self.head = None

 def search(self, item):
 current = self.head
 found = False
 stop = False
 while current != None and not found and not stop:
 if current.get_data() == item:
 found = True
 else:
 if current.get_data() > item:
 stop = True
 else:
 current = current.get_next()

 return found

Implementation
Ordered List

 Implementation in Python

 def add(self, item):
 current = self.head
 previous = None
 stop = False
 while current != None and not stop:
 if current.get_data() > item:
 stop = True
 else:
 previous = current
 current = current.get_next()

 temp = Node(item)
 if previous == None:
 temp.set_next(self.head)
 self.head = temp
 else:
 temp.set_next(current)
 previous.set_next(temp)

Analysis of Singly LL

Analysis of Singly LL
Performance Complexity

 Initialization

 UnorderedList(): O(1)

 OrderedList(): O(1)

 add(item)

 Unordered: O(1)

 Ordered: O(n)

Analysis of Singly LL
Performance Complexity

 remove(item): O(n)

 search(item): O(n)

 is_empty(): O(1)

 length(): O(n)

 append(item)

 Unordered list, only: O(n)

Analysis of Singly LL
Performance Complexity

 index(item): O(n)

 insert(pos, item):

 Unordered list, only: O(n)

 pop():

 Unordered list: O(1)

 Ordered list: O(1)

 pop(pos): O(n)

Implementation
Doubly Linked List: DNode

Implementation
Doubly Linked List: DNode

 We extend the node concept for a
doubly linked list implementation

 Now, each node object must hold at
least three pieces of information:

 The list item (value, data field)

 Reference to next node

 Reference to the previous node

Implementation
Doubly Linked List: DNode

 The time complexity is pretty similar to a
singly linked list

 Benefits occur if a program holds a
reference to any one node in a linked list

 Given this reference, a node can be
removed very quickly, O(1).

 If only values are known, a O(n) search
is still required

Implementation
Doubly Linked List: DNode

 The code complexity is also less, as now
you won't need to track previous and
current as in the remove method

 A doubly linked list now has a head and
tail, and can be used traverse the list
forward or backwards

Implementation
DNode Implementation in Python

class DNode:
 def __init__(self, init_data):
 self.data = init_data
 self.next = None
 self.prev = None

 def get_data(self):
 return self.data

 def get_next(self):
 return self.next

 def get_prev(self):
 return self.prev

 def set_data(self, new_data):
 self.data = new_data

 def set_next(self, new_next):
 self.next = new_next

 def set_prev(self, new_prev):
 self.prev = new_prev

Analysis of Doubly LL

Analysis of Doubly LL
Performance Complexity

 Initialization

 UnorderedList(): O(1)

 OrderedList(): O(1)

 add(item)

 Unordered: O(1)

 Ordered: O(n)

Analysis of Doubly LL
Performance Complexity

 remove(item): O(n) or O(1)

 search(item): O(n)

 is_empty(): O(1)

 length(): O(n)

 append(item)

 Unordered list, only: O(1)

Analysis of Doubly LL
Performance Complexity

 index(item): O(n)

 insert(pos, item):

 Unordered list, only: O(n)

 pop():

 Unordered list: O(1)

 Ordered list: O(1)

 pop(pos): O(n)

Questions?

Workshop about lists, and two new labs

Runtime lab (lab 2) due tonight

Lab 4 is to re-implement a queue using linked nodes

Lab 6 is to add some methods to the UnorderedList
from the textbook

Lab 6 is probably easier than lab 4 so consider doing
6 first to gain understanding of linked nodes

There is no lab 5 (deques)

Labs 4 & 6 are due in 1 week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

