
Research Interest Statement

Haosen Wen
Computer Science Department, University of Rochester

Rochester, NY 14627

Nov. 21, 2018

Abstract

My research focuses on persistent software transactional systems, a class of applications of concur-
rent data structures on non-volatile byte-addressable memories (NVBM). Given past explorations on
both persistent semantics for concurrent data structures (by Joseph Izraelevitz et al.) and object-based
transactional memories (by Maurice Herlihy et al. and Virendra Marathe et al.), I believe I can build a
software transactional system that supports composable and flexible atomicity and persistence, and has
better performance and scalability than existing options.

Overview

As traditional volatile RAM approaches the limit of its capacity growth, non-volatile byte-addressable mem-
ories (NVBM) are likely to be the future of main memory, with a tempting side-feature of persistency, which
suggests research into corresponding data structures and applications. In the last few years, semantics of
concurrent data structures in the context of persistency [1], together with concurrent data structures based
on such semantics, enabled applications to be developed with NVBMs, and software transactional systems
is one class of promising candidates.

Most such systems appeared take of software transactional memory (STM) for machines with either
transient memories ([2, 3, 4]) or persistent memories ([5, 6]), and tend to offer an API that allows users
to specify transactional code regions, loads and stores of which will take effect atomically at commit time.
Such an API inevitably requires the system to consult some globally-reachable metadata in order to resolve
conflicts and maintain consistency. However, such consultation may bring significant overhead, some of which
might not be necessary for consistency and/or correctness. Hence, we are planning to design a transactional
system with a more flexible multi-word compare-and-swap (MCAS) API and to equip it with necessary
memory flushes, fences and recovery procedure to make it applicable to a system with NVBM and transient
cache [1].

Summary of past work

My work so far has focused mainly on the implementation of concurrent data structures. In my first semester,
my research on potential bottlenecks of inter-thread/inter-process communication brought some fundamental
understandings of how factors like context switching, cache locality and TLB misses affect the performance
of concurrent programs. This work provided guidance for later research on concurrency. This is still an open
research topic for me.

During my second semester, I help implemented Polytree, a general framework for easily creating non-
blocking concurrent tree structures, which provides thread-safe lookups, atomic node updates, and atomic
sub-tree substitutions.

When implementing and comparing tree structures for Polytree, e.g, Bonsai Trees [7], we wished for a
memory management scheme that would be robust to thread stalling, easy to use, and fast. Inspired by
epoch-based memory reclamation algorithms [8, 9] and some state-of-art approaches like Hazard Eras [10],
we developed Interval-Based Memory Reclamation [11], which I had the pleasure of presenting at PPoPP’18.

Prior to our work, epoch-based memory management schemes were the fastest and most user-friendly
ones. To ensure correctness, an operation must protect (or reserve) all blocks that are (or will be) detached

1



after its start time (epoch) from being reclaimed, so that it can safely access every block that it can possibly
reach. Unfortunately, an unbounded number of blocks can be reserved by some stalled thread, since all
blocks detached after its start epoch will be reserved. Our work solved this problem by marking a finite
range of epochs “reserved” per thread; all objects whose life intervals intersect with any “reserved” ranges
will be protected from reclamation, so the total number of unreclaimable blocks is bounded.

Last spring, we attempted to build a persistent STM system based on Daĺı [12], a periodic persistent
hash map. In order to ensure the order of memory persistency operations (that flushes transient data from
cache to NVM), persistent data structures prior to Daĺı tend to issue expensive pfences after every such
operation. Daĺı, on the other hand, lowered the overhead by only issuing pfences every once in a while after
a whole cache flush. On newer Intel x86 machines, however, cache flushing operations such as clflush’es are
ordered with respect to each other and fence instructions, which undermined the need of pfences and thus
made this idea less favorable. We then decided to build a persistent software transactional system based on
current STM systems.

Ongoing works and future plans

I am implementing a non-blocking object-based persistent MCAS system. Preliminary results on a non-
persistent version show better throughput and similar scalability results compared to RSTM [4]. My next
step, apart from wrapping up the implementation and finishing a paper about it, is to develop a persistent
non-blocking memory allocator to make this system truly failure-atomic.

Pavlovic et al. [13] announced a word-based persistent multi-word CAS system with an API of similar
taste of our work. Our system will be different from theirs in two major ways: first, our system will be
object-based, since we believe that the semantics of MCAS fits better in object-oriented programming in the
sense that one might not want to focus on the size of objects when he/she is attempting to modify them
atomically; second, our system will be non-blocking, which not only prevents common problems in lock-based
systems like deadlocks and preempted threads stalling the whole system, but may also significantly simplify
the recovery procedure: in a lock-based system, the thread holding a lock when a crash happens is responsible
to bring the concrete memory state to a valid one that has a (well-defined) abstract state during recovery,
which can be difficult when other threads are still making progress; with non-blocking progress, the memory
will always have a valid concrete state, which makes the recovery trivial. Our current implementation is
generally inspired by DSTM [2], ASTM [3] and RSTM [4], which are non-blocking STM systems for transient
memory.

References

[1] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent memory
objects under a full-system-crash failure model. In Proceedings of the 30th International Conference on
Distributed Computing, DISC ’16, pages 313–327, Paris, France, September 2016.

[2] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software transactional
memory for dynamic-sized data structures. In Proceedings of the 2003 ACM Symposium on Principles
of Distributed Computing, PODC ’03, pages 92–101, Boston, MA, USA, July 2003.

[3] Virendra J. Marathe, William N. Scherer, and Michael L. Scott. Adaptive software transactional mem-
ory. In Proceedings of the 19th International Conference on Distributed Computing, DISC’05, pages
354–368, Cracow, Poland, September 2005.

[4] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat, William N.
Scherer III, and Michael L. Scott. Lowering the overhead of nonblocking software transactional mem-
ory. In First ACM SIGPLAN Workshop on Transactional Computing, TRANSACT ’06, Ottowa, ON,
Canada, June 2006.

[5] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight persistent memory. In
Proceedings of the 16th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 91–104, Newport Beach, California, USA, 2011.

2



[6] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making persistent objects fast and safe with next-generation, non-volatile
memories. In Proceedings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, pages 105–118, Newport Beach, California, USA,
2011.

[7] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. Scalable address spaces using RCU
balanced trees. In Proceedings of the 17th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVII, pages 199–210, London, England, UK,
March 2012.

[8] Keir Fraser. Practical lock-freedom. PhD thesis, Computer Laboratory, University of Cambridge, Febru-
ary 2004. No. UCAM-CL-TR-579.

[9] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan Walpole. Performance
of memory reclamation for lockless synchronization. Journal of Parallel and Distributed Computing,
67(12):1270–1285, December 2007.

[10] Pedro Ramalhete and Andreia Correia. Brief announcement: Hazard Eras—Non-blocking memory
reclamation. In Proceedings of the 29th ACM Symp. on Parallelism in Algorithms and Architectures,
SPAA ’17, pages 367–369, Washington, DC, USA, July 2017.

[11] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott. Interval-based
memory reclamation. In Proceedings of the 21th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’18, Vienna, Austria, February 2018.

[12] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R. Chakrabarti, and
Michael L. Scott. Daĺı : A periodically persistent hash map. In Proceedings of the 31st International
Conference on Distributed Computing, DISC ’17, Vienna, Austria, September 2017.

[13] Matej Pavlovic, Alex Kogan, Virendra J. Marathe, and Tim Harris. Brief announcement: Persistent
multi-word compare-and-swap. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC ’18, pages 37–39, Egham, United Kingdom, 2018. ACM.

3


