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Graph representation

● Vertices

● Edges 

How to connect vertices through edges?



Graph applications examples

● Networking: finding the shortest paths, managing the flow

● Google maps: building transportation systems

● Google page ranking: evaluating pages by the number of 

references they have

● Facebook: friends suggestion algorithm

● Neural networks

● Biological networks
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Graph representation: 
adjacency list
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metry
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● Algebra:  Geometry, Statistics

● Geometry:  Trigonometry

● Trigonometry: Calculus

● Calculus: Machine Learning

● Statistics: Machine Learning

● Computer Science: Machine learning

keys values



Graph traversals

● The process of visiting each vertex in a graph.

○ Checking, updating vertexes during the visit.

● Is there a challenge compared to tree traversals?

○ A different structure: node can be visited multiple times

● Traversal algorithms:

○ Breadth first search

○ Depth first search



Traversal algorithms

● DFS: visiting a child before siblings

○ Implementation?

○ Adding children into a stack

● BFS: visiting a sibling before visiting children

○ Implementation?

○ Adding children into a queue

● Practice: implement BFS and DFS for a graph
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Practice problem

● Given a non-weighted directed graph with adjacency list:

○ Find the shortest path between from SRC to DST
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