
Research Interest Statement

Haosen Wen
Computer Science Department, University of Rochester

Rochester, NY 14627

Nov. 21, 2018

Abstract

My research focuses on persistent software transactional systems, a class of applications of concur-
rent data structures on non-volatile byte-addressable memories (NVBM). Given past explorations on
both persistent semantics for concurrent data structures (by Joseph Izraelevitz et al.) and object-based
transactional memories (by Maurice Herlihy et al. and Virendra Marathe et al.), I believe I can build a
software transactional system that supports composable and flexible atomicity and persistence, and has
better performance and scalability than existing options.

Overview

As traditional volatile RAM approaches the limit of its capacity growth, non-volatile byte-addressable mem-
ories (NVBM) are likely to be the future of main memory, with a tempting side-feature of persistency, which
suggests research into corresponding data structures and applications. In the last few years, semantics of
concurrent data structures in the context of persistency [1], together with concurrent data structures based
on such semantics, enabled applications to be developed with NVBMs, and software transactional systems
is one class of promising candidates.

Most such systems appeared take of software transactional memory (STM) for machines with either
transient memories ([2, 3, 4]) or persistent memories ([5, 6]), and tend to offer an API that allows users
to specify transactional code regions, loads and stores of which will take effect atomically at commit time.
Such an API inevitably requires the system to consult some globally-reachable metadata in order to resolve
conflicts and maintain consistency. However, such consultation may bring significant overhead, some of which
might not be necessary for consistency and/or correctness. Hence, we are planning to design a transactional
system with a more flexible multi-word compare-and-swap (MCAS) API and to equip it with necessary
memory flushes, fences and recovery procedure to make it applicable to a system with NVBM and transient
cache [1].

Summary of past work

My work so far has focused mainly on the implementation of concurrent data structures. In my first semester,
my research on potential bottlenecks of inter-thread/inter-process communication brought some fundamental
understandings of how factors like context switching, cache locality and TLB misses affect the performance
of concurrent programs. This work provided guidance for later research on concurrency. This is still an open
research topic for me.

During my second semester, I help implemented Polytree, a general framework for easily creating non-
blocking concurrent tree structures, which provides thread-safe lookups, atomic node updates, and atomic
sub-tree substitutions.

When implementing and comparing tree structures for Polytree, e.g, Bonsai Trees [7], we wished for a
memory management scheme that would be robust to thread stalling, easy to use, and fast. Inspired by
epoch-based memory reclamation algorithms [8, 9] and some state-of-art approaches like Hazard Eras [10],
we developed Interval-Based Memory Reclamation [11], which I had the pleasure of presenting at PPoPP’18.

Prior to our work, epoch-based memory management schemes were the fastest and most user-friendly
ones. To ensure correctness, an operation must protect (or reserve) all blocks that are (or will be) detached
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after its start time (epoch) from being reclaimed, so that it can safely access every block that it can possibly
reach. Unfortunately, an unbounded number of blocks can be reserved by some stalled thread, since all
blocks detached after its start epoch will be reserved. Our work solved this problem by marking a finite
range of epochs “reserved” per thread; all objects whose life intervals intersect with any “reserved” ranges
will be protected from reclamation, so the total number of unreclaimable blocks is bounded.

Last spring, we attempted to build a persistent STM system based on Daĺı [12], a periodic persistent
hash map. In order to ensure the order of memory persistency operations (that flushes transient data from
cache to NVM), persistent data structures prior to Daĺı tend to issue expensive pfences after every such
operation. Daĺı, on the other hand, lowered the overhead by only issuing pfences every once in a while after
a whole cache flush. On newer Intel x86 machines, however, cache flushing operations such as clflush’es are
ordered with respect to each other and fence instructions, which undermined the need of pfences and thus
made this idea less favorable. We then decided to build a persistent software transactional system based on
current STM systems.

Ongoing works and future plans

I am implementing a non-blocking object-based persistent MCAS system. Preliminary results on a non-
persistent version show better throughput and similar scalability results compared to RSTM [4]. My next
step, apart from wrapping up the implementation and finishing a paper about it, is to develop a persistent
non-blocking memory allocator to make this system truly failure-atomic.

Pavlovic et al. [13] announced a word-based persistent multi-word CAS system with an API of similar
taste of our work. Our system will be different from theirs in two major ways: first, our system will be
object-based, since we believe that the semantics of MCAS fits better in object-oriented programming in the
sense that one might not want to focus on the size of objects when he/she is attempting to modify them
atomically; second, our system will be non-blocking, which not only prevents common problems in lock-based
systems like deadlocks and preempted threads stalling the whole system, but may also significantly simplify
the recovery procedure: in a lock-based system, the thread holding a lock when a crash happens is responsible
to bring the concrete memory state to a valid one that has a (well-defined) abstract state during recovery,
which can be difficult when other threads are still making progress; with non-blocking progress, the memory
will always have a valid concrete state, which makes the recovery trivial. Our current implementation is
generally inspired by DSTM [2], ASTM [3] and RSTM [4], which are non-blocking STM systems for transient
memory.
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