
The Art of Data
Structures

 Dynamic
Programming

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

 Understand Dynamic Programming as a
technique used to solve optimization
problems

Dynamic
Programming

Dynamic Programming

 Many programs in computer science are
written to optimize some value:

 Find the shortest path between two
points,

 Find the line that best fits a set of
points

 Find the smallest set of objects that
satisfies some criteria

Dynamic Programming

 There are many strategies that
computer scientists use to solve these
optimization problems

 Dynamic programming is one strategy

Dynamic Programming

 Making change using the fewest coins is
one classic optimization problem

Coin Optimization
Using Fewest Coins

Coin Optimization
Using Fewest Coins

 For a currency with coins C1, C2, …, Cn
(cents) what is the minimum number of
coins needed to make K cents of
change?

 US currency has 1, 5, 10, and 25 cent
denominations. (Also 50 cent and 1
dollar denominations).

Coin Optimization
Using Fewest Coins

 A purchase is made for $0.37

 Change due is $0.63 cents

 We can make 63 cents using two
quarters, one dime and 3 pennies

 This is done using a greedy method of
choosing as many of largest coins as
possible before choosing smaller coins

Coin Optimization
Using Fewest Coins

 What if US currency had a $0.21 coin?

 Does this greedy method still work?

 No, it still chooses the same 6 coins,
missing the fact the three 21 cent coins
are the optimal solution to the problem

Coin Optimization
Recursive Solution

1. Base Case: If we can make change that
is satisfied by exactly one coin, then that
is a minimum

2. Otherwise: minimum of a penny plus the
number of coins needed to make change
for the original amount minus one cent,
nickel, minus five cents; or a dime; minus
ten cents, and so on…

Coin Optimization
Recursive Solution

Coin Optimization
Recursive Solution

def rec_mc(coin_values, change):
 min_coins = change
 if change in coin_values:
 return 1
 else:
 for i in [c for c in coin_values if c <= change]:
 num_coins = 1 + rec_mc(coin_values, change-i)
 if num_coins < min_coins:
 min_coins = num_coins
 return min_coins

value = 63
rec_mc([1, 5, 10, 25], value)

Coin Optimization
Recursive Results

 This takes a few minutes to run

 67,716,925 recursive calls to rec_mc!

Coin Optimization
Call Tree

Coin Optimization
Recursive Performance

 The each graph node represents a call to
rec_mc

 Represents a small fraction of the 377
function calls needed for 26 cents

 Each node indicates the amount of
change for which we need to computer
the number of coins

 Arrow label is coin just used

Coin Optimization
Recursive Performance

 Graph traces path of coin combinations

 Main problem is we are re-doing too
many calculations

 Finding optimal change for 15 cents
occurs three times

 Itself depends into 52 function calls,
each!

Coin Optimization
Recursive Performance

 We need to remember past results to
avoid re-computation

 Store results for minimum number of
coins in a table

 Before commuting a new minimum, we
check to see if the table already has a
value

Coin Optimization
Recursive Solution, Using Table

Lookup
def rec_dc(coin_values, change, known_results):
 min_coins = change
 if change in coin_values:
 known_results[change] = 1
 return 1
 elif known_results[change] > 0:
 return known_results[change]
 else:
 for i in [c for c in coin_values if c <= change]:
 num_coins = 1 + rec_dc(coin_values,
 change-i,
 known_results)
 if num_coins < min_coins:
 min_coins = num_coins
 known_results[change] = min_coins
 return min_coins

value = 63
rec_dc([1, 5, 10, 25], value, [0]*(value+1))

Coin Optimization
Recursive Performance

 We now check to see if table contains
the minimum number of coin for a
certain amount of change

 Otherwise, we recursively compute and
store the result

 Curiously, this is not Dynamic
Programming; this is memoization — a
type of caching

 However, recursion drops to 221 calls!

Coin Optimization
Recursive Performance

 Dynamic Programming is more
systematic

 Starts with one cent and systematically
works up

 At each step of algorithm, we already
know the minimum number of coins for
any smaller amount

Coin Optimization
Minimum Number of Coins

Needed

Coin Optimization
Minimum Coins for 11 Cents

Coin Optimization
Dynamic Programming Solution

 Find optimum solution for 1 cent

 Find optimum solution for 2 cents using
previous

 Find optimum solution for 3 cents using
previous

 …etc.

Coin Optimization
Dynamic Programming Solution

 At any amount a, for each denomination
d, check the minimum coins for the
(previously calculated) amount a-d

 We can always get from a-d to a with
one more coin

Coin Optimization
Dynamic Programming Solution

def dp_make_change(coin_values, change, min_coins):
 for cents in range(change+1):
 coin_count = cents
 for j in [c for c in coin_values if c <= cents]:
 if min_coins[cents-j] + 1 < coin_count:
 coin_count = min_coins[cents-j]+1
 min_coins[cents] = coin_count
 return min_coins[change]

value = 63
dp_make_change([1, 5, 10, 25], value, [0]*(value+1))

Coin Optimization
Modified Dynamic Programming

Solution

def dp_make_change_2(coin_values, change, min_coins, coins_used):
 for cents in range(change+1):
 coin_count = cents
 new_coin = 1
 for j in [c for c in coin_values if c <= cents]:
 if min_coins[cents-j] + 1 < coin_count:
 coin_count = min_coins[cents-j]+1
 new_coin = j
 min_coins[cents] = coin_count
 coins_used[cents] = new_coin
 return min_coins[change]

Coin Optimization
Modified Dynamic Programming

Solution Cont.

def print_coins(coins_used, change):
 coin = change
 coin_dict = {}
 while coin > 0:
 this_coin = coins_used[coin]
 print(this_coin)
 coin = coin - this_coin

Coin Optimization
Modified Dynamic Programming

Solution Cont.

cl = [1, 5, 10, 21, 25]
coins_used = [0]*64
coin_count = [0]*64
dp_make_change_2(cl, 63, coin_count, coins_used)
print_coins(coins_used, 63)
print(coins_used)
print_coins(coins_used, 52)
print(coins_used)

Coin Optimization
Dynamic Programming Solution

 O(NK)

 N denominations

 K amount of change

 By backtracking through the coins_used
list, we can generate the sequence
needed for the amount in question

Coin Optimization
Dynamic Programming Solution

 Do note this is not a recursive algorithm

 While we started with a recursive
algorithm, an iterative solution is better
here

 Bulk of work in dp_make_change_2 work is
handled on line 4 of the function

 All possible coins are considered here for
making change for an amount cents

Coin Optimization
Dynamic Programming Solution

 This course is meant to expose you to a
variety of different problem solving
strategies

 While recursion does work here, we
discover an iterative solution to this
dynamic programming problem is more
optimal

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

