
The Art of Data
Structures
Searching

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

 To be able to explain and implement
sequential and binary search

Searching

Searching

 Searching is the process of looking for a
particular value in a collection

 For example, a program that maintains a
membership list for a club might need to
look up information for a particular
member – this involves some sort of
search process

Searching
A Simple Searching Problem

 Here is the specification of a simple
searching function:
def search(x, nums):
 # nums is a list of numbers and x is a number
 # Returns the position in the list where x occurs

 # or -1 if x is not in the list.

 Here are some sample interactions:
>>> search(4, [3, 1, 4, 2, 5])
2
>>> search(7, [3, 1, 4, 2, 5])
-1

Searching
A Simple Searching Problem

 In the first example, the function returns
the index where 4 appears in the list

 In the second example, the return value
-1 indicates that 7 is not in the list

 Python includes a number of built-in
search-related methods!

Searching
A Simple Searching Problem

 We can test to see if a value appears in
a sequence using in.
if x in nums:
 # do something

 If we want to know the position of x in a
list, the index method can be used.
>>> nums = [3, 1, 4, 2, 5]
>>> nums.index(4)
2

Searching
A Simple Searching Problem

 The only difference between our search
function and index is that index raises an
exception if the target value does not
appear in the list

 We could implement search using index
by simply catching the exception and
returning -1 for that case

Searching
A Simple Searching Problem

def search(x, nums):
 try:
 return nums.index(x)
 except:
 return -1

 Sure, this will work, but we are really
interested in the algorithm used to
actually search the list in Python!

Sequential Search

Sequential Search
Sequential Search

 Pretend you’re the computer, and you
were given a page full of randomly
ordered numbers and were asked
whether 13 was in the list

 How would you do it?

 Would you start at the top of the list,
scanning downward, comparing each
number to 13? If you saw it, you could
tell me it was in the list. If you had
scanned the whole list and not seen it,
you could tell me it wasn’t there.

Sequential Search
Sequential Search

 This strategy is called a linear, or
sequential search, where you search
through the list of items one by one until
the target value is found

Sequential Search
Sequential Search

 The Python in and index operations both
implement linear searching algorithms

 If the collection of data is very large, it
makes sense to organize the data
somehow so that each data value
doesn’t need to be examined

Sequential Search
Sequential Search

 If the data is sorted in ascending order
(lowest to highest), we can skip checking
some of the data

 As soon as a value is encountered that is
greater than the target value, the linear
search can be stopped without looking at
the rest of the data

 On average, this will save us about half
the work

Sequential Search
Sequential Search

 This algorithm wasn’t hard to develop,
and works well for modest-sized lists

def search(x, nums):
 for i in range(len(nums)):
 if nums[i] == x:
 # item found, return the index value
 return i
 # loop finished, item was not in list
 return -1

Sequential Search
Of a List of Integers

Sequential Search
Of an Unordered List

def sequential_search(alist, item):
 pos = 0
 found = False

 while pos < len(alist) and not found:
 if alist[pos] == item:
 found = True
 else:
 pos = pos+1

 return found

testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0]
print(sequential_search(testlist, 3))
print(sequential_search(testlist, 13))

Sequential Search
Of an Ordered List

Sequential Search
Of an Ordered List

def ordered_sequential_search(alist, item):
 pos = 0
 found = False
 stop = False
 while pos < len(alist) and not found and not stop:
 if alist[pos] == item:
 found = True
 else:
 if alist[pos] > item:
 stop = True
 else:
 pos = pos+1

 return found

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(ordered_sequential_search(testlist, 3))
print(ordered_sequential_search(testlist, 13))

Binary Search

Binary Search
Of an Ordered List of Integers

Binary Search
Of an Ordered List

def binary_search(alist, item):
 first = 0
 last = len(alist)-1
 found = False

 while first <= last and not found:
 midpoint = (first + last)//2
 if alist[midpoint] == item:
 found = True
 else:
 if item < alist[midpoint]:
 last = midpoint-1
 else:
 first = midpoint+1
 return found

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

Binary Search
Of an Ordered List

def binary_search_r(alist, item):
 if len(alist) == 0:
 return False
 else:
 midpoint = len(alist)//2
 if alist[midpoint] == item:
 return True
 else:
 if item < alist[midpoint]:
 return binary_search_r(alist[:midpoint], item)
 else:
 return binary_search_r(alist[midpoint+1:], item)

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search_r(testlist, 3))
print(binary_search_r(testlist, 13))

Analysis

Analysis
Comparing Algorithms

 Which search algorithm is better, linear
or binary?

 The linear search is easier to understand
and implement

 The binary search is more efficient since
it doesn’t need to look at each element
in the list

 Intuitively, we might expect the linear
search to work better for small lists, and
binary search for longer lists. But how
can we be sure?

Analysis
Comparing Algorithms

 One way to conduct the test would be to
code up the algorithms and try them on
varying sized lists, noting the runtime.

 Linear search is generally faster for
lists of length 10 or less

 There was little difference for lists of
10-1000

 Binary search is best for 1000+ (for
one million list elements, binary search
averaged .0003 seconds while linear
search averaged 2.5 seconds)

Analysis
Comparing Algorithms

 While interesting, can we guarantee that
these empirical results are not
dependent on the type of computer they
were conducted on, the amount of
memory in the computer, the speed of
the computer, etc.?

 We could abstractly reason about the
algorithms to determine how efficient
they are. We can assume that the
algorithm with the fewest number of
“steps” is more efficient.

Analysis
Comparing Algorithms

 How do we count the number of “steps”?

 Computer scientists attack these
problems by analyzing the number of
steps that an algorithm will take relative
to the size or difficulty of the specific
problem instance being solved.

Analysis
Comparing Algorithms

 For searching, the difficulty is
determined by the size of the collection –
it takes more steps to find a number in a
collection of a million numbers than it
does in a collection of 10 numbers.

 How many steps are needed to find a
value in a list of size n?

 In particular, what happens as n gets
very large?

Analysis
Comparing Algorithms

 Let’s consider linear search.

 For a list of 10 items, the most work
we might have to do is to look at each
item in turn – looping at most 10
times.

 For a list twice as large, we would loop
at most 20 times.

 For a list three times as large, we
would loop at most 30 times!

Analysis
Comparing Algorithms

 The amount of time required is linearly
related to the size of the list, n

 This is what computer scientists call a
linear time algorithm

Analysis
Comparing Algorithms

 Now, let’s consider binary search

 Suppose the list has 16 items. Each
time through the loop, half the items
are removed. After one loop, 8 items
remain

 After two loops, 4 items remain

 After three loops, 2 items remain

 After four loops, 1 item remains

Analysis
Comparing Algorithms

 If a binary search loops i times, it can
find a single value in a list of size 2i

Analysis
Comparing Algorithms

 To determine how many items are
examined in a list of size n, we need to
solve:

for i, or:

 Binary search is an example of a log
time algorithm – the amount of time it
takes to solve one of these problems
grows as the log of the problem size

Analysis
Comparing Algorithms

 This logarithmic property can be very
powerful!

 Suppose you have the New York City
phone book with 12 million names

 You could walk up to a New Yorker and,
assuming they are listed in the phone
book, make them this proposition: “I’m
going to try guessing your name. Each
time I guess a name, you tell me if your
name comes alphabetically before or
after the name I guess.” How many
guesses will you need?

Analysis
Comparing Algorithms

 Our analysis shows us the answer to this
question is

 We can guess the name of the New
Yorker in 24 guesses!

 By comparison, using the linear search
we would need to make, on average,
6,000,000 guesses!

Analysis
Comparing Algorithms

 Earlier, we mentioned that Python uses
linear search in its built-in searching
methods. Why doesn’t it use binary
search?

 Binary search requires the data to be
sorted

 If the data is unsorted, it must be
sorted first!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

