
CSC 248/448 Lecture 6 notes 1

Lecture 6; Using Entropy for Evaluating and Comparing Probability
Distributions
Readings: Jurafsky and Martin, section 6.7

Manning and Schutze, Section 2.2

So far we have used one method for evaluating probability distributions – based on the
idea of maximizing the likelihood of the observed data. As we look at other application,
we will need a richer set of tools. We might, for instance, have two probability functions
and want to measure how “close” they are to each other. We also further develop the
notion of measuring how well a probability distribution fits observed data and develop
techniques that allow us to compare inherently different formulations (e.g., say a
probability distribution base don words vs one based on letters). The key concept used
here is called entropy, which is a measure of the inherent randomness in a probability
distribution (or set of observed data). This is the key concept in a field of research called
information theory. Today we’ll look at the basic of Information Theory and see how
the concepts can be applied to natural language processing.

1. Entropy: A Foundation of Information Theory
Information theory can be viewed as a way to measure and reason about the complexity
of messages. In our case we will be interested in natural language messages, but
information theory applies to any form of messages. Consider you are designing a system
to transmit information as efficiently as possible, i.e., use the least number of bits. How
many bits are needed clearly depends on what we know about the content. For instance,
say we know a message is the answer to a yes/no question. We would just need 1 bit to
encode this message.

If we needed to send a message that encoding what day of the week it is, we would need
a message that can encode 7 values, which we can reduce to bits using the logarithm
function. Thus we need log27 = 2.8 bits, which on current machines would mean we use 3
bits (000 – Monday, 001 – Tuesday, …, 110 – Sunday, 111- unused). But how do we
know this? How do we know there isn’t some better scheme that requires fewer bits on
average?

To explore this question, consider another example. Say we want to encode the part of
speech of a sequence of words in English using a tag set of size 40. It would appear that
would need to use 6 bits (log240 = 5.3). But say we also know that 90% of the tags are
one of four values, ART, P, N, V. I could design a new coding scheme that uses the first
bit to indicate whether the tag is in this subset or not. If it is, we need just two bits more
to encode the tag. If not, we need 6 more bits (log236 = 5.16). This coding scheme is
shown in Table 1 for a probability distribution where ART, P, N, V are equally likely.
Tag ART P N V ADJ ADV …
Coding 1 00 1 01 1 10 1 11 0 000000 0 000001 0 + 6 digit

code
Prob. .225 .225 .225 .225 .0028 (=

.1/36)
.0028 .0028

Table 1: An efficient coding of parts of speech when four tags account for 90% of data

CSC 248/448 Lecture 6 notes 2

So the average length of message in this new coding scheme is coputed by observing that
90% of the data uses 3 bits, and the remaining 10% uses 7 bits.

.9 * 3 + .1 * 7 = 2.7+.7 = 3.4
almost half the size of the original scheme! Can we do better than this? Information
theory provides an answer.

As mentioned before, Entropy is a measure of randomness in a probability distribution.
A central theorem of information theory states that the entropy of p specifies the
minimum number of bits needed to encode the values of a random variable X with
probability function p

Defn of Entropy

Let X be a random variable, and p be the probability function such that p(xi) = P(X=xi),
then we define the entropy of X (or p) as

H(X) = H(p) = - Si p(xi) log(p(xi)) where xi ranges over the vocabulary of X

Say in the above example, say we have a random variable TAG, which we know has the
actual probability distribution shown in table 1.

The entropy of TAG would be
H(TAG) = - (4 * (.225 * log2.225) + 36 * (.0028 * log2.0028))

= -(-1.04 + -.82 + -.85)
= 2.72

Thus, we know we can in principle do better that the coding scheme designed above.
While the entropy measure can tell us whether we have the best possible coding, it does
not actually tell us how to find it, or whether it is actually physically possible to
construct.

2. Entropy for more complex probability functions
Just like with probability functions, we can then define other forms of entropy. For joint
distributions consisting of pairs of values from two or more distributions, we have Joint
Entropy.

 Defn of Joint Entropy
H(<X,Y>) = - SiSjp(<xi,yi>)log(p(<xi,yj>))

Continuing the analogy, we also have conditional entropy, defined as follows:

Conditional Entropy
H(Y | X) = Si p(xi) H(Y | X=xi)

= - Si Sj p(xi) p(yI | xj) log p(yI | xj)
= - Si Sj p(<yI, xj>) log p(yI | xj)

CSC 248/448 Lecture 6 notes 3

Just like with probability functions, we have a chain rule for entropy, which sums the
components rather than multiplying them because we are dealing with logarithms.

H(X,Y) = H(X) + H(Y | X)
Note that addition is used on the right hand side rather than multiplication because of the
logarithm component of the entropy formula.

3. Evaluating probability models: Cross Entropy

Throughout this course, we will be trying to build good probability models to describe
the behavior of languages (modeled as random variables producing the words, letters,
etc). We sometimes will need ways to compare distributions to see how “close” they are.
There is a variant of the entropy definition that allows us to compare two probability
functions called cross entropy (of two probability functions p and m for a random
variable X):

H(p, m) = - Si p(xi) log(m(xi))

Note that cross entropy is not a symmetric function, i.e., H(p,m) does not necessarily
equal HX(m, p). Intuitively, we think of the first argument as the “target” probability
distribution, and m is the estimated one we are trying to evaluate how well it “fits” the
target. Note also that if p = m then the cross entropy is simply the entropy of X. It is a
theorem that cross entropy is at its minimum when p = m. Thus we can use cross entropy
to compare approximate models. The closer the cross entropy is to the entropy, the better
m is an approximation of p.

Consider an example, the following table shows the values of a random variable X with
its actual distribution p, and two approximations m1 and m2. m1 is simply the uniform
distribution, which we will typically use when we have no information about the behavior
of X. m2 is a distribution we might have guessed at after seeing some sequence of
outputs of X in which A and D appeared fours times as frequently as B and C. Which one
is better?

A B C D
p .4 .1 .25 .25
m1 .25 .25 .25. .25
M2 .4 .1 .1 .4
Table 2: Two approximations of probability distribution p

Using the distributions in table 3, the entropy of X (the entropy of p) is
H(p) = -Si p(xi) log(p(xi)) = 1.86

The cross-entropy for m1 is
H(p, m1) = -Si p(xi) log(m1(xi)) = 2

while the cross-entropy for m2 is
H(p, m2) = -Si p(xi) log(m2(xi)) = 2.02

This means that m1 is a slightly better model of X than m2. So we were unlucky with the
sample of data that we observed!

CSC 248/448 Lecture 6 notes 4

4. Using Entropy Measures on Corpora
Most of the time in language applications, we actually don’t know the target distribution,
but have a corpus. So how can we tell whether one distribution is better than another
given all we have is a corpora? Last week we used a measure that the probability function
that maximized the likelihood of the corpus is the best. Here we develop an equivalent
formulation, but in terms of entropy measures. Specifically, we introduce a notion of the
corpus cross entropy (or log probability). Given a corpus C of size N consisting of
tokens c1, …, cN, the log probability of a probability function m on this corpus is defined
as:

HC(m) = - (1/N) * Si log(m(ci))

Note that we are summing over tokens in the corpora, whereas previously we were
summing over types in the vocabulary.

It can be proven that as N goes to infinity, the corpus cross entropy becomes the cross
entropy measure for the true distribution that generated the corpus. Why is this so? It
depends on the fact that the Maximum Likelihood Estimator goes to the true probability
distribution as n goes to infinity. Thus as the corpus grows in size, the MLE estimate
starts to generate good approximations of the true distribution. To see how this applies,
we simply need to rewrite the definition of LP in terms of MLE estimates. Let’s assume
the vocabulary of the corpus is V = {v1, …, vT). Consider one vocabulary item vi, which
occurs ni times in the corpus. Thus the MLE estimate for vi occurring is ni/N. We could
rewrite the sum in the LP definition so that instead of summing over all the corpus values
ci, we gather all the values of the same type together and sum over the vocabulary items:

HC(m) = - (1/N) * Si ni * log(m(vi))

This is equivalent since there are ni tokens in the corpus of type vi. This can be rewritten
as

= - Si (ni / N) * log(m(vi))

But this is just the cross entropy formula using pMLE as the target probability function, i.e.,

= - Si pMLE(vi) * log(m(vi))

 which of course is the same value as in H(pMLE, m). Since the MLE estimate goes to the
true distribution as the corpus size grows to infinity, the log probability thus goes to the
cross entropy of m with the true probability distribution underlying the corpus.

Perplexity
Another measure used in the literature is equivalent to the corpus cross entropy and is
called perplexity:

CSC 248/448 Lecture 6 notes 5

Perplexity(C, p) = 2Hc(p)

With used for sociological and historical reasons, it add no new capabilities beyind using
the entropy measures.

4. Mutual Information

Another common concept is called mutual information, which intuitively is the amount of
additional information that we need to encode about X once we know Y. We define this
by comparing the entropy of X with the entropy of X given Y:

Defn of Mutual Information
I(X; Y) = H(X) – H(X | Y)

We can show that mutual information is always non-negative – in other words, you can’t
lose information by knowing about another variable, and ranges from 0 to H(X). If X and
Y are independent, then the mutual information measure is 0. If Y totally determined X,
then the mutual information would be the entropy of X. (in other words, H(X) = I(X;X)).
It is also easy to show that mutual information is a symmetric function, I(X;Y) = I(Y;X).

Consider the horse racing example from lecture two, where we have a joint distribution
with the race results R and the weather W:

R=win R=lose
W=rain .15 .15
W=shine .05 ..65
Table 3: The joint probability for P(R , W)

The marginal probability distribution for R has P(win) = .2 and P(lose) = .8. The
conditional probability P(R|W) is show in the following table:

R=win R=lose
W=rain .5 .5
W=shine .07 .93
Table 4: the Conditional probability P(R | W)
With this,

The corpus cross entropy is another way of evaluating how well a probability function
describes a corpus. It is fairly simple to show that the HC measure always agree with the
maximum likelihood technique we developed earlier. Specifically, if a probability
function p maximizes the likelihood of a corpus C, the p also has the minimum log
probability measure. This follows from three basic properties of logarithms:

1. Log(Pixi) = Si log(xi)
2. for all x and y, x > y implies log(x) > log(y)
3. for all x between 0 and 1, log(x) is negative

CSC 248/448 Lecture 6 notes 6

H(R) = - (.2 * -1.32 + .8 * -.32) = .72
H(R|W) = - Si Sj p(rI, wj) log p(rI | wj)

= - (.15 * log(.5) + .05 * log(.07) + .15 * log(.5) + .65 * log(.93))
= .56

Thus, the mutual information
 I(R, W) = .72 - .56 = .16

This indicates that R is affected by the value of the weather, which is intuitively the case.
In other words, once we know W we can guess the value of R much more easily.

On the other hand, consider I(R; F) where F indicates whether Harry was fed or not less
than two hours before the race. The joint distribution and conditional probabilities are
shown in table 4 and 5. Note that feeding Harry seems to slightly improve his changes of
winning.

R=win R=lose
F=fed .21 .79
F=not fed .19 .81
Table 5: The conditional probability for P(R | F)

F=fed F=not
R=win .12 .45
R=lose .08 .35
Table 6: The joint probability for P(R , F)

With this distribution, H(R) = .722 (as before), H(R | F) = .721, and thus
I(R; W) = .722 - .721 = .001

The mutual information is near zero, as expected since the variables are close to
independent.

5. Entropy Rate and Sequences
So far we have only considered corpora that have little structure – i.e., they consist of a
sequence of values. But when we talk about natural language, a corpora might be a
sequences of values are themselves sequences. For example, in a corpus of sentences,
each value is itself a sequence of words. Or a corpus of words can be considered as a set
of sequences of letters.

Let’s consider the latter case. Say we are interested in building a probabilistic of letter
transitions in a language. One idea is to view the corpus simply as a sequence of letters,
which we do by inserting a “blank” character (call it *) between words. Thus a corpus

THIS IS A TEXT
Would become a new corpus

* T H I S * I S * A * T E X T *
We could now use whatever estimation technique we think best to estimate the
probability function underlying the stochastic process that generates a sequence of letters.

CSC 248/448 Lecture 6 notes 7

For instance, to estimate a bigram model we’d estimate P(T | *), P(H | T), and so on for
all pairs of 27 letters (the alphabet plus *).

But there is another option. We might build a probabilistic model of the words
themselves, and of course once we know the words, we know the sequence of letters. In
this, we need to estimate a distribution P(IS | THIS), P(A | IS), and so on for all pairs of
words (plus maybe * for the start symbol). If we want to know which of these is a better
model, we’d need to be able to compare them in some way. But the straight forward
entropy models would produce very different values – one measuring the entropy of one
letter given the previous one, while the other measuring the entropy of one word given
the previous word. To normalize this, we often introduce a notion of Entropy Rate.

Let us assume that we have a language L whose elements V (= v1, …, vN) are individual
sequences from another vocabulary W of varying length l1 … lN. The Entropy Rate of L
is defined as:

Hrate(W)(L) = - Si 1/li * p(vi) log(p(vi))

In other words, a word of length 3 such of ONE has a probability .01, the contribution of
this word to the entropy calculation would be p(ONE) * log(p(ONE)) = -.33. The per-
letter entropy rate would then be -.33/3 = -.11.

