The Art of Data
Structures
raphs: BFS

Alan Beadle
CSC 162: The Art of Data
Structures

(/\h;i“m UNIVERSITY of
1, ROCHESTER

Agenda

® To learn what a breadth first search of
graph is and how it is used

Breadth First Search

Breadth First Search

® Represent the relationships between the
words as a graph

® Use the graph algorithm known as
breadth first search to find an efficient
path from the starting word to the
ending word

Breadth First Search
A Small Word Ladder Graph

foil / \ al

Breadth First Search
A Small Word Ladder Graph

OPE

'

POPE
ROPE
NOPE
HOPE
LOPE
MOPE
COPE

P_PE

:

POPE
PIPE
PAPE

PO_E

:

POPE
POLE
PORE
POSE
POKE

POP

'

POPE
POPS

Breadth First Search

Building a Graph of Words for
the Word Ladder Problem

from pythonds.graphs import Graph, Vertex
from pythonds.basic import Queue

def buildGraph(wordFile):
d = {}
g = Graph()
wfile = open(wordFile, 'r')
create buckets of words that differ by one letter
for line in wfile:
word = line[:-1]
for i in range(len(word)):
bucket = word[:i] + ' ' + word[i+1:]
1f bucket in d:
d[bucket] .append(word)

else:
d[bucket] = [word]

Breadth First Search

Building a Graph of Words for
the Word Ladder Problem
(cont.)

add vertices and edges for words in the same bucket
for bucket in d.keys():
for wordl in d[bucket]:
for word2 in d[bucket]:
if wordl '= word2:
g.addEdge(wordl,word2)
return g

Breadth First Search

Building a Graph of Words for
the Word Ladder Problem

def traverse(y):
X =Y
while (x.getPred())
print(x.getId())
X = X.getPred()
print(x.getId())

Breadth First Search

Implementation

def bfs(g, start):
start.setDistance(0)
start.setPred(None)
vertQueue = Queue()
vertQueue.enqueue(start)
while vertQueue.size() > 0:
currentVert = vertQueue.dequeue()
for nbr in currentVert.getConnections():
if nbr.getColor() == 'white':
nbr.setColor('gray')
nbr.setDistance(currentVert.getDistance() + 1)
nbr.setPred(currentVert)
vertQueue.enqueue(nbr)
currentVert.setColor('black")

Breadth First Search

Building a Graph of Words for
the Word Ladder Problem

wordgraph = buildGraph("fourletterwords.txt")
bfs(wordgraph, wordgraph.getVertex('FOOL"))

traverse(wordgraph.getVertex('SAGE"))

Breadth First Search

The new, unexplored vertex v, Is colored
gray.

The predecessor of v is set to the current
node w

The distance to v Is set to the distance to
w + 1

v IS added to the end of a queue

Adding v to the end of the queue
effectively schedules this node for
further exploration, but not until all the
other vertices on the adjacency list of w
have been explored

Breadth First Search

First Step in the Breadth First
Search

fool

Breadth First Search

Second Step in the Breadth First
Search

fool

pool
1

Breadth First Search

Constructing the Breadth First
Search Tree

pool foil foul
1 1 1
poll fail
2 2
pole pall
3 3
pope pale
4 4 Queue
page
5
sage
6

(a) Breadth First Search Tree After(b) Final Breadth First Search Tree
Completing One Level

Queue pole pall

Breadth First Search

Constructing the Breadth First
Search Tree

® You can represent your problem in terms
of an unweighted graph

® The solution to your problem is to find
the shortest path between two nodes in
the graph

Questions:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

