
The Art of Data
Structures

Trees

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

 To understand what a tree data structure
is and how it is used

 To see how trees can be used to
implement a map data structure

 To implement trees using a list

 To implement trees using classes and
references

Trees

Trees
Properties

 Hierarchical

 Child nodes are all independent

 Path to leaf nodes are unique

 Subtrees

Trees
Example: Animal Taxonomy

Trees
Example: UNIX File System

Trees
Example: HTML Markup

Elements

Trees
Vocabulary

 Node A node is a fundamental part of a
tree. It can have a name, which we call
the “key"

 Edge An edge connects two nodes to
show that there is a relationship
between them (incoming/outgoing)

 Root The root of the tree is the only
node in the tree that has no incoming
edges

Trees
Vocabulary

 Path A path is an ordered list of nodes
that are connected by edges

 Children The set of nodes c that have
incoming edges from the same node to
are said to be the children of that node

 Parent A node is the parent of all the
nodes it connects to with outgoing edges

Trees
Vocabulary

 Sibling Nodes in the tree that are
children of the same parent are said to
be siblings

 Subtree A subtree is a set of nodes and
edges comprised of a parent and all the
descendants of that parent

 Leaf Node A leaf node is a node that
has no children

Trees
Vocabulary

 Level The level of a node n is the
number of edges on the path from the
root node to n

 Height The height of a tree is equal to
the maximum level of any node in the
tree

Trees
Defined as Nodes and Edges

 One node of the tree is designated as
the root node

 Every node n, except the root node, is
connected by an edge from exactly one
other node p, where p is the parent of n

 A unique path traverses from the root to
each node

 If each node in the tree has a maximum
of two children, we say that the tree is a
binary tree

Trees
A Tree with a Set of Nodes and

Edges

Trees
Defined Recursively

 A tree is either empty or consists of a
root and zero or more subtrees, each
of which is also a tree

 The root of each subtree is connected to
the root of the parent tree by an edge

Trees
A Recursive Definition of a Tree

Trees
Specification

 binary_tree()/BinaryTree() creates a new
instance of a binary tree using a
procedural or OO method

 get_left_child() returns the binary tree
corresponding to the left child of the
current node

 get_right_child() returns the binary tree
corresponding to the right child of the
current node

Trees
Specification (cont.)

 set_root_val(val) stores the object in
parameter val in the current node

 get_root_val() returns the object stored
in the current node

 insert_left(val) creates a new binary
tree and installs it as the left child of the
current node

 insert_right(val) creates a new binary
tree and installs it as the right child of
the current node

Tree Implementation
Representing a Tree as a List of

Lists

Tree Implementation
Representing a Tree as a List of

Lists

mytree = [’a’, #root
 [’b’, #left subt
 [’d’ [], []],
 [’e’ [], []]],
 [’c’, #right sub
 [’f’ [], []],
 []]
]

Tree Implementation
Procedural Implementation

This is an example of a binary tree data structure created
with python lists as the underlying data structure.

def binary_tree(r):
 return [r, [], []]

Tree Implementation
Procedural Implementation

def insert_left(root, new_branch):
 t = root.pop(1)

 if len(t) > 1:
 root.insert(1, [new_branch, t, []])
 else:
 root.insert(1, [new_branch, [], []])

 return root

Tree Implementation
Procedural Implementation

def insert_right(root, new_branch):
 t = root.pop(2)

 if len(t) > 1:
 root.insert(2, [new_branch, [], t])
 else:
 root.insert(2, [new_branch, [], []])

 return root

Tree Implementation
Procedural Implementation

def get_root_val(root):
 return root[0]

def set_root_val(root, new_val):
 root[0] = new_val

def get_left_child(root):
 return root[1]

def get_right_child(root):
 return root[2]

Tree Implementation
Procedural Implementation

(Usage 1)
r = binary_tree(3)
insert_left(r,4)
insert_left(r,5)
insert_right(r,6)
insert_right(r,7)
l = get_left_child(r)
print(l)

set_root_val(l,9)
print(r)
insert_left(l,11)
print(r)
print(get_right_child(get_right_child(r)))

Tree Implementation
Procedural Implementation

(Usage 2)

b = binary_tree(‘a')

Build up the left side of this tree
insert_left(b,'b')
insert_right(get_left_child(b), 'd')

Build up the right side of this tree
insert_right(b,'c')
insert_left(get_right_child(b), 'e')
insert_right(get_right_child(b), 'f')

print(b)

Tree Implementation
Using an Object-Oriented

Approach

Tree Implementation
Using a Nodes and References Approach

This is an example of a BinaryTree data structure
built as a class
This example will only work if the rootObj passed into the
class is a python primitive data type.

class BinaryTree:
 def __init__(self, root_obj):
 self.key = root_obj
 self.left_child = None
 self.right_child = None

 def insert_left(self, new_node):
 if self.left_child == None:
 self.left_child = BinaryTree(new_node)
 else:
 t = BinaryTree(new_node)
 t.left_child = self.left_child
 self.left_child = t

Tree Implementation
Using a Nodes and References Approach

 def insert_right(self, new_node):
 if self.right_child == None:
 self.right_child = BinaryTree(new_node)
 else:
 t = BinaryTree(new_node)
 t.right_child = self.right_child
 self.right_child = t

 def get_right_child(self):
 return self.right_child

 def get_left_child(self):
 return self.left_child

 def set_root_val(self, obj):
 self.key =obj

 def get_root_val(self):
 return self.key

Tree Implementation
Using a Nodes and References Approach

r = BinaryTree('a')
print(r.get_root_val())
print(r.get_left_child())

r.insert_left('b')
print(r.get_left_child())
print(r.get_left_child().get_root_val())

r.insert_right('c')
print(r.get_right_child())
print(r.get_right_child().get_root_val())

r.get_right_child().set_root_val('hello')
print(r.get_right_child().get_root_val())

Tree Implementation
Using a Nodes and References Approach

Binary Tree
Applications

Binary Tree Applications
A Parse Tree for a Simple

Sentence

Binary Tree Applications
Parse Tree for ((7+3)∗(5−2))

Binary Tree Applications
Simplified parse tree for ((7 +

3) ∗ (5 − 2))

Binary Tree Applications
Simplified parse tree for ((7 +

3) ∗ (5 − 2))

 How to build a parse tree from a fully
parenthesized mathematical expression

 How to evaluate the expression stored in
a parse tree

 How to recover the original
mathematical expression from a parse
tree

Binary Tree Applications
Simplified parse tree for ((7 +

3) ∗ (5 − 2))
1. If the current token is a "(", add a new

node as the left child of the current node,
and descend to the left child

2. If the current token is in the list
['+','-','/','*'], set the root value of
the current node to the operator
represented by the current token. Add a
new node as the right child of the current
node and descend to the right child

Binary Tree Applications
Simplified parse tree for ((7 +

3) ∗ (5 − 2))

3. If the current token is a number, set the
root value of the current node to the
number and return to the parent

4. If the current token is a ")", go to the
parent of the current node

Binary Tree Applications
Tracing Parse Tree Construction

(3 + (4*5))

Binary Tree Applications
Tracing Parse Tree Construction

1. Create an empty tree

2. Read "(" as the first token. By rule 1,
create a new node as the left child of the
root. Make the current node this new child

3. Read "3" as the next token. By rule 3, set
the root value of the current node to "3"
and go back up the tree to the parent

Binary Tree Applications
Tracing Parse Tree Construction

4. Read "+" as the next token. By rule 2, set
the root value of the current node to "+"
and add a new node as the right child.
The new right child becomes the current
node

5. Read a "(" as the next token. By rule 1,
create a new node as the left child of the
current node. The new left child becomes
the current node

Binary Tree Applications
Tracing Parse Tree Construction

6. Read a "4" as the next token. By rule 3,
set the value of the current node to "4".
Make the parent of "4" the current node

7. Read "*" as the next token. By rule 2, set
the root value of the current node to "*"
and create a new right child. The new
right child becomes the current node

Binary Tree Applications
Code to Create a Parse Tree

def build_parse_tree(fpexp):
 fplist = fpexp.split()
 p_stack = Stack()
 e_tree = BinaryTree('')

 p_stack.push(e_tree)
 current_tree = e_tree

 for i in fplist:
 if i == '(':
 current_tree.insert_left('')
 p_stack.push(current_tree)
 current_tree = current_tree.get_left_child()
 elif i not in ['+', '-', '*', '/', ')']:
 current_tree.set_root_val(int(i))
 parent = p_stack.pop()
 current_tree = parent

Code continues on next slide…

Binary Tree Applications
Code to Create a Parse Tree (cont.)

 elif i in ["+", "-", "*", "/"]:
 # Create right child and descend
 current_tree.set_root_val(i)
 current_tree.insert_right('')
 p_stack.push(current_tree)
 current_tree = current_tree.get_right_child()
 elif i == ")":
 current_tree = p_stack.pop()
 else:
 raise ValueError("invalid expression given!")

 return e_tree

pt = buildParseTree("((10 + 5) * 3)")

Binary Tree Applications
Recursive Function to Evaluate a Binary Parse

Tree

def evaluate(parse_tree):
 opers = {
 '+': operator.add,
 '-': operator.sub,
 '*': operator.mul,
 '/': operator.truediv
 }

 left_c = parse_tree.get_left_child()
 right_c = parse_tree.get_right_child()

 if left_c and right_c:
 fn = opers[parse_tree.get_root_val()]
 return fn(evaluate(left_c), evaluate(right_c))
 else:
 return parse_tree.get_root_val()

Binary Tree Applications
Representing a Book As a Tree

Binary Tree Applications
External Function Implementing Preorder

Traversal of a Tree I

def preorder(tree):
 if tree:
 print(tree.get_root_val())
 preorder(tree.get_left_child())
 preorder(tree.get_right_child())

Binary Tree Applications
Postorder Traversal Algorithm I

def postorder(tree):
 if tree:
 postorder(tree.get_left_child())
 postorder(tree.get_right_child())
 print(tree.get_root_val())

Binary Tree Applications
Postorder Evaluation Algorithm I

def evaluate_post(tree):
 opers = {
 '+': operator.add,
 '-': operator.sub,
 '*': operator.mul,
 '/': operator.truediv
 }

 res1 = None
 res2 = None

 if tree:
 res1 = evaluate_post(tree.get_left_child())
 res2 = evaluate_post(tree.get_right_child())
 if res1 and res2:
 fn = opers[tree.get_root_val()]
 return fn(res1, res2)
 else:
 return tree.get_root_val()

Binary Tree Applications
Inorder Traversal Algorithm I

def inorder(tree):
 if tree:
 inorder(tree.get_left_child())
 print(tree.get_root_val())
 inorder(tree.get_right_child())

Binary Tree Applications
Modified Inorder Traversal to Print Fully

Parenthesized Expression I

def printexp(tree):
 s_val = ""
 if tree:
 s_val = '(' + printexp(tree.get_left_child())
 s_val += str(tree.get_root_val())
 s_val += printexp(tree.get_right_child()) + ')'

 return s_val

Binary Tree Applications
Recursive Function to Evaluate a Binary

Parse Tree

in_string = "((10 + 5) * 3)"
print(in_string)
pt = build_parse_tree(in_string)

print(evaluate_post(pt))
print(preorder(pt))
print(postorder(pt))
print(inorder(pt))

print(printexp(pt))

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

