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Agenda
 To understand that complex, difficult 

problems that  may have a simple 
recursive solutions

 To learn how to formulate programs 
recursively

 To understand and apply the three laws 
of recursion

 To understand recursion as a form of 
iteration

 To implement the recursive formulation 
of a problem

 To understand how recursion is 
implemented by a computer system



Recursion





Recursion

 A description of something that refers to 
itself is called a recursive definition (like 
this one for example)



Recursion

 In mathematics, recursion is frequently 
used

  The most common example is the 
factorial:

For example,   5! = 5(4)(3)(2)(1)



Recursion

 In other words,
 

 Or  

 

 This definition says that 0! is 1, while 
the factorial of any other number is that 
number times the factorial of one less 
than that number



Recursion

 Our definition is recursive, but definitely 
not circular. Consider 4!

 4! = 4(4-1)! = 4(3!)

 What is 3!? We apply the definition 
again
4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!)
4! = 4(3!) = 4(3)(2!) = 4(3)(2)(1!) = 
4(3)(2)(1)(0!) = 4(3)(2)(1)(1) = 24



Recursion

 Factorial is not circular because we 
eventually get to 0!, whose definition 
does not rely on the definition of 
factorial and is just 1

 This is called a base case for the 
recursion

 When the base case is encountered, we 
get a closed expression that can be 
directly (often, trivially) computed



Recursion
Numbers Sum

 Suppose that  you want to calculate the 
sum of a list of number, e.g. [1, 3, 5, 7, 
9]



Recursion
Numbers Sum: Iterative

def list_sum(num_list):
   the_sum = 0
   for i in num_list:
      the_sum = the_sum + i
   return the_sum

print(list_sum([1,3,5,7,9]))



Recursion
Numbers Sum

 total = (1+(3+(5+(7+9))))
total = (1+(3+(5+16)))
total = (1+(3+21))
total = (1 + 24) 
total = 25

 listSum(numList) = 
        first(numList) + 
listSum(rest(numList))
 



Recursion
Numbers Sum: Recursive

def list_sum_rec(num_list):
  if len(num_list) == 1:
      return num_list[0]
  else:
      return num_list[0] + list_sum_rec(num_list[1:])

print(list_sum_rec([1,3,5,7,9]))



Recursion

 This is inefficient (lots of copying), but 
Python runs out of stack to keep track of 
the calls before the cost gets out of hand

 Note that the two implementations 
actually sum the elements in opposite 
order

 We could make them do it in the same 
order like this:



Recursion
Numbers Sum: Recursive 

(better)

def listsum_rec2(the_sum, l):
    if len(l) == 0:
        return the_sum
    return listsum_rec2(the_sum + l[0], l[1:])

print(listsum_rec2(0, [1,3,5,7,9]))



Recursion
The Recursive Sum Function

def helper(sum, l):                  
    if len(l) == 0:                  
        return sum
    return helper(sum + l[0], l[1:]) 

def listsum_rec3(l):                 
    return helper(0, l)              



Recursion
Recursive Calls Adding a List of 

Numbers



Recursion
Recursive Calls Adding a List of 

Numbers



Recursion
The Three Laws of Recursion

1. A recursive algorithm must have a base 
case

2. A recursive algorithm must change its 
state and move toward the base case

3. A recursive algorithm must call itself, 
recursively



Recursion
Areas of Use

 Two fundamental computational 
concepts 

 Divide & Conquer: Solve a problem in 
terms of a smaller version of itself

 Backtracking: Systematically explore a 
set of possible solutions 



Factorial



Factorial

 We’ve seen previously that fact can be 
calculated using a loop accumulator

 If fact is written recursively…



Factorial

def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)



Factorial

 We’ve written a function that calls itself, 
a recursive function

 The function first checks to see if we’re 
at the base case (n==0). If so, return 1

  Otherwise, return the result of 
multiplying n by the factorial of n-1, 
fact(n-1)



Factorial

>>> fact(4)
24
>>> fact(10)
3628800
>>> fact(100)
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000L
>>> 

 Remember that each call to a function 
starts that function anew, with its own 
copies of local variables and parameters



Factorial



Fibonacci



Fibonacci

 Sometimes one has to be careful with 
recursion

 In addition to limits on stack depth 
[sys.setrecursionlimit(limit)], and the cost 
of argument copying, some naive 
recursive algorithms are inherently 
expensive



Fibonacci
Iterative Fibonacci function – 

O(n)
def fib_iter(n):
    a = 0
    b = 1
    i = 0
    
    print(a)
    while i < n:
        t = a+b
        a = b
        b = t
        print(a)
        i += 1

    return a



Fibonacci
Naive recursive version, O(2n)

def fib_rec_1(n):
    if n < 2:
        return 1
    
    return fib_rec_1(n-1) + fib_rec1(n-2)



Fibonacci
Good recursive version, O(n)

def fib_rec_2(n):
                     
    def helper(a, b, i):              
        if i == n:                    
            return b                  
        return helper(b, a + b, i + 1)

    return helper(1, 0, 0)            



Recursion Exercise







recursion 
level

 n fun(n) is 
called with…

is n == 0?  line 5, calc 
n//2

line 5, calc 
n%2

0 (start) 25 fun(25) FALSE 12 1

1 12 fun(12) FALSE 6 0

2 6 fun(6) FALSE 3 0

3 3 fun(3) FALSE 1 1

4 1 fun(1) FALSE 0 1

5 0 fun(0) TRUE nothing, it 
returns

nothing, it 
returns



Int → Str
(in any base)



Int → Str
(in any base)

 Reduce the original number to a series 
of single-digit numbers

 Convert the single digit-number to a 
string using a lookup

 Concatenate the single-digit strings 
together to form the final result



Int → Str
in Base 10



Int → Str
in Base 2–16

def to_str(n, base):
   convert_string = "0123456789ABCDEF"

   if n < base:
     return convert_string[n]
   else:
     return to_str(n // base, base) + convert_string[n % base]

 print(to_str(1453, 16))



Int → Str
Decimal 10 to its Binary String



Int → Str
Pushing the Strings onto a 

Stack

r_stack = Stack()

def to_str(n, base):
    convert_string = "0123456789ABCDEF"
    if n < base:
        r_stack.push(convert_string[n])
    else:
        r_stack.push(convert_string[n % base])
        to_str(n // base, base)



Int → Str
Strings Placed on the Stack



Int → Str
Call Stack: toStr(10,2)



String Permutations
Revisit Anagram Tester



String Permutations
Brute Force Anagram 

Testing

def permutation(s, prefix=""):
    n = len(s)
    if (n == 0):
        print(prefix)
    else:
        for i in range(n):
            permutation(s[0:i] + s[i+1:n], prefix + s[i])

permutation("ape")



Towers of Hanoi
A Complex Recursive 

Problem



Towers of Hanoi
Background

 Objective: move N disks from peg A to 
C can be reduced to three sub 
problems:

1. Move N-1 disks from peg A to 
intermediate peg B 

2. Move the largest Disk N from peg A 
to target C

3. Move the N-1 parked disks from B to 
C



Towers of Hanoi
Background

Tower of Hanoi (Wikipedia)

Tower of Hanoi - 5 disks - 31 moves

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://www.youtube.com/watch?v=LOuFQiL9Kes


Towers of Hanoi
An Example Arrangement of 

Disks



Towers of Hanoi
An Example Arrangement of 

Disks

Move a tower of height-1 to an 
intermediate pole, using the final pole

Move the remaining disk to the final 
pole

Move the tower of height-1 from the 
intermediate pole to the final pole using 
the original pole



Towers of Hanoi
Python Code for the Tower of 

Hanoi

def move_tower(height, from_pole, to_pole, with_pole):
   if height >= 1:
      move_tower(height - 1, from_pole, with_pole, to_pole)
      move_disk(from_pole, to_pole)
      move_tower(height - 1, with_pole, to_pole, from_pole)

def move_disk(fp,tp):
    print("moving disk from",fp,"to",tp)

move_tower(3, "A", "B", "C")



Towers of Hanoi
An Iterative Version

Interesting secret: there's also an easy 
iterative solution, but it isn't anywhere near 
as intuitive

1. On every even-numbered move (starting 
with zero), move the little disk one pole 
"clockwise"

If the total number of disks is even, the 
first move should be from from_pole to 
with_pole; if the total number of disks is 
odd, the first move should be from 
from_pole to with_pole



Towers of Hanoi
An Iterative Version

2. On every odd-numbered move, make the 
only legal move not involving the smallest 
disk (there can be only one)



Towers of Hanoi
Python Code for the Tower of Hanoi

def hanoi_iter(height, fromPole, toPole, withPole):
        if height % 2 == 0:
            poles = [fromPole, withPole, toPole]
        else:
            poles = [fromPole, toPole, withPole]
        stacks = [range(height, 0, -1), [height], [height]]
        for i in range(2**height-1):
            if i % 2 == 0:  # move little disk
                fd = (i//2)%3
                td = (i//2+1)%3
            else:           # move other disk
                fd = (i//2)%3
                td = (i//2+2)%3
                if (stacks[fd][len(stacks[fd])-1] > 
                    stacks[td][len(stacks[td])-1]):
                    td = (i//2)%3
                    fd = (i//2+2)%3
                stacks[td].append(list(stacks[fd]).pop())
            move_disk(poles[fd], poles[td])



Recursion Summary



Recursion Summary

 All recursive algorithms must have a 
base case

 A recursive algorithm must change its 
state and make progress toward the 
base case

 A recursive algorithm must call itself 
(recursively); Recursion can take the 
place of iteration in some cases



Recursion Summary

 Recursive algorithms often map very 
naturally to a formal expression of the 
problem you are trying to solve



Recursion Summary

 Recursion doesn't have to be any more 
expensive than iteration (though it is in 
Python)

 It's definitely more expressive: 
iteration can't capture recursion in the 
general case without an explicit stack



Questions?
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