

What type of a graph is this?

Undirected, weighted

Graph representation

- Vertices
- Edges

How to connect vertices through edges?

Graph applications examples

- **Networking:** finding the shortest paths, managing the flow
- **Google maps:** building transportation systems
- **Google page ranking:** evaluating pages by the number of references they have
- Facebook: friends suggestion algorithm
- Neural networks
- Biological networks

	Alg	Geo	Tri	Cal	Sta	CS	ML
Alg							
Geo							
Tri							
Cal							
Sta							
CS							
ML							

	Alg	Geo	Tri	Cal	Sta	CS	ML
Alg		1					
Geo							
Tri							
Cal							
Sta							
CS							
ML							

	Alg	Geo	Tri	Cal	Sta	CS	ML
Alg		1	0	0	1	0	0
Geo							
Tri							
Cal							
Sta							
CS							
ML							

	Alg	Geo	Tri	Cal	Sta	CS	ML
Alg		1	0	0	1	0	0
Geo	0		1	0	0	0	0
Tri							
Cal							
Sta							
CS							
ML							

	Alg	Geo	Tri	Cal	Sta	CS	ML
Alg		1	0	0	1	0	0
Geo	0		1	0	0	0	0
Tri	0	0		1	0	0	0
Cal							
Sta							
CS							
ML							

	Alg	Geo	Tri	Cal	Sta	CS	ML
Alg		1	0	0	1	0	0
Geo	0		1	0	0	0	0
Tri	0	0		1	0	0	0
Cal	0	0	0		0	0	1
Sta	0	0	0	0		0	1
CS	0	0	0	0	0		1
ML	0	0	0	0	0	0	

Graph representation: adjacency list

keys values

- Algebra: Geometry, Statistics
- **Geometry:** Trigonometry
- Trigonometry: Calculus
- Calculus: Machine Learning
- Statistics: Machine Learning
- Computer Science: Machine learning

Graph traversals

- The process of visiting each vertex in a graph.
 - Checking, updating vertexes during the visit.
- Is there a challenge compared to tree traversals?
 - A different structure: node can be visited multiple times
- Traversal algorithms:
 - Breadth first search
 - Depth first search

Traversal algorithms

- DFS: visiting a child before siblings
 - Implementation?
 - Adding children into a stack
- BFS: visiting a sibling before visiting children
 - Implementation?
 - Adding children into a queue
- Practice: implement BFS and DFS for a graph

6	
2	
stack	

2
stack

5
4
2
stack

4
4
2
stack

4
2
stack

6	Ī
4	
2	
stack	

4
2
stack

Practice problem

- Given a non-weighted directed graph with adjacency list:
 - \circ $\,$ Find the shortest path between from SRC to DST $\,$

Practice problem

- Given a non-weighted directed graph with adjacency list:
 - \circ $\,$ Find the shortest path between from SRC to DST $\,$

