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Abstract

In this paper we present interval-based reclamation (IBR),
a new approach to safe reclamation of disconnected mem-
ory blocks in nonblocking concurrent data structures. Safe
reclamation is a difficult problem: a thread, before freeing a
block, must ensure that no other threads are accessing that
block; the required synchronization tends to be expensive.
In contrast with epoch-based reclamation, in which threads
reserve all blocks created after a certain time, or pointer-
based reclamation (e.g., hazard pointers), in which threads
reserve individual blocks, IBR allows a thread to reserve all
blocks known to have existed in a bounded interval of time.
By comparing a thread’s reserved interval with the lifetime
of a detached but not yet reclaimed block, the system can de-
termine if the block is safe to free. Like hazard pointers, IBR
avoids the possibility that a single stalled thread may reserve
an unbounded number of blocks; unlike hazard pointers,
it avoids a memory fence on most pointer-following oper-
ations. It also avoids the need to explicitly “unreserve” a
no-longer-needed pointer.

We describe three specific IBR schemes (one with several
variants) that trade off performance, applicability, and space
requirements. IBR requires no special hardware or OS sup-
port. In experiments with data structure microbenchmarks,
it also compares favorably (in both time and space) to other
state-of-the-art approaches, making it an attractive alterna-
tive for libraries of concurrent data structures.

CCS Concepts «Theory of computation — Shared mem-
ory algorithms; « Software and its engineering — Garbage
collection;

Keywords shared memory, garbage collection, parallel al-
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1 Introduction

Pointer-rich nonblocking concurrent data structures pose a
difficult safety challenge for memory managers. In a lock-
based structure, a block (node) that is detached from the
structure can generally be reclaimed (freed) safely and im-
mediately, because the locking discipline ensures that no
other thread is using it. In contrast, in a nonblocking struc-
ture, the detaching thread must generally wait until it knows
that no other thread retains a local pointer to the block be-
fore reclaiming it. Otherwise, the local pointer may become
a dangling reference, leading to incorrect behavior.

Some languages and systems address the problem by re-
lying on fully automatic garbage collection, typically based
on tracing. While this tends to eliminate large classes of
bugs, it also tends to result in both higher and more variable
time and space overheads, and precise collection requires a
type-safe language.

In this paper we focus on manual storage management as
found in languages like C and C++. Here the programmer
must explicitly retire no-longer-needed blocks. For nonblock-
ing algorithms, manual storage management introduces the
problem that retirement (and reclamation) of a block may
race with concurrent accesses to the block. Past researchers
have introduced a variety of mechanisms to resolve this race,
all of which can be seen, broadly, as allowing a thread to
reserve the set of blocks it is using, preventing concurrent
reclamation. A thread that detaches a block from the struc-
ture calls into the memory manager to retire the block, but
the memory manager refrains from actually reclaiming the
block until it is no longer reserved by any thread.

Epoch-based memory management [12, 15] is usually the
fastest manual approach, and is relatively easy to implement.
In this approach, a global epoch counter is incremented pe-
riodically. A thread performing an operation on the data
structure records the epoch in which it begins the operation
(typically in a global array), implicitly reserving all blocks
that were not retired before the start of that epoch. The prob-
lem with this approach is that if some thread stalls in the
middle of a data structure operation, all other threads may
be prevented from reclaiming any blocks. We use the term
robust [3, 8] to describe a memory management scheme that
does not suffer from this problem.

Fine-grained approaches to memory reclamation, such
as hazard pointers [17, 20], allow a thread to reserve only
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those blocks it is actually using, avoiding unbounded implicit
reservation. Such approaches are robust, but tend to have
high run-time overhead (in particular, they tend to incur
a write-read memory fence each time a pointer is derefer-
enced). Fine-grained approaches also generally require the
programmer to manage reservations explicitly, and in par-
ticular to call an “unreserve” routine each time a pointer
is no longer needed. (While reserving may sometimes be
hidden within the pointer-dereference operation [e.g., using
smart pointers], only the programmer knows when unre-
serving should occur.) Recent proposals [3, 25] have tried to
reduce the run-time overhead of fine-grained approaches,
but retain the need to manage reservations explicitly on a
block-by-block basis.

In this paper, we introduce interval based reclamation (IBR),
a new approach to memory management inspired by the
epoch-based reclamation of RCU [15, 19]. IBR has low run-
time overhead, small constant space per thread (regardless of
data structure size or operation complexity), and an API that
avoids the need for unreserve. IBR is robust and nonblocking,
and requires neither special hardware nor assistance from the
operating system. With minor modifications to data structure
methods (Sec. 4.3.1), IBR can also bound the memory that
may be reserved by a starving (but not stalled) thread.

2 Background

Interval-based reclamation schemes fall into a category of
memory managers that might be described as “lightweight”—
that is, they require only the standard support from the un-
derlying system (no kernel modifications or signal or page
fault handlers), impose minimal burden on the programmer,
and, in general, have no restrictions on the class of data
structures they can manage. In short, we are interested in
reclamation schemes that can be data structure specific and
need not be integrated into a wider garbage collection sys-
tem. Prior art that fits these requirements is described in
this section, together with the programming model these
systems (and ours) expect; Section 6 takes a closer look at
more specialized or heavyweight systems.

2.1 Programming Model and Definitions

In this paper, we focus on languages (e.g. C/C++) in which the
programmer allocates and reclaims memory explicitly. To be
correct, a program must ensure that no memory block is ever
accessed after it is reclaimed, and no block is reclaimed more
than once. The challenge for nonblocking data structures is
then to determine when no other thread is still accessing a
block that has been detached from the data structure. This
determination is the purview of the reclamation system,
which provides programmers with a retire operation and
takes responsibility for detached blocks, reclaiming them
only once outstanding thread-local references are known to
have disappeared.
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As is conventional, we assume a programming model in
which a block has the following life course. It begins by be-
ing allocated. After the allocating thread has initialized the
block, the block is published to the shared space (using a CAS
or write) so that other threads can find it. Once the block
has served its use, it is detached from all other blocks using
another CAS or write; no thread that has not yet derefer-
enced the block can subsequently access it (but some threads
may still hold a reference from the time during which it was
shared). The block, being detached, can then be retired and
handed over to the reclamation system. The reclamation
system monitors potential outstanding references to the re-
tired block and, once all such references are lost, the block
is automatically reclaimed. Blocks that have been retired but
not yet reclaimed are stored in a thread-local or shared re-
tired list. Correct applications will retire any given block no
more than once, and only after the block has been detached.
Following standard convention, we assume that no thread
holds a reference to a block across data structure operations.

In general, threads reserve references to blocks that they
might dereference by updating some sort of metadata acces-
sible to the reclamation system; blocks that are reserved can-
not, in general, be reclaimed. Memory management schemes
differ widely in the form that these reservations take. As men-
tioned in the introduction, it is desirable for a reclamation
scheme to be robust! to stalled (e.g., preempted) threads; that
is, the reservation of a stalled thread should prevent only a
bounded number of blocks from being reclaimed.

Our interval-based schemes (and most of the comparison
schemes) share an API, the methods of which are shown
in Figure 1 along with their default implementations for
schemes that do not overload the method.

2.2 Epoch-Based Reclamation

Epoch-based reclamation (EBR) uses global epochs as thread
reservations. When a thread begins a data structure oper-
ation, it reads the global epoch and posts the value as its
reservation. When a thread wishes to reclaim a retired block,
it verifies that the block was retired (and therefore detached)
before the earliest epoch reserved by any active thread. If this
condition is satisfied, the block cannot be referenced by any
active thread, since all such threads started their operations
after the block was disconnected; the block can therefore be
reclaimed safely. Notably, epoch-based reclamation schemes
are not robust: a stalled thread can prevent all future blocks
(even those not yet allocated) from being reclaimed.
Epoch-based reclamation schemes differ in the way that
they increment the global counter. In Fraser’s original pro-
posal [12], a thread will increment the counter once all
threads have made a reservation in the current epoch. In

10ur use of the term “robust” is consistent with that of Dice et al. and
Balmau et al. [3, 8]. Other authors (e.g., Hart et al. [15]) have called this
property “nonblocking,” a term we avoid due to overloaded meaning.
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// Allocate memory for a block on demand:
Function alloc(int size) : block™

// Indicate that a block is detached and will not be
used by any future application operation:
Function retire(block™ ptr) : void

// Indicate start of an application operation:
Function start_op() : void

// Indicate end of an application operation:
Function end_op() : void

// Read a block pointer from shared memory:
Function read(block™™ ptraddr) : block*
| return *ptraddr
// Update a shared pointer:
Function write(block™ ptraddr, block™ ptr) : void
| *ptraddr = ptr
// Conditionally update a shared pointer:
Function CAS(block™* ptraddr, block* old, block* new)
: bool
| return ptraddr — compare_and_swap(old, new)
// Optional, not needed for IBR:
Function unreserve(block™ ptr) : void

Figure 1. Memory Management APL

quiescent-state-based reclamation (QSBR) [15], a thread will
increment the epoch once it has verified that all threads have
moved through a quiescent state, in which they hold no point-
ers (e.g., they have exited a data structure operation). As the
epoch updates only periodically, we can generally assume
that a 64-bit integer will never overflow in practice.

Code for a simple epoch-based scheme appears in Figure 2.
A thread increments the epoch counter after every x retire-
ments (in the experiments of Section 5, we used a value that
leads to roughly one update every 100us). A thread posts its
reservation (a copy of the global epoch) upon entering a data
structure operation, and sets the reservation to a maximum
value upon leaving. Retired blocks are stored in a thread-
local list. Periodically, each thread scans all reservations of
threads currently active in the data structure, taking note
of the minimum. It then traverses its retire list and reclaims
any block retired before the earliest reserved epoch.

Figure 3 shows a simple example of the APIs in Figure 2
in a non-blocking concurrent linked list. Please note that the
set-ups happen before any thread is invoked, and functions
of threads A and B can be invoked concurrently.

2.3 Pointer-Based Reclamation

In contrast to EBR, which reserves whole sets of blocks asso-
ciated with a global epoch number, pointer-based approaches
to reclamation reserve individual blocks. The canonical exam-
ple is Michael’s hazard pointer (HP) scheme [20], developed
concurrently with the similar pass-the-buck [17] scheme.
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// globals
1 int epoch
int reservations[thread_cnt]
thread_local int counter
thread local list retired
epoch;fieq_// freq. of increasing epoch

A G e W N

enlpty_ffeq // freq. of reclaiming retired

// private function
7 Function empty() : void
8 max_safe_epoch = reservations.min()

9 for block € retired do
/* all blocks retired IN or AFTER

max_save_epoch will be protected */
10 if block.retire_epoch < max_safe_epoch then
11 L free(block)

// public interface
12 Function retire(block™ ptr) : void
13 retired.append(ptr)

14 ptr—retire_epoch = epoch

15 counter++

16 if counter % epoch_freq == 0 then
17 L fetch_and_increment(epoch)

18 if retired.cnt % empty_freq == 0 then
19 L empty()

20 Function start_op() : void
21 L reservations[tid] = epoch

22 Function end_op() : void
23 L reservations[tid] = MAX

Figure 2. EBR memory management.

With hazard pointers, a thread posts a pointer to a shared
block immediately before accessing that block. For nontrivial
structures, a thread may need to reserve multiple blocks con-
currently, for which it needs multiple hazard pointers. The
details are somewhat subtle: a thread must read the pointer,
write it to a hazard pointer, issue a write-read memory fence,
and re-read the pointer to make sure it hasn’t changed; only
then can it safely dereference it. Periodically, each thread
scans all hazard pointers of all threads. It can then safely re-
claim all blocks that were on the retired list at the beginning
of the scan, and for which no hazard pointer was found.

Unfortunately, where EBR requires the programmer to call
only start_op, retire, and end_op, pointer-based reclamation
schemes require the programmer to indicate every point in
the code at which a pointer is read for the first time and every
point at which it is used for the last time. Initial use annota-
tions can, with some overhead, be rolled into the pointer read
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// set-ups
1 memory_manager<node> mm; // 3 nodes with
values @, 2 and 4
node n0(0), n1(2), n2(4)
n0.next = &nl
nl.next = &n2
n2.next = NULL
node* head = &n

S R

// 2 worker threads

7 Function tA() : int
// Thread A tries to read nil

8 mm.start_op()

9 node” target = &nl

10 node”* p1 = mm.read(&target)

11 if p1# NULL // n1 still exists

12 then

13 int ret = p1->val; mm.end_op()
14 L return ret;

15 else

16 mm.end_op()

17 L return NULL;

18 Function tB() : void
// Thread B tries to update n1l

19 while true do

20 mm.start_op()

21 node® new_n1 = mm.alloc(sizeof(node))
22 new_nl->val =3

23 new_nl->next = &n2

24 node” target = &n0

25 node”* p0 = mm.read(&target)

26 if p0 # NULL then

27 if mm.CAS(&p0->next, &n1, new_nl) then
28 mm.retire(&n1)

29 mm.end_op()

30 return

Figure 3. EBR usage example.

operator (e.g., using the smart pointer idiom in C++), but
final use annotations must generally be explicit—hence the
unreserve method in Figure 1. To minimize instrumentation
overhead, straightforward implementations of pointer-based
schemes also tend to provide a fixed number of hazard point-
ers for each thread; this limitation can be problematic for
data structures like balanced search trees, in which a poten-
tially rotation-inducing update may want to reserve every
node on a path of arbitrary length.

A new Hazard Era (HE) scheme, developed by Ramalhete
and Correia [25], merges hazard pointers and epochs in a
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way that defies easy categorization. As in EBR, threads peri-
odically increment a global epoch number. As in HP, each
thread makes a reservation before accessing a block, and
clears the reservation when the block leaves its working set.
Instead of the address of the block, however, the reserva-
tion indicates the epoch in which the block was accessed.
Moreover, each block is tagged at allocation time with the
epoch in which it was created. By looking at the set of all
thread reservations, a reclaimer can determine the set of
“active epochs”— the epochs in which a pointer to a block
may have been read. Any block that was retired before any
active epoch or that was created after any active epoch (and
subsequently retired) can safely be reclaimed. Ramalhete and
Correia make a key observation in this work: block lifetimes
can be used to determine reachability for reclamation. We
leverage this idea further in our work.

3 Interval-Based Reclamation

Like EBR, interval-based reclamation (IBR) maintains a global
epoch counter. Like HE, it also tracks the birth epoch and re-
tire epoch (if any) of each block. By identifying a finite range
of epochs, a thread can reserve all blocks with intersecting
birth-retire lifetimes. Since threads reserve only a finite num-
ber of epochs, IBR is robust. At the same time, the fact that a
reserved epoch can “cover” many blocks eliminates the need
for unreserve, making IBR as easy to use as EBR.

Interval-based reclamation is in general agnostic with re-
gard to the technique used to increment the global epoch
counter. In our prototype implementations, threads incre-
ment the counter periodically as they allocate blocks, much
as in Figure 2. This convention bounds the number of blocks
allocated in any given epoch, making it particularly easy to
demonstrate robustness. Blocks in IBR are tagged with a birth
epoch upon allocation; this 64 bit field is generally stored
in the block header managed by the allocator (and hidden
from the application). Retire epochs are added upon retire-
ment. Like all other presented schemes, our IBR schemes use
thread-local retire lists to store blocks that have been retired;
each thread periodically traverses its list to find blocks that
are safe to reclaim.

3.1 Persistent Object IBR

Our simplest scheme is primarily applicable to data struc-
tures that are persistent, in the sense that they preserve their
own history [10]. Persistent data structures follow one criti-
cal rule: all pointers other than the root are immutable; mod-
ifications always entail linking new node(s) to unchanged
parts of the existing structure. Simple examples of persis-
tent concurrent data structures are the Treiber lock-free
stack [26] and anything built using Herlihy’s lock-free uni-
versal construction [16]. Data structures of this sort are
widely used in functional programming languages, where
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the ability to share space among multiple versions provides
an efficient alternative to mutating a single version [24].

Pseudocode for persistent-object IBR (POIBR) appears in
Figure 4. Its operation resembles that of EBR, except that
instead of reserving all blocks not retired before a given
epoch, a reservation reserves only blocks whose lifetimes
intersect the reserved epoch. A thread executing an applica-
tion method reserves the epoch in which it first reads the
root of the data structure. In a manner similar to the setting
of a hazard pointer, the thread reads the global epoch and
the root pointer, posts the epoch to a globally visible location
to reserve it, executes a write-read fence, and then double-
checks the global epoch to make sure it hasn’t changed. This
“snapshot” technique ensures that the root’s contents were in-
deed active during the reserved epoch (see the read method,
line 25 in Figure 4). Due to the “immutable pointers” rule of
persistent data structures, every block reachable from this
root is also known to have been active during the reserved
epoch, so the thread’s reservation intersects the lifetimes of
all blocks it could possibly read during the remainder of its
application operation.

3.2 Tagged Pointer IBR

Many data structures, of course, are not persistent. Our sec-
ond IBR scheme, tagged pointer IBR (TagIBR) is applicable to
arbitrary nonblocking concurrent structures. It allows each
thread to reserve a finite range of epochs. It also maintains, as
an extra field in each pointer, an epoch number guaranteed
to be greater than or equal to the birth epoch of the block to
which the pointer refers. Pseudocode for a portable variant
of TagIBR is shown in Figure 5.

When starting an application operation, a thread sets both
the upper and lower endpoints of its reservation to match
the current epoch. Each time it reads a pointer (but before
dereferencing that pointer), it checks whether the epoch in
the pointer is less than or equal to the upper endpoint of the
reservation range; if not, it updates the endpoint to cover
it (see the read method at line 46 of Fig. 5). Since we know
that each encountered block was reachable after the lower
endpoint of the thread’s epoch range, and since the upper
endpoint is kept greater than or equal to the epoch in which
the block we are starting to read was created, the thread’s
reserved interval is guaranteed to intersect with the lifetime
of the block.

Whenever we perform a write or CAS of a shared pointer,
both the born_before and address (p) fields of the pointer may
need to be updated. In the absence of hardware support for
multi-word atomic update (more on this below), we will need
to modify the two fields separately. To maintain correctness,
we adopt the convention of never reducing the value in the
born_before field. During a write or CAS operation, we first
update the born_before field if it currently seems to be too
small, using compare_and_swap to make sure it increases
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// global structures same as in EBR

// private function
1 Function empty() : void

2 for block € retired do

3 bool conflict = false; /* block is protected if
some reserved epoch is in its interval */

4 for res € reservations do

5 if block.birth_epoch < res <

block.retire_epoch then

6 L conflict = true

7 if Iconflict then

8 L free(block)

// public interface

o

Function alloc(int size) : block*

10 counter++
11 if counter % epoch_freq == 0 then
12 L fetch_and_increment(epoch)

13 block b = new block(size)
14 b—birth_epoch = epoch
15 return b

16 Function retire(block™ ptr) : void

17 retired.append(ptr)

18 ptr—retire_epoch = epoch

19 if retired.cnt % empty_freq == 0 then
20 L empty()

21 Function start_op() : void
22 L reservations[tid] = epoch

23 Function end_op() : void
24 L reservations[tid] = MAX

// used only when reading data structure root
25 Function read(block™* rootaddr) : block*

26 while true do

27 reservations[tid] = epoch

28 ret = *rootaddr

29 if reservations[tid] == epoch then
30 L return ret

Figure 4. Persistent Object IBR.

monotonically. We then update the address field, with a store
or compare_and_swap, as appropriate.

When updating a pointer to refer to an older block, or
when racing with another thread, this two-step technique
may lead to arbitrary amounts of “slack” in the born_before
field. Fortunately, this slack is very close to harmless in prac-
tice. Since a thread sets the lower endpoint of its epoch to
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1 Class Reservation
2 L int lower, upper

Class TPointer
int born_before // monotonically increasing
block* p
Function protected_CAS(block™ ori, block™ new) : bool
repeat
‘ ori_bb = born_before
until new— birth_epoch < ori_bb or
compare_and_swap(&born_before, ori_bb,
new—s birth_epoch)
10 return compare_and_swap(&p, ori, new)

P

e e NS WG

"y

11 unction protected_write(block™ ptr) : void

12 repeat

13 ‘ ori_bb = born_before

14 until ptr— birth_epoch < ori_bb or
compare_and_swap(&born_before, ori_bb,

ptr—birth_epoch)
15 | p=ptr

16 int epoch

17 Reservation reservations[thread_cnt]

18 thread_local int counter

19 thread_local list retired

20 int epoch_freq // freq. of increasing epoch
21 int empty_freq // freq. of reclaiming retired

22 Function empty() : void

23 for block € retired do
24 bool conflict = false
25 for res € reservations do
/* block protected if some epoch reserved by some
thread is in its interval */
26 if block.birth_epoch < res.upper and
block.retire_epoch > res.lower then
27 L conflict = true
28 if lconflict then
29 L free(block)
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// public interface
30 Function alloc(int size) : block™

31 counter++
32 if counter % epoch_freq == 0 then
33 L fetch_and_increment(epoch)

34 block b = new block(size)
35 b—birth_epoch = epoch
36 return b

37 Function retire(block™ ptr) : void

38 retired.append(ptr)

39 ptr—retire_epoch = epoch

40 if counter % empty_freq == 0 then
41 L empty()

42 Function start_op() : void
43 reservations[tid].lower = reservations[tid].upper =

epoch

44 Function end_op() : void
45 L reservations(tid].lower = reservations[tid].upper = MAX

46 Function read(TPointer” ptraddr) : block™

47 while true do
48 ret = ptraddr—p
49 reservations[tid].upper =

max(reservations[tid].upper,
ptraddr—born_before)

50 if reservations[tid].upper > ptraddr— born_before
then
51 L return ret

s2 Function write(TPointer™ target_ptraddr, block™ ptr) : void
53 L return target_ptraddr—protected_write(ptr)

54 Function CAS(TPointer™ target_ptraddr, block™ ori, block™
new) : bool
55 L return target_ptraddr—protected_CAS(ori, new)

Figure 5. Tagged pointer interval-based memory management.

the (monotonically increasing) global epoch whenever it
starts an application operation, and only updates its upper
endpoint, a “too large” born_before field has an impact only
when an application operation that began execution long ago
actively reads a new pointer. If we assume that application
operations are all of modest length, this scenario is likely to
arise only between the resumption of a previously preempted
thread and the end of its current application operation.

3.2.1 TagIBR Variants

Our default TagIBR scheme requires no special hardware
support beyond compare_and_swap, but it doubles the num-
ber of such instructions in each application operation. We
can reduce this overhead on machines with appropriate in-
structions.

Using Fetch_and_add Like compare_and_swap (CAS), the
atomic fetch_and_add (FAA) operation is widely available.
Unlike CAS, however, FAA never fails. If n threads attempt a
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CAS simultaneously, only one will succeed; if the remaining
always retry, O(n?) time will be required for all to complete.
By contrast, n FAA operations will complete in O(n) time.

When updating the born_before field in a pointer, we can
reduce overhead under contention by using FAA to add the
difference between the current value and the desired value,
instead of CAS-ing the new value in. This technique has the
added advantage of making write and CAS operations wait
free instead of merely lock free (read remains lock free). The
downside is the potential for extra “slack” in a born_before
field when competing threads update it concurrently.

Using Wide or Double CAS On a machine that can update
two adjacent (wide CAS) or arbitrary (double CAS) memory
words atomically, we can obviously dispense with the mono-
tonically increasing convention for born_before fields in
pointers, allowing us both to minimize the number of expen-
sive instructions and to maintain the precise birth epoch of
blocks. Like the FAA variant above, WCAS- or DCAS-based
TagIBR makes write and CAS operations wait free.

Using a Type Preserving Allocator Type-preserving allo-
cators provide the guarantee that a chunk of memory, once
used for some type of data, will continue to be used for the
same type. If we use a type-preserving allocator, we can re-
move the born_before field in the pointer and store this field
in the block itself. If thread ¢ reads a pointer from shared
memory, and the block to which the pointer refers is retired
and reclaimed before t has a chance to reserve it, the pointer
may be dangling by the time t reads the born_before field.
With type-preserving allocation, however, this read is still
certain to return a valid epoch number, which does no harm
if reserved by t. (Of course, if the block is reused, the fact
that it was reclaimed implies that the global epoch counter
will have changed, and t’s double-check of the birth_epoch
field in the block will fail, forcing a retry of the loop in read.)
By leveraging type preservation, we eliminate both the
space overhead of born_before fields in pointers and the
time overhead of a extra CAS instruction on every write or
CAS operation. Finally, like both of our previous variants,
this technique makes write and CAS operations wait free.

3.3 Two Global Epochs IBR

We can obtain all the advantages of the final TagIBR vari-
ant above—normal-sized pointers and no extra CASes—in a
portable fashion if we are willing to tolerate somewhat less
precise reservations. As in TagIBR, threads in two-global-
epochs IBR (2GEIBR) reserve a range of epochs, and set the
lower endpoint at the beginning of each application oper-
ation. When reading a pointer, however, a 2GEIBR thread
updates its endpoint to the value of the global epoch counter,
rather than the born_before field in the pointer. As in our
previous schemes, it employs a “snapshot” idiom: first the
pointer and global epoch are read, then the epoch is reserved
if it is larger than the current upper epoch, and finally the
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/* global structures, alloc, retire, empty, start_op,
and end_op same as in TagIBR; write and CAS same as
in default (no instrumentation) */

Function read(block™™ ptraddr) : block™

while true do

ret = *ptraddr

reservations[tid].upper =
max(reservations[tid].upper, epoch)

5 if reservations[tid].upper == global_epoch

then

6 L return ret

W N =

Figure 6. 2GE Interval-based memory management.

global epoch is verified to be unchanged. Since the target
of the pointer is active during the current global epoch, it
was necessarily “born before” it. Thus, 2GEIBR inherits its
correctness from TagIBR. Figure 6 shows the parts of 2GEIBR
that differ from TagIBR.

Key properties of existing and IBR reclamation techniques
are summarized in Figure 7.

4 Correctness

This section provides arguments for the correctness of our
IBR algorithms. Our arguments reason over abstract histories,
composed of calls to and returns from the memory manage-
ment API routines, and concrete histories, which include the
instructions comprising the implementations of those rou-
tines. Note that start_op, alloc, read, write, CAS, retire, and
end_op operations appear in both abstract and concrete his-
tories; reclaim operations appear only in concrete histories.

In Section 4.2, we demonstrate the key safety property: no
block is ever accessed after it is reclaimed. In Section 4.3, we
show that our IBR schemes are both robust—a stalled thread
can prevent the reclamation of only a bounded number of
retired blocks—and nonblocking—in a bounded number of
steps, some thread always makes progress.

4.1 Assumptions

We assume that any application using the memory manage-
ment system is well-behaved. That is, it meets the follow-
ing assumptions. First, the memory management operations
performed by any one thread (the abstract thread subhis-
tory) have the form (start_op (alloc, read, write, CAS, retire)*
end_op)*, where each start_op...end_op sequence comprises
an application operation—the execution of some method of
the data structure. Second, the memory management op-
erations performed on any one block (the abstract block
subhistory) have the form alloc (read, write, CAS)* retire
(read, write, CAS)*, with the added proviso that any access
to the block that occurs after the retire must be within an
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Pros and cons

EBR Start epoch; covers everything not retired before then. Unbounded reservation for stalled thread.

HP Copy of every active pointer; covers precisely those Non-constant reservation size; needs explicit unreserve.
blocks.

HE Epoch number for every active pointer; covers all blocks ~ Less precise than HP, but fewer memory fences.

accessed in specified epochs.

POIBR  Start epoch; covers everything reachable from root at ~ All pointers but the root must be immutable.

start time.

TagIBR  Start epoch + latest born-before value seen so far; covers  Default implementation doubles size of pointers; imprecision due to slack from
all blocks whose [birth, retirement] intersects thread’s ~ 2-step update. TagIBR-FAA has less contention, but more slack. TagIBR-WCAS

epoch range.

has no slack, but requires WCAS/DCAS. TagIBR-TPA has no contention and no

extra space per pointer, but requires type-preserving allocator.

2GEIBR  Start epoch + latest epoch in which a pointer was read;
same coverage as TagIBR.

Less precision than TagIBR.

Figure 7. Summary of tradeoffs among memory reclamation techniques.

application operation in which a read of a pointer to the
block occurred before the retire (i.e. only threads with a local
reference to a block can access it after it is retired).

This final proviso is more subtle than it might at first
appear. It outlaws code in which, for example, thread ¢; reads
a pointer to block 8B, thread t, retires block C, and then
thread t; finds and uses a pointer to C within block 8. A
sufficient (though not necessary) means of avoiding this
scenario is to overwrite all shared pointers to a block before
retiring it. This proviso is shared with both hazard pointers
and hazard eras.

4.2 Safety

We argue that our IBR schemes display what we call reclama-
tion safety: they guarantee that no block access can happen
after the block has been reclaimed (or, equivalently, they
delay reclamation until after the final access to the block).

Theorem 1 (Reclamation Safety). All presented IBR algo-
rithms (POIBR, TagIBR, and 2GEIBR) are reclamation safe.

Proof. For any given block 8 in concrete history H, consider
the point in H at which the memory manager invokes free
on B. We wish to argue that after this point, no application
operation will access B again. By well-behavedness, we can
disregard all but active application operations that have al-
ready read a pointer to 8. We now consider these active
application operations with a reference to block 8 for each
IBR scheme.

POIBR: Since the root is the newest block in the data
structure, and since all other pointers are immutable, the
epoch in which the root was dereferenced by an active ap-
plication operation will intersect the lifetimes of all blocks
reachable from the root. Thus, any application operation that
can read block B must have reserved an epoch that intersects
with B’s lifetime, and, consequently, the retire method will
delay reclamation of $ until all such application operations
have completed.

TagIBR: Any application operation that has obtained a
reference to block 8 will have reserved, through the read
method, an interval that includes the lifetime of 8B: the block
was alive after the application operation began and the ap-
plication operation’s reserved range extends at least until
the read of a pointer to the block. The retire method will
therefore delay reclamation of 8 until all such application
operations have completed.

2GEIBR: Any application operation that has obtained a
reference to B will have reserved, through the read method,
an interval that includes the lifetime of B, since the block
was still attached during the epoch of the dereference. The
retire method will therefore delay reclamation of 8 until all
such application operations have completed. O

4.3 Liveness

We now investigate two aspects of liveness for memory man-
agement schemes: robustness, which bounds the number
of blocks that a stalled thread can reserve, and progress,
which ensures that some thread always completes a memory
management operation in a bounded number of steps.

4.3.1 Robustness

Given a history H, a set of “stalled” threads T, a history H’
extending H without steps by threads in T, and a block 8
retired in H', we say B is unreclaimable with respect to H
and T (B € unrec(H,T)) if VH" extending H’ without steps
by threads in T, B is unreclaimed. Additionally, we say a
memory management algorithm is robust if VH, T Ik s.t.
|lunrec(H,T)| < k.

We prove robustness by showing that, at any time, there
is a bound on the number of unreclaimable blocks.

Theorem 2 (Robustness). All presented IBR algorithms —
POIBR, TagIBR, and 2GEIBR—are robust.

Proof. The same proof works for all IBR methods. Accord-
ing to the alloc method, there can be at most epoch_freq
x num_threads blocks born in any given epoch e. Suppose
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we are given a finite concrete history H and a finite set
of threads T that are currently stalled. Clearly the stalled
threads are collectively reserving a finite set of epochs &.
If the maximum epoch in & is E 4y, then all blocks 8 that
can possibly be made unreclaimable by reserving & have
B.birth_epoch < E,,x. This implies that the number of
unreclaimable blocks is bounded by E,,, X epoch_freq X
num_threads. O

Note that if some thread is “starved” rather than “stalled”—
that is, it executes an application operation that takes an
unbounded number of steps without completing—then the
thread may still reserve an unbounded number of blocks.
The solution to this problem—adopted in our code—is to
modify each application operation so that it restarts from
the beginning (with a new start epoch) after some fixed
number of failed CAS operations.

4.3.2 Progress

We argue that our techniques are nonblocking; specifically:

Theorem 3 (Progress). All presented IBR algorithms (POIBR,
TagIBR, and 2GEIBR) are lock free.

Proof. POIBR and 2GEIBR: There is one unbounded loop
in these algorithms, in read. If this loop retries, then either the
global epoch counter has changed (due to a thread making
progress on allocation), or the pointer value has changed
due to a thread making progress in the application. Either
way, some thread has made progress, so these algorithms
are lock free.

TagIBR: There are two unbounded loops in the algo-
rithm: one in protected_CAS and the other in read. For
protected_CAS, the only reason to repeat the loop is that
another thread swapped in a new value of born_before; a
failed compare_and_swap is always caused by a successful
one. For read, if the loop continues then the dereferenced
pointer was modified—a write operation in another thread
succeeded. Either way, a continuation in those loops means
other threads are making progress, and, consequently, the
algorithm is lock free. O

5 Performance Results

Our experimental evaluation was performed on an Intel ma-
chine with two Xeon E5-2699 v3 processors, each with 18
cores and 2 hyperthreads per core (72 hardware threads to-
tal). Each core has private L1 and L2 caches and an L3 cache
shared across the processor. For all experiments, the first 18
threads are pinned to the 18 cores of one processor; the next
18 threads are pinned to the same cores’ hyperthreads. We
fill then fill the second processor in the same manner. Our
code is written in C++ and compiled with g++ 6.3.1 and —03
optimization. To eliminate contention on the global malloc,
we used the jemalloc library [11].
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Each test is a fixed-time microbenchmark in which threads
randomly call operations on a shared key-value data struc-
ture using a random key, chosen from the range (0, 65536).
Our tests are write-dominated. We first fill the key-value
store with three quarters of the keys, then each thread ran-
domly inserts or removes a random key. As representative
data structures we picked the ordered list of Harris [14] and
Michael [20], Michael’s lock-free hash map [20], the binary
tree of Natarajan and Mittal [23], and a lock-free variant of
the Bonsai Tree [6], a persistent and balanced binary tree.

For memory managers that use global epoch counters,
each thread increments the counter once every n X k allo-
cations, where n is the number of active threads and k is
tuned for high average performance across benchmarks and
reclamation schemes (150 in our experiments). The depen-
dence on n ensures that the rate of epoch number increase
is roughly the same in all experiments, regardless of thread
count.

We measured both throughput and space overhead (aver-
age number of retired but unreclaimed blocks) of:

No MM, a baseline that never reclaims memory.

Epoch, the EBR scheme of Section 2.2.

HP, the traditional hazard pointer scheme of Michael, intro-
duced in Section 2.3 [20].

HE, the hazard era scheme of Ramalhete and Correia, intro-
duced in Section 2.3 [25].

POIBR, our persistent object IBR scheme of Section 3.1.

TagIBR, our default tagged pointer IBR scheme (Fig. 5).

TagIBR-FAA, our tagged pointer scheme using FAA.

TagIBR-WCAS, our tagged pointer scheme using WCAS.

2GEIBR, our two-global-epochs IBR scheme of Section 3.3.

The tuning of memory managers is a trade-off between
throughput and space utilization: trying to empty retire lists
more frequently will minimize wasted space, but may waste
time scanning reservations. For our microbenchmarks, if
we scan on every kth retirement, space use climbs roughly
linearly with k, while throughput remains essentially con-
stant for 1 < k < 50, suggesting that reclamation (which
occurs largely in parallel, and off the critical path) is not
the bottleneck. In a full application, however, overly aggres-
sive reclamation might reduce the amount of time available
for other useful work. For our experiments, we set k = 30
somewhat arbitrarily.

Figure 8 shows throughput results on our four data struc-
tures. In general, interval based reclamation schemes out-
perform hazard pointers (HP) by a large margin, and have
similar performance to (fast but non-robust) epoch-based
reclamation. For the linked list, in which each operation
traverses a large number of shared pointers, TagIBR and
its variants do particularly well. We didn’t include precise
approaches (HP and HE) for the Bonsai Tree because tree
rotations require a statically unknown number of reserva-
tions. These can be accommodated, but only at the cost of
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more expensive instrumentation and scans, which we opted
not to impose on other data structures.

In contrast to the other three data structures, performance
for the Bonsai Tree (Fig. 8d) peaks at just two threads, pre-
sumably due to the root-pointer bottleneck. There is also
a dramatic drop in performance at around 35 threads. We
believe this to be due to L1/L2 cache contention. Our thread
pinning strategy, as described earlier, puts one thread on each
core of the first socket, then populates the hyperthreads of
that socket, before doing the same for the second socket. At
35 or 36 threads, only zero or one has a core to itself, and we
lack the two fast threads required to saturate the bottleneck
at the root. At 38 threads we again have two (on the second
socket) that are able to run at full speed, and throughput
recovers to almost what it was at 34 threads.

Figure 9 shows the average number of locally-retired but
not yet reclaimed blocks at the start of each data structure
operation. This metric gives a good estimate for how much
space overhead the particular reclamation scheme incurs.
The portion of each curve beyond a thread count of 72 cap-
tures the case in which threads are certain to be stalled. On
the Bonsai Tree, Michael’s hash map, and the Natarajan-
Mittal tree, the IBR mechanisms consume up to 35% more
memory than Hazard Eras and 10% to 40% less than Epoch-
based reclamation; this fits our expectations well. On the
linked list, which has relatively little memory churn relative
to the size of operations, IBR doesn’t deviate much from EBR,
in either time or space.

As a final experiment, we repeated all the tests on a read-
dominated workload (90% reads and 10% inserts and re-
moves). Results were very similar to the write-dominated
case. The one exception, shown in Figure 10, is the retired
but not reclaimed block count on the Natarajan-Mittal tree,
where 2GEIBR was the only IBR that outperformed EBR.
Here again the explanation appears to be the more frequent
scanning performed by performance-tuned EBR.

6 Related Work

Memory management for nonblocking data structures has
been a research topic for over twenty years. However, the
research community has yet to settle on any single scheme,
since every presented alternative embodies major trade-offs.

As mentioned in Section 2, IBR is most closely compa-
rable to epoch-based reclamation [12, 19], quiescent-state—
based reclamation [15], hazard pointers [17, 20], and hazard
eras [25]. Other, less self-contained approaches leverage OS
support or specific hardware implementations. Several au-
thors have used signals, issued by a reclaiming thread, to in-
terrupt the execution of otherwise “invisible” reader threads.
In DEBRA+ [5], the signal forces readers to abandon their
current application operation and restart, thereby eliminat-
ing any stale pointers. Similarly, Threadscan [2] uses signals
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on reclamation to query active threads, who then respond
to the reclaimer with a summary of their active state.

Other authors have leveraged hardware transactional mem-
ory to simplify and accelerate memory reclamation. Drago-
jevi¢ et al. [9] propose two schemes, one, using HTM to
maintain reference counts, the other using HTM to protect a
detaching CAS and the companion call to free. Stacktrack [1]
improves on this scheme by using HTM to protect a reader’s
entire application operation, so that reclamation of a still-in-
use block will trigger a transactional abort.

Dice et al. propose using page permissions to force page
faults when a reclaimer wishes to reclaim blocks. These page
faults ensure the global visibility of otherwise thread-local
hazard pointer updates, while allowing the usual write-read
fence to be elided on the default read path [8]. In a similar
vein, Morrison et al. propose a memory consistency model
called temporally bounded total store ordering (TBTSO),
which guarantees that unsynchronized writes will eventu-
ally be propagated, again eliding fences on the default read
path[22]. This scheme can be emulated on current OSs, but
requires hardware modifications to be fully safe. Finally, in
QSense [3] QSBR is used optimistically with hazard pointers
as a back-up. To maintain robustness, threads are periodi-
cally swapped out by timed context switches, forcing hazard
pointer modifications to become globally visible.

Other schemes for memory reclamation require less sys-
tem overhead and are more portable, but are incomparable
to IBR for other reasons. “Drop-the-anchor” [4] is a scheme
inspired by hazard pointers for linked lists, where thread
reservations cover a section of a list instead of a single block.
Unfortunately, the scheme does not seem to generalize to
other data structures. The more recent optimistic access strat-
egy of Cohen and Petrank [7] is more general, but requires
that data structures be written in a “normalized form” and
that reads of reclaimed memory never trigger an exception—
a difficult property to ensure. Finally, several nonblocking ref-
erence counting systems have been published [13, 18, 21, 27].
These systems associate a reference count with every block,
update it on every pointer access, and reclaim blocks when
counts reach zero. As noted by Hart et al. [15], such systems
tend to be quite slow: each access requires a write-read fence.

7 Conclusion

In this paper, we have introduced an interval-based approach
to memory reclamation for nonblocking concurrent data
structures. IBR is fast, nonblocking, and robust: like hazard
pointers, but unlike EBR, it bounds the space that may be
tied up by a stalled (preempted) thread; like EBR, but un-
like hazard pointers, it does so without substantial run-time
overhead, without the awkwardness of manual reservation
management, and without the need for any a priori limit
on the number of reservations in a given application oper-
ation. Given these properties, we recommend IBR for any
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nonblocking concurrent data structure that needs to reclaim
memory, particularly in the presence of multiprogramming
or large numbers of application threads, when there is a
significant chance that threads will be preempted.
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A Artifact appendix
A.1 Abstract

This artifact contains the program we used for all experiments in
the paper, including implementations of our 5 tested memory man-
agers (POIBR, TagIBR, TagIBR-FAA, TagIBR-WCAS and 2GEIBR)
and 3 existing algorithms (Hazard Pointers, Hazard Eras and EBR).
The program requires a POSIX compliant operating system (like
LINUX) on a multi-core x86-64 machine, with libjemalloc, libhwloc,
and gcc supporting C++11.

A.2 Artifact check-list (meta-information)

Algorithm: We're presenting new algorithms.

Program: Microbenchmarks are included in the program.

Compilation: We require gcc with C++11 support.

Run-time environment: It’s tested on Linux.

Hardware: The program works on any x86 (multi-core) pro-

cessor. However, we recommend at least 20 hardware threads

(hyperthreads) in total to make the experiment interesting.

e Run-time state: The program is sensitive to cache/mem-

ory contention. Please make sure no other cache/memory

consuming programs are running concurrently.

Execution: The program uses thread pinning on hyper-

threads at run time. The execution time can be customized.

Output: The program itself outputs a table in csv format,

which contains information like total/per-thread operation

counts and unreclaimed block counts. An example R script

for plotting the figures in the paper is provided.

o Experiments: We use Python scripts to operate a test frame-
work, which can reproduce any result as desired.

o Workflow frameworks used?: No.

Publicly available?: Yes.

Artifacts publicly available?: Yes
Artifacts functional?: Yes
Artifacts reusable?: Yes

Results validated?: Yes

A.3 Description
A.3.1 How delivered

The artifact is available at:
https://github.com/roghnin/Interval-Based-Reclamation
The whole program will be about 300MB after compilation.

A.3.2 Hardware dependencies

A multi-core x86-64 processor with more than 20 hyperthreads is
recommended. In order to run the multi-threaded tests with the
“no memory manager (memory leaking)” option for tens of seconds,
about 10GB of RAM is necessary.

A.3.3 Software dependencies

The program assumes Linux and depends on gcc with C++11 sup-
port, libjemalloc, and libhwloc. Python and R are also recommended,
in order to operate the parharness execution script and to post-
process with our plotting script.

A.3.4 Data sets

We don’t use any input data set.

13

PPoPP 18, February 24-28, 2018, Vienna, Austria

A.4 Installation

To compile for release:

$ make

To compile for debugging:
$ make debug

A.5 Experiment workflow
Our workflow can be described as:

Implement memory managers (MM)

Choose and implement data structures (rideables) to test on
Implement desired tests

Compile source code

Customize tests with parharness: combinations of MM, ride-
ables, threadcount range and interval, running time, etc.
Run tests, get results

e Plot results with the R script; analyze

To run the test manually, use

$ bin/main -h

to get usage information. As an example,

$ bin/main -r3 -m12 -t32 -i10 -dtracker=HE -v -ooutput.csv
stands for “run the 12th test mode on the 3rd rideable with 32
threads and Hazard Eras as memory manager for 10 seconds; send
results to output.csv.” To run tests in batches, edit and run

$ ext/parharness/scripts/testscript.py

in which “mata arguments” are supported. For example, argument
-meta t:5:10:15 —-meta i:5:10

will result in 6 different test configurations of thread counts and
intervals, as the Cartesian product of the two sets indicates. To plot
out data saved in data/final use

$ cd data/script

$ Rscript genfigs.R

A.6 Evaluation and expected result

With rideables and memory managers already implemented in the
repository, running

$ ext/parharness/scripts/testscript.py

and plotting with

$ cd data/script

$ Rscript genfigs.R

will reproduce the experiments reported in the paper.

Please note that results may vary depending on the architecture
of the test machine. For example, the “gap” in the throughput per-
formance of the Bonsai Tree may not appear on a single-socket
machine. But on any given machine, (1) throughputs of IBRs should
lie between EBR and HP-like algorithms and be lower than EBR
by about 5%; (2) with threads oversubscribed (or stalled), space
usage (retired but not reclaimed blocks) of IBRs should be about
30% above that of HP-like algorithms and below that of EBR.

A.7 Experiment customization

Our experiments are done by customizing tests—we change the
thread counts and types of memory managers to get time and space
curves for different MMs as a function of thread count.

New candidates of rideables and MMs can be added into src/ride-
ables and src/trackers respectively, and new modes of tests can
be added into src/CustomTests.hpp. Newly implemented rideables,
trackers, and tests should be registered into src/main.cpp and int-
main.cpp to appear in the menu.
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