
The Art of Data
Structures

Graphs: BFS

Alan Beadle
CSC 162: The Art of Data
Structures

Agenda

 To learn what a breadth first search of
graph is and how it is used

Breadth First Search

Breadth First Search

 Represent the relationships between the
words as a graph

 Use the graph algorithm known as
breadth first search to find an efficient
path from the starting word to the
ending word

Breadth First Search
A Small Word Ladder Graph

Breadth First Search
A Small Word Ladder Graph

Breadth First Search
Building a Graph of Words for

the Word Ladder Problem
from pythonds.graphs import Graph, Vertex
from pythonds.basic import Queue

def buildGraph(wordFile):
 d = {}
 g = Graph()
 wfile = open(wordFile,'r')
 # create buckets of words that differ by one letter
 for line in wfile:
 word = line[:-1]
 for i in range(len(word)):
 bucket = word[:i] + '_' + word[i+1:]
 if bucket in d:
 d[bucket].append(word)
 else:
 d[bucket] = [word]

Breadth First Search
Building a Graph of Words for

the Word Ladder Problem
(cont.)

 # add vertices and edges for words in the same bucket
 for bucket in d.keys():
 for word1 in d[bucket]:
 for word2 in d[bucket]:
 if word1 != word2:
 g.addEdge(word1,word2)
 return g

Breadth First Search
Building a Graph of Words for

the Word Ladder Problem

def traverse(y):
 x = y
 while (x.getPred()):
 print(x.getId())
 x = x.getPred()
 print(x.getId())

Breadth First Search
Implementation

def bfs(g, start):
 start.setDistance(0)
 start.setPred(None)
 vertQueue = Queue()
 vertQueue.enqueue(start)
 while vertQueue.size() > 0:
 currentVert = vertQueue.dequeue()
 for nbr in currentVert.getConnections():
 if nbr.getColor() == 'white':
 nbr.setColor('gray')
 nbr.setDistance(currentVert.getDistance() + 1)
 nbr.setPred(currentVert)
 vertQueue.enqueue(nbr)
 currentVert.setColor('black')

Breadth First Search
Building a Graph of Words for

the Word Ladder Problem

wordgraph = buildGraph("fourletterwords.txt")

bfs(wordgraph, wordgraph.getVertex('FOOL'))

traverse(wordgraph.getVertex('SAGE'))

Breadth First Search
 The new, unexplored vertex v, is colored

gray.

 The predecessor of v is set to the current
node w

 The distance to v is set to the distance to
w + 1

 v is added to the end of a queue

 Adding v to the end of the queue
effectively schedules this node for
further exploration, but not until all the
other vertices on the adjacency list of w
have been explored

Breadth First Search
First Step in the Breadth First

Search

Breadth First Search
Second Step in the Breadth First

Search

Breadth First Search
Constructing the Breadth First

Search Tree

Breadth First Search
Constructing the Breadth First

Search Tree

 You can represent your problem in terms
of an unweighted graph

 The solution to your problem is to find
the shortest path between two nodes in
the graph

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

