The Art of Data Structures Recursion

Agenda

- To understand that complex, difficult problems that may have a simple recursive solutions
- To learn how to formulate programs recursively
- To understand and apply the three laws of recursion
- To understand recursion as a form of iteration
- To implement the recursive formulation of a problem
- To understand how recursion is implemented by a computer system

Recursion

Recursion

- A description of something that refers to itself is called a recursive definition (like this one for example)

Recursion

- In mathematics, recursion is frequently used
- The most common example is the factorial:

For example, $5!=5(4)(3)(2)(1)$

Recursion

- In other words,

$$
n!=n(n-1)!
$$

- Or

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n(n-1)! & \text { otherwise }\end{cases}
$$

- This definition says that 0 ! is 1 , while the factorial of any other number is that number times the factorial of one less than that number

Recursion

- Our definition is recursive, but definitely not circular. Consider 4!
- $4!=4(4-1)!=4(3!)$
- What is 3!? We apply the definition again

$$
\begin{aligned}
& 4!=4(3!)=4[3(3-1)!]=4(3)(2!) \\
& 4!=4(3!)=4(3)(2!)=4(3)(2)(1!)= \\
& 4(3)(2)(1)(0!)=4(3)(2)(1)(1)=24
\end{aligned}
$$

Recursion

- Factorial is not circular because we eventually get to 0 !, whose definition does not rely on the definition of factorial and is just 1
- This is called a base case for the recursion
- When the base case is encountered, we get a closed expression that can be directly (often, trivially) computed

Recursion Numbers Sum

- Suppose that you want to calculate the sum of a list of number, e.g. [1, 3, 5, 7, 9]

Recursion Numbers Sum: Iterative

def list_sum(num_list):
the_sum $=0$ for \bar{i} in num_list:
the_sum $=$ the_sum +i return the_sum
print(list_sum([1,3,5,7,9]))

Recursion Numbers Sum

- total $=(1+(3+(5+(7+9))))$ total $=(1+(3+(5+16)))$ total $=(1+(3+21))$ total $=(1+24)$ total $=25$
- listSum(numList) $=$ first(numList) + listSum(rest(numList))

Recursion Numbers Sum: Recursive

def list_sum_rec(num_list): if len(num_list) $==1$: return num_list[0]
else:
return num_list[0] + list_sum_rec(num_list[1:])
print(list_sum_rec([1,3,5,7,9]))

Recursion

- This is inefficient (lots of copying), but Python runs out of stack to keep track of the calls before the cost gets out of hand
- Note that the two implementations actually sum the elements in opposite order
- We could make them do it in the same order like this:

Recursion Numbers Sum: Recursive (better)

def listsum_rec2(the_sum, I): if $\operatorname{len}(\mathrm{I})==0$:
return the_sum
return listsum_rec2(the_sum + I[0], I[1:])
print(listsum_rec2(0, [1,3,5,7,9]))

Recursion
 The Recursive Sum Function

def helper(sum, I):
if len $(\mathrm{I})==0$:
return sum return helper(sum + I[0], I[1:])
def listsum_rec3(I): return helper(0, I)

Recursion

Recursive Calls Adding a List of Numbers

Recursion

Recursive Calls Adding a List of Numbers

Recursion The Three Laws of Recursion

1. A recursive algorithm must have a base case
2. A recursive algorithm must change its state and move toward the base case
3. A recursive algorithm must call itself, recursively

Recursion Areas of Use

- Two fundamental computational concepts
- Divide \& Conquer: Solve a problem in terms of a smaller version of itself
- Backtracking: Systematically explore a set of possible solutions

Factorial

Factorial

- We've seen previously that fact can be calculated using a loop accumulator
- If fact is written recursively...

Factorial

def fact(n):

$$
\text { if } \mathrm{n}==0 \text { : }
$$ return 1

else:
return $\mathrm{n} * \operatorname{fact}(\mathrm{n}-1)$

Factorial

- We've written a function that calls itself, a recursive function
- The function first checks to see if we're at the base case ($n==0$). If so, return 1
- Otherwise, return the result of multiplying n by the factorial of $n-1$, fact(n-1)

Factorial

```
>>> fact(4)
24
>>> fact(10)
3628800
>>> fact(100)
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000L
>>>
```

- Remember that each call to a function starts that function anew, with its own copies of local variables and parameters

Factorial

Figure 13.1: Recursive computation of 5 !

Fibonacci

Fibonacci

- Sometimes one has to be careful with recursion
- In addition to limits on stack depth [sys.setrecursionlimit(limit)], and the cost of argument copying, some naive recursive algorithms are inherently expensive

Fibonacci
 Iterative Fibonacci function $O(n)$
 def fib_iter(n):
 $a=0$
 b $=1$
 $\mathrm{i}=0$

print(a)
while $\mathrm{i}<\mathrm{n}$:
$\mathrm{t}=\mathrm{a}+\mathrm{b}$
$\mathrm{a}=\mathrm{b}$
$\mathrm{b}=\mathrm{t}$
print(a)
i += 1
return a

Fibonacci Naive recursive version, $O\left(2^{n}\right)$

def fib_rec_1(n):
if $n<2$:
return 1

return fib_rec_1(n-1) + fib_rec1(n-2)

Fibonacci
 Good recursive version, O(n)

def fib_rec_2(n):
def helper(a, b, i):
if $\mathrm{i}==\mathrm{n}$:
return b
return helper(b, a $+\mathrm{b}, \mathrm{i}+1$)
return helper(1, 0, 0)

Recursion Exercise

Take this recursive function:

```
def fun(n):
    if n == 0:
        return []
    return fun(n//2) + [n%2]
fun(25)
```

6
(a) Identify the line number for the base case in fun (n):
(b) Identify the line number, and specific recursive call in fun(n):
(c) Use the table below to determine the output of $f u n(n)$ when it is called with $n=25$ (line 7):

Recursion Level	n	fun(n) is called with...	is $\mathrm{n}==\quad 0 ?$	line 5, calculate $\mathrm{n} / / 2$	line 5, calculate $\mathrm{n} \% 2$
0 (start)	25	fun(25)	FALSE	12	1
1	12				
2					
3					
4					
5					

(d) The final returned value from calling fun (25):

recursion level	n	fun(n) is called with...	is $\mathrm{n}==$?	line 5, calc $\mathrm{n} / / 2$	line 5, calc $\mathrm{n} \% 2$
0 (start)	25	fun(25)	FALSE	12	1
1	12	fun(12)	FALSE	6	0
2	6	fun(6)	FALSE	3	0
3	3	fun(3)	FALSE	1	1
4	1	fun(1)	FALSE	0	1
5	0	fun(0)	TRUE	nothing, it returns	nothing, it returns

$$
\begin{aligned}
& \text { Int } \rightarrow \text { Str } \\
& \text { (in any base) }
\end{aligned}
$$

Int \rightarrow Str (in any base)

- Reduce the original number to a series of single-digit numbers
- Convert the single digit-number to a string using a lookup
- Concatenate the single-digit strings together to form the final result

Int \rightarrow Str in Base 10

Int \rightarrow Str in Base 2-16

def to_str(n, base):
convert_string = "0123456789ABCDEF"
if $n<$ base:
return convert_string[n]
else:
return to_str(n // base, base) + convert_string[n \% base]
print(to_str(1453, 16))

Int \rightarrow Str
 Decimal 10 to its Binary String

Remainder

Int \rightarrow Str
 Pushing the Strings onto a Stack

r_stack $=$ Stack($)$
def to_str(n, base):
convert_string = "0123456789ABCDEF"
if $n<$ base:
r_stack.push(convert_string[n])
else:
r_stack.push(convert_string[n \% base])
to_str(n // base, base)

Int \rightarrow Str
 Strings Placed on the Stack

Int \rightarrow Str
 Call Stack: toStr(10,2)

String Permutations
 Revisit Anagram Tester

String Permutations Brute Force Anagram Testing

def permutation(s, prefix=""):
$\mathrm{n}=\operatorname{len}(\mathrm{s})$
if $(\mathrm{n}==0)$:
print(prefix)
else:
for i in range(n): permutation(s[0:i] $+s[i+1: n]$, prefix $+s[i])$
permutation("ape")

Towers of Hanoi
 A Complex Recursive Problem

Towers of Hanoi Background

- Objective: move N disks from peg A to C can be reduced to three sub problems:

1. Move N-1 disks from peg A to intermediate peg B
2. Move the largest Disk N from peg A to target C
3. Move the N-1 parked disks from B to C

Towers of Hanoi Background

- Tower of Hanoi (Wikipedia)
- Tower of Hanoi - 5 disks - 31 moves

Towers of Hanoi

 An Example Arrangement of Disks

- Move a tower of height-1 to an intermediate pole, using the final pole
- Move the remaining disk to the final pole
- Move the tower of height-1 from the intermediate pole to the final pole using the original pole

Towers of Hanoi Python Code for the Tower of Hanoi

def move_tower(height, from_pole, to_pole, with_pole):
if height >=1:
move_tower(height - 1, from_pole, with_pole, to_pole) move_disk(from_pole, to_pole) move_tower(height - 1, with_pole, to_pole, from_pole)
def move_disk(fp,tp):
print("moving disk from",fp,"to",tp)
move_tower(3, "A", "B", "C")

Towers of Hanoi An Iterative Version

Interesting secret: there's also an easy iterative solution, but it isn't anywhere near as intuitive

1. On every even-numbered move (starting with zero), move the little disk one pole "clockwise"

If the total number of disks is even, the first move should be from from_pole to with_pole; if the total number of disks is odd, the first move should be from from_pole to with_pole

Towers of Hanoi An Iterative Version

2. On every odd-numbered move, make the only legal move not involving the smallest disk (there can be only one)

Towers of Hanoi
 Python Code for the Tower of Hanoi

```
def hanoi_iter(height, fromPole, toPole, withPole):
    if height % 2 == 0:
        poles = [fromPole, withPole, toPole]
        else:
            poles = [fromPole, toPole, withPole]
stacks = [range(height, 0, -1), [height], [height]]
for i in range(2**height-1):
    if i % 2 == 0: # move little disk
        fd = (i//2)%3
        td}=(\textrm{i}//2+1)%
    else: # move other disk
        fd = (i//2)%3
        td = (i//2+2)%3
        if (stacks[fd][len(stacks[fd])-1] >
        stacks[td][len(stacks[td])-1]):
        td = (i//2)%3
        fd = (i//2+2)%3
        stacks[td].append(list(stacks[fd]).pop())
    move_disk(poles[fd], poles[td])
```


Recursion Summary

Recursion Summary

- All recursive algorithms must have a base case
- A recursive algorithm must change its state and make progress toward the base case
- A recursive algorithm must call itself (recursively); Recursion can take the place of iteration in some cases

Recursion Summary

- Recursive algorithms often map very naturally to a formal expression of the problem you are trying to solve

Recursion Summary

- Recursion doesn't have to be any more expensive than iteration (though it is in Python)
- It's definitely more expressive:
iteration can't capture recursion in the general case without an explicit stack

Questions? 量

