
Graphs

Unweighted,
undirected

Unweighted,
directed

Weighted,
directed

Graphs

Seattle New York

Denver
Atlanta

Los
Angeles

Miami

$280

$70 $90
$45

$120

$70

$50

What type of a graph is this?

Graphs

Seattle New York

Denver
Atlanta

Los
Angeles

Miami

$280

$70 $90
$45

$120

$70

$50

Undirected, weighted

Graphs

Seattle New York

Denver
Atlanta

Los
Angeles

Miami

$280

$70 $90
$45

$120

$70

$50

Undirected, weighted
What is the cheapest way
to get to Miami from LA?

Graphs

Machine
Learning

Calculus
Trigono-

metry
Geometry

Statistics

Computer
science

Algebra

What type of a graph is this?

Graphs

Machine
Learning

Calculus
Trigono-

metry
Geometry

Statistics

Computer
science

Algebra

Unweighted, directed

Graph representation

● Vertices

● Edges

How to connect vertices through edges?

Graph applications examples

● Networking: finding the shortest paths, managing the flow

● Google maps: building transportation systems

● Google page ranking: evaluating pages by the number of

references they have

● Facebook: friends suggestion algorithm

● Neural networks

● Biological networks

Graph representation:
adjacency matrix

Machine
Learning

Calculus

Trigono-
metry

Geometry

Statistics

Computer
science

Algebra
Alg Geo Tri Cal Sta CS ML

Alg

Geo

Tri

Cal

Sta

CS

ML

Graph representation:
adjacency matrix

Alg Geo Tri Cal Sta CS ML

Alg 1

Geo

Tri

Cal

Sta

CS

ML

Machine
Learning

Calculus

Trigono-
metry

Geometry

Statistics

Computer
science

Algebra

Graph representation:
adjacency matrix

Alg Geo Tri Cal Sta CS ML

Alg 1 0 0 1 0 0

Geo

Tri

Cal

Sta

CS

ML

Machine
Learning

Calculus

Trigono-
metry

Geometry

Statistics

Computer
science

Algebra

Graph representation:
adjacency matrix

Alg Geo Tri Cal Sta CS ML

Alg 1 0 0 1 0 0

Geo 0 1 0 0 0 0

Tri

Cal

Sta

CS

ML

Machine
Learning

Calculus

Trigono-
metry

Geometry

Statistics

Computer
science

Algebra

Graph representation:
adjacency matrix

Alg Geo Tri Cal Sta CS ML

Alg 1 0 0 1 0 0

Geo 0 1 0 0 0 0

Tri 0 0 1 0 0 0

Cal

Sta

CS

ML

Machine
Learning

Calculus

Trigono-
metry

Geometry

Statistics

Computer
science

Algebra

Graph representation:
adjacency matrix

Alg Geo Tri Cal Sta CS ML

Alg 1 0 0 1 0 0

Geo 0 1 0 0 0 0

Tri 0 0 1 0 0 0

Cal 0 0 0 0 0 1

Sta 0 0 0 0 0 1

CS 0 0 0 0 0 1

ML 0 0 0 0 0 0

Machine
Learning

Calculus

Trigono-
metry

Geometry

Statistics

Computer
science

Algebra

Graph representation:
adjacency list

Machine
Learning

Calculus

Trigono-
metry

Geometry

Statistics

Computer
science

Algebra

● Algebra: Geometry, Statistics

● Geometry: Trigonometry

● Trigonometry: Calculus

● Calculus: Machine Learning

● Statistics: Machine Learning

● Computer Science: Machine learning

keys values

Graph traversals

● The process of visiting each vertex in a graph.

○ Checking, updating vertexes during the visit.

● Is there a challenge compared to tree traversals?

○ A different structure: node can be visited multiple times

● Traversal algorithms:

○ Breadth first search

○ Depth first search

Traversal algorithms

● DFS: visiting a child before siblings

○ Implementation?

○ Adding children into a stack

● BFS: visiting a sibling before visiting children

○ Implementation?

○ Adding children into a queue

● Practice: implement BFS and DFS for a graph

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)

stack

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)

1

stack

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)

stack1

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)
3

2

stack
1

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)

2

stack
1 3

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)
6

2

stack

1 3

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)

2

stack
1 3 6

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)
5

4

2

stack

1 3 6

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)
4

2

stack
1 3 6 5

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)
4

4

2

stack
1 3 6 5

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)
4

2

stack
1 3 6 5 4

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)
6

4

2

stack

1 3 6 5 4

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph) 4

2

stack1 3 6 5 4

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)

2

stack
1 3 6 5 4

Depth-first search

1

2

3

4

5

6

dfs(node=1, graph)

stack
1 3 6 5 4

2

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

front rear

Queue

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

front 1 rear

Queue

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

front rear

Queue

1

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1 front 2 3 rear

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

front 3 rear

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

front 3 5 3 rear

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

front 5 3 rear

3

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

front 5 3 6 rear

3

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

front 3 6 rear

3

5

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

front 3 6 4 rear

3

5

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

3

5
front 6 4 rear

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

3

5
front 4 rear

6

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

3

5
front 4 4 5 rear

6

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

3

5
front 4 5 rear

6

4

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

3

5
front 4 5 6 rear

6

4

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

3

5
front 5 6 rear

6

4

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

3

5
front 6 rear

6

4

Breadth-first search

1

2

3

4

5

6

bfs(node=1, graph)

Queue

1
2

3

5

6

4
front rear

Practice problem

● Given a non-weighted directed graph with adjacency list:

○ Find the shortest path between from SRC to DST

1

2

3

4

5

6

bfs(node=1, graph)

Practice problem

● Given a non-weighted directed graph with adjacency list:

○ Find the shortest path between from SRC to DST

1

2

3

4

5

6

bfs(node=1, graph)

