
The Art of Data
Structures
Recursion

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda
 To understand that complex, difficult

problems that may have a simple
recursive solutions

 To learn how to formulate programs
recursively

 To understand and apply the three laws
of recursion

 To understand recursion as a form of
iteration

 To implement the recursive formulation
of a problem

 To understand how recursion is
implemented by a computer system

Recursion

Recursion

 A description of something that refers to
itself is called a recursive definition (like
this one for example)

Recursion

 In mathematics, recursion is frequently
used

 The most common example is the
factorial:

For example, 5! = 5(4)(3)(2)(1)

Recursion

 In other words,

 Or

 This definition says that 0! is 1, while
the factorial of any other number is that
number times the factorial of one less
than that number

Recursion

 Our definition is recursive, but definitely
not circular. Consider 4!

 4! = 4(4-1)! = 4(3!)

 What is 3!? We apply the definition
again
4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!)
4! = 4(3!) = 4(3)(2!) = 4(3)(2)(1!) =
4(3)(2)(1)(0!) = 4(3)(2)(1)(1) = 24

Recursion

 Factorial is not circular because we
eventually get to 0!, whose definition
does not rely on the definition of
factorial and is just 1

 This is called a base case for the
recursion

 When the base case is encountered, we
get a closed expression that can be
directly (often, trivially) computed

Recursion
Numbers Sum

 Suppose that you want to calculate the
sum of a list of number, e.g. [1, 3, 5, 7,
9]

Recursion
Numbers Sum: Iterative

def list_sum(num_list):
 the_sum = 0
 for i in num_list:
 the_sum = the_sum + i
 return the_sum

print(list_sum([1,3,5,7,9]))

Recursion
Numbers Sum

 total = (1+(3+(5+(7+9))))
total = (1+(3+(5+16)))
total = (1+(3+21))
total = (1 + 24)
total = 25

 listSum(numList) =
 first(numList) +
listSum(rest(numList))

Recursion
Numbers Sum: Recursive

def list_sum_rec(num_list):
 if len(num_list) == 1:
 return num_list[0]
 else:
 return num_list[0] + list_sum_rec(num_list[1:])

print(list_sum_rec([1,3,5,7,9]))

Recursion

 This is inefficient (lots of copying), but
Python runs out of stack to keep track of
the calls before the cost gets out of hand

 Note that the two implementations
actually sum the elements in opposite
order

 We could make them do it in the same
order like this:

Recursion
Numbers Sum: Recursive

(better)

def listsum_rec2(the_sum, l):
 if len(l) == 0:
 return the_sum
 return listsum_rec2(the_sum + l[0], l[1:])

print(listsum_rec2(0, [1,3,5,7,9]))

Recursion
The Recursive Sum Function

def helper(sum, l):
 if len(l) == 0:
 return sum
 return helper(sum + l[0], l[1:])

def listsum_rec3(l):
 return helper(0, l)

Recursion
Recursive Calls Adding a List of

Numbers

Recursion
Recursive Calls Adding a List of

Numbers

Recursion
The Three Laws of Recursion

1. A recursive algorithm must have a base
case

2. A recursive algorithm must change its
state and move toward the base case

3. A recursive algorithm must call itself,
recursively

Recursion
Areas of Use

 Two fundamental computational
concepts

 Divide & Conquer: Solve a problem in
terms of a smaller version of itself

 Backtracking: Systematically explore a
set of possible solutions

Factorial

Factorial

 We’ve seen previously that fact can be
calculated using a loop accumulator

 If fact is written recursively…

Factorial

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Factorial

 We’ve written a function that calls itself,
a recursive function

 The function first checks to see if we’re
at the base case (n==0). If so, return 1

 Otherwise, return the result of
multiplying n by the factorial of n-1,
fact(n-1)

Factorial

>>> fact(4)
24
>>> fact(10)
3628800
>>> fact(100)
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000L
>>>

 Remember that each call to a function
starts that function anew, with its own
copies of local variables and parameters

Factorial

Fibonacci

Fibonacci

 Sometimes one has to be careful with
recursion

 In addition to limits on stack depth
[sys.setrecursionlimit(limit)], and the cost
of argument copying, some naive
recursive algorithms are inherently
expensive

Fibonacci
Iterative Fibonacci function –

O(n)
def fib_iter(n):
 a = 0
 b = 1
 i = 0

 print(a)
 while i < n:
 t = a+b
 a = b
 b = t
 print(a)
 i += 1

 return a

Fibonacci
Naive recursive version, O(2n)

def fib_rec_1(n):
 if n < 2:
 return 1

 return fib_rec_1(n-1) + fib_rec1(n-2)

Fibonacci
Good recursive version, O(n)

def fib_rec_2(n):

 def helper(a, b, i):
 if i == n:
 return b
 return helper(b, a + b, i + 1)

 return helper(1, 0, 0)

Recursion Exercise

recursion
level

 n fun(n) is
called with…

is n == 0? line 5, calc
n//2

line 5, calc
n%2

0 (start) 25 fun(25) FALSE 12 1

1 12 fun(12) FALSE 6 0

2 6 fun(6) FALSE 3 0

3 3 fun(3) FALSE 1 1

4 1 fun(1) FALSE 0 1

5 0 fun(0) TRUE nothing, it
returns

nothing, it
returns

Int → Str
(in any base)

Int → Str
(in any base)

 Reduce the original number to a series
of single-digit numbers

 Convert the single digit-number to a
string using a lookup

 Concatenate the single-digit strings
together to form the final result

Int → Str
in Base 10

Int → Str
in Base 2–16

def to_str(n, base):
 convert_string = "0123456789ABCDEF"

 if n < base:
 return convert_string[n]
 else:
 return to_str(n // base, base) + convert_string[n % base]

 print(to_str(1453, 16))

Int → Str
Decimal 10 to its Binary String

Int → Str
Pushing the Strings onto a

Stack

r_stack = Stack()

def to_str(n, base):
 convert_string = "0123456789ABCDEF"
 if n < base:
 r_stack.push(convert_string[n])
 else:
 r_stack.push(convert_string[n % base])
 to_str(n // base, base)

Int → Str
Strings Placed on the Stack

Int → Str
Call Stack: toStr(10,2)

String Permutations
Revisit Anagram Tester

String Permutations
Brute Force Anagram

Testing

def permutation(s, prefix=""):
 n = len(s)
 if (n == 0):
 print(prefix)
 else:
 for i in range(n):
 permutation(s[0:i] + s[i+1:n], prefix + s[i])

permutation("ape")

Towers of Hanoi
A Complex Recursive

Problem

Towers of Hanoi
Background

 Objective: move N disks from peg A to
C can be reduced to three sub
problems:

1. Move N-1 disks from peg A to
intermediate peg B

2. Move the largest Disk N from peg A
to target C

3. Move the N-1 parked disks from B to
C

Towers of Hanoi
Background

Tower of Hanoi (Wikipedia)

Tower of Hanoi - 5 disks - 31 moves

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://www.youtube.com/watch?v=LOuFQiL9Kes

Towers of Hanoi
An Example Arrangement of

Disks

Towers of Hanoi
An Example Arrangement of

Disks

Move a tower of height-1 to an
intermediate pole, using the final pole

Move the remaining disk to the final
pole

Move the tower of height-1 from the
intermediate pole to the final pole using
the original pole

Towers of Hanoi
Python Code for the Tower of

Hanoi

def move_tower(height, from_pole, to_pole, with_pole):
 if height >= 1:
 move_tower(height - 1, from_pole, with_pole, to_pole)
 move_disk(from_pole, to_pole)
 move_tower(height - 1, with_pole, to_pole, from_pole)

def move_disk(fp,tp):
 print("moving disk from",fp,"to",tp)

move_tower(3, "A", "B", "C")

Towers of Hanoi
An Iterative Version

Interesting secret: there's also an easy
iterative solution, but it isn't anywhere near
as intuitive

1. On every even-numbered move (starting
with zero), move the little disk one pole
"clockwise"

If the total number of disks is even, the
first move should be from from_pole to
with_pole; if the total number of disks is
odd, the first move should be from
from_pole to with_pole

Towers of Hanoi
An Iterative Version

2. On every odd-numbered move, make the
only legal move not involving the smallest
disk (there can be only one)

Towers of Hanoi
Python Code for the Tower of Hanoi

def hanoi_iter(height, fromPole, toPole, withPole):
 if height % 2 == 0:
 poles = [fromPole, withPole, toPole]
 else:
 poles = [fromPole, toPole, withPole]
 stacks = [range(height, 0, -1), [height], [height]]
 for i in range(2**height-1):
 if i % 2 == 0: # move little disk
 fd = (i//2)%3
 td = (i//2+1)%3
 else: # move other disk
 fd = (i//2)%3
 td = (i//2+2)%3
 if (stacks[fd][len(stacks[fd])-1] >
 stacks[td][len(stacks[td])-1]):
 td = (i//2)%3
 fd = (i//2+2)%3
 stacks[td].append(list(stacks[fd]).pop())
 move_disk(poles[fd], poles[td])

Recursion Summary

Recursion Summary

 All recursive algorithms must have a
base case

 A recursive algorithm must change its
state and make progress toward the
base case

 A recursive algorithm must call itself
(recursively); Recursion can take the
place of iteration in some cases

Recursion Summary

 Recursive algorithms often map very
naturally to a formal expression of the
problem you are trying to solve

Recursion Summary

 Recursion doesn't have to be any more
expensive than iteration (though it is in
Python)

 It's definitely more expressive:
iteration can't capture recursion in the
general case without an explicit stack

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

