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Abstract 

This paper describes a reasoning system based 
on a temporal logic that can solve planning 
problems along the lines of traditional 
planning systems. Because it is cast as 
inference in a general representation, however, 
the ranges of problems that can be described is 
considerably greater than in traditional 
planning systems. In addition, other modes of 
plan reasoning, such as plan recognition or 
plan monitoring, can be formalized within the 
same framework. 

1  INTRODUCTION 
There is strong interest currently in designing planning 
systems that can reason about realistic worlds. In 
moving from the toy-world domains that characterized 
early work, researchers are looking at a wide range of 
issues, including reasoning in uncertain worlds, 
interacting with processes and events beyond the 
agent's direct control, and controlling mechanisms in 
real-time (i.e. robotics). One of the problems faced in 
extending existing frameworks is the weak 
expressiveness of the representation of the actions, 
events and the external world. This paper describes a 
reasoning system based on a temporal logic that can 
solve planning problems along the lines of traditional 
planning systems. Because it is cast as inference in a 
general representation, however, the ranges of problems 
that can be described is considerably greater than in 
traditional planning systems. 

The key observations motivating this development are 
the following: 1) Actions take time - very few actions 
are instantaneous, 2) More than one action may occur at 
the same time, 3) Complex plans of activity may 
involve complex ordering constraints, and 4) Actions 

may interact with external events beyond the agent's 
direct control. 

Of these problems, the most central one is that of 
dealing with simultaneous action. Without simultaneous 
action, the range of problems that can be addressed is 
very limited, mainly restricted to specialized situations 
such as computer programming and game playing. It 
makes little sense to study planning in a dynamic 
changing world if the planner cannot act while some 
other natural event is occurring. The problems that arise 
when an action and a external event occur 
simultaneously exactly parallel the problems of 
simultaneous action. To understand why this problem is 
so difficult, it is important to look at the assumptions 
underlying the world representation in most current 
planning systems. This is examined in detail in the next 
section. 

2 BACKGROUND: ACTIONS AS STATE 
CHANGE 
The predominant approach to modeling action in 
artificial intelligence and computer science has been to 
view action as state change. This view underlies all the 
state-based planning systems (e.g. STRIPS and its 
successors), formal models of planning (e.g. the 
situation calculus [McCarthy & Hayes 1969], and work 
in dynamic logic for the semantics of programs (e.g. 
[Harel 1974] and [Rosenschein 1981]. In this view, the 
world is modelled by a succession of states, each state 
representing an instantaneous "snapshot" of the world. 
Actions are defined as functions from one state to 
another. Propositions in such models are relative to 
states. The notion of a proposition independent of a 
state is modelled as a function from states to truth 
values. In the situation calculus [McCarthy & Hayes 
1969], such functions are called fluents. For example, 
On(A,B) is a fluent that when applied to a state S is a 
proposition that is true if A is on B in state S. 
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In state-change models such as STRIPS, actions are 
instantaneous and there is no provision for asserting 
what is true while an action is in execution. Also, since 
the state descriptions do not include information about 
action occurrences, such systems cannot represent the 
situation where one action occurs while some other 
event or action is occurring. Finally, there is no 
reasoning about the future in these models except by 
searching through different possible action sequences. 

Many non-linear planners suffer from the same 
deficiencies, although some (e.g. [Tate 1977, Vere 
1983, & Wilkins 1988]) allow simultaneous actions if 
the two actions are independent of each other. In such 
cases, the effect of the two acts performed together is 
the simple union of the individual effects of the acts 
done in isolation. The problem with this solution is that 
it excludes common situations of interest in realistic 
domains. In particular, interesting cases of interaction 
occur when the effect of two actions done together is 
different  from the sum of their individual effects. In 
particular, two actions may have additional effects 
when performed together, or they may partially 
interfere with each other's effects. 

Here's one example concerning the door to the 
Computer Science Building at Rochester.  The door is 
designed so that it requires both hands to open it, very 
annoying since you have to put down whatever you are 
carrying! There is a spring lock that must be held open 
with one hand, while the door is pulled open with the 
other hand. If we try to formalize this in a STRIPS-like 
system, we find there is no way to assert that unless the 
lock is held open it will snap shut.  

An approach to this problem has been used in several 
systems (e.g. [Vere 1983]). The interaction of two 
actions is encoded in a special state. We'll call this 
technique state encoding. In particular, in the above 
example, we might introduce a fluent that is true only if 
the agent is holding the lock open. The action of 
holding the lock would be transformed into two actions, 
one to start holding the lock, and another to release it. 
Pulling the door simply has a precondition that the 
agent is holding the lock open. The fluent "holding lock 
open", once asserted by the TURN-LOCK action, 
remains true until a RELEASE-LOCK action deletes it. 
While this might solve this particular problem, there are 
many potential disadvantages with this approach. The 
first objection is that it is ad-hoc. While it may be the 
case that one can invent predicates to cover every 
specific example someone proposes, each must be done 
after the fact on an individual case by case basis. It is 
also not clear how the technique could be generalized to 
additional complexities involving simultaneous actions. 
More importantly, holding the lock open is intuitively 
an action - it may take effort on the part of the agent to 
maintain and must explicitly be part of the plan. This is 
not reflected in a representation where holding the lock 

open is simply a fluent that will remain true until the 
agent does something to stop it. 

In certain applications, where a detailed causal theory is 
known, state encoding approaches can be very 
powerful.  If we cannot specify such a complete causal 
theory, however, or if we simply don't know enough 
about a situation to be able to use a causal theory, then 
other reasoning techniques must be explored. We would 
claim that both these problems arise in everyday 
planning situations: first, we have no detailed causal 
theory of the world, and second, we would not know 
the values for the parameters to the theory if such a 
theory was known. 

2  TIMES, EVENTS AND ACTIONS 
We do not have the space for an extensive discussion of 
time here. I will use interval temporal logic as 
developed in Allen [1983] and Allen and Hayes [1985]. 
In this logic, time is constructed out of one primitive 
object, the time period, and one primitive relation 
called Meets. Two periods meets if one precedes the 
other but there is no time between them. From the 
Meets primitive, many different temporal relations can 
be defined. In this paper uses the following: 

In(i,j) - period i is contained in period j; 
Disjoint(i,j) - i and j do not overlap in any way; 
Starts(i,j0 - period i is an initial subsegment of j; 
Finishes(i,j)  i is a final subsegment of j. 
SameEnd(i,j) - periods i and j end at the same time. 
Overlaps(i,j) - i starts before but overlaps j 

Time periods can be divided into the non-decomposable 
periods called moments, and decomposable periods, 
called intervals. 
We attach times to predicates by adding an extra 
argument to each predicate as in Bacchus, Tenenberg, 
and Koomen [1989]. For example, the proposition 
Green(FROG13,T1) is true only if the object named by 
FROG13 was green over the time named by T1.  

By allowing time intervals as arguments we open the 
possibility that a proposition involving some predicate 
P might neither be true nor false over some interval t. In 
particular, consider a predicate P such that p is true 
during some subinterval of t, and also false in some 
other subinterval of t. In this case, there are two ways 
we might interpret the proposition ~P(t). In the weak 
interpretation, ~P(t) is true iff it is not the case that P is 
true throughout interval t, and thus ~P(t) is true if P 
changes truth values during t. In the strong 
interpretation of negation, ~P(t) is true iff ~P is true 
throughout t, and thus neither P(t) nor ~P(t) would be 
true in the above situation. Thus, a logic with only 
strong negation has truth gaps. 

We use the weak interpretation of negation, as do 
Shoham [1987] and Bacchus, Tenenberg and Koomen 
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[1989], to preserve a simple two-valued logic. Of 
course, we can still make assertions equivalent to the 
strong negation. The fact that P is false throughout t can 
be expressed as follows, where In is true if its first 
temporal argument is contained in its second: 

∀ t' . In(t' ,t) ⊃ ~P(t'). 

This logic is still insufficient to conveniently capture 
many of the situations that we need to reason about, 
however. In particular, we need to introduce events as 
objects into the logic. Davidson [1967] argued that 
there are potentially unbounded qualifications that 
could be included in an event description. For example, 
the event of Jack lifting a particular ball might be 
asserted to occur at some time by a predicate Lift, as 
follows: 

Lift(JACK34,BALL26,T1). 
The problem arises in now representing the event "Jack 
lifted the ball onto the table". Either we need to add 
another argument to the Lift predicate, or we need to 
introduce a new predicate that represents a variant of 
lifting that includes an extra argument. Either is 
unsatisfactory. Davidson suggested the solution of 
reifying events, whereby additional modifiers would 
simply become additional predications on the event. 
Thus, the event of Jack lifting the ball to the table with 
the tongs might be represented as 

∃ e . Lift(JACK34,BALL26,e,T1) ∧  Dest(e) = 
TABLE555 ∧  Instrument(e) = TONGS1. 

We will represent knowledge about action in several 
ways. The first is by defining the necessary conditions 
for the event consisting of the action occurring (as in 
[Allen(1983]) For example, consider the action 
stack(a,b), which involves stacking block a on block b. 
For this action, we define a predication Stack(a,b,e,t), 
that is true if e is an event consisting stack(a,b) 
occurring over time period t.  

The event variable plays a central role -  all the other 
parameters can be defined in terms of the event 
variable. For example, every instance of a stacking 
event uniquely defines the blocks that it involves, and 
the times relevant to the properties that define it. As a 
convention, we will denote the times for properties 
corresponding to preconditions by functions pre1, pre2 
and so on, those corresponding to effects by eff1, eff2, 
and so on, and those corresponding to conditions that 
hold while the event is occurring by con1, con2, and so 
on.  

The stacking action in a typical STRIPS-style system is 
defined by its preconditions: (both blocks must be 
clear), and its transition function: (delete the formula 
Clear(y) and add the formula On(x,y)). We can use the 
STRIPS definition to motivate the conditions of the 
world that necessarily must be true whenever such a 
stacking event occurs.  

In particular, each event type defines a set of temporal 
functions that define the structure of the temporal 
intervals involved in the event. For example, the class 
of stacking events uses functions to produce times 
corresponding to the properties involved in the action's 
preconditions and effects. We can define the structure 
of the stacking event as follows (see Figure 1): 

Stacking Axiom 0:  Temporal Structure 
∀ e , ∃ a, b, i . Stack(a, b, e, i) ⊃  
 Overlaps(pre1(e), i) ∧ Finishes(con1(e), i) 

∧ Meets(pre1(e), con1(e)) ∧ Meets(i, eff1(e)) 
∧ SameEnd(i, pre2(e)) ∧ Meets(i, eff2(e)). 

With this temporal structure defined for every stacking 
event, the axiom defining the necessary conditions for 
the event's occurrence now can be expressed as: 

Stacking Axiom 1: Necessary Conditions 
∀ i, a, b, e  .  Stack(a, b, e, i) ⊃  
 Clear(a,pre1(e)) ∧ Holding(a, con1(e)) 

∧ Clear(a,eff1(e)) ∧ Clear(b, pre2(e)) ∧  
 On(a, b, eff2(e)). 

The above axiom asserts what is true whenever a 
stacking event occurs, independent of the situation. 
Other knowledge about action is relevant only in certain 
situations. For instance, if the block being moved in a 
stacking action was initially on another block, then this 
other block becomes clear (at least momentarily). This 
is easily expressed in the logic by the following axiom, 
which states that if block a was initially on another 
block c, then c becomes clear when a is moved: 

Stacking Axiom 2: Conditional Effects 
∀ i,a,b,c,t,e . Stack(a,b,e,i) ∧ On(a,c,t) ∧ Overlaps(t,i)  

⊃ Clear(c,eff3(e)) ∧ Meets(t,eff3(e)) ∧ 
 Meets(t,con1(e)). 

This axiom applies in a situation with three blocks, say 
A, B and C where A is originally on block C. The 
conditions for the action Stack(A, B, E1, T1) are shown 
graphically in Figure 1. Note that this definition does 
not assert that the block C will be clear at the end of the 
stacking event. In particular, if two stacking events 
overlap in time (say Stack(A,B,E1,T1) and 
Stack(D,C,E2,T2)) then this may not be the case, for D 
may be placed onto C before A is placed on B. Such 
subtleties cannot be represented easily in a STRIPS-
style representation. 

The development so far has not captured any sense of 
causality. In particular, the axioms above do not state 
what properties are caused by the stacking action, or 
what properties simply must be true whenever the 
action succeeds. This is the distinction that STRIPS 
makes between preconditions and effects. Intuitively, it 
is clear that the stacking action causes block a to be on 
block b in situations where both blocks are clear at the 
start of the action. Furthermore, the stacking action 
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causes block b to become not clear while it doesn't 
affect the condition that block a is clear. 

To encode such knowledge, we need to be able to 
reason about action attempts (cf. [McDermott 1986]). 
The logic developed so far can express the fact that a 
certain event occurred, but not that an agent attempted 
to do some action. The predicate Try is defined such 
that Try(a,e,t) is true whenever the action a is attempted 
by the agent at time t in order that event e occurs. Of 
course, if the conditions are not right then the action 
will not succeed and the event does not occur. For 
example, Try(stack(a,b),e,t) does not necessarily imply 
Stack(a,b,e,t). The relationship between the two is 
defined by axioms corresponding to precondition 
assertions: In particular, we can assert that wherever the 
agent tries to stack a on b starting from an initial 
situation where a and b are clear, then a stacking event 
occurs: 

Stacking Axiom 3: Prerequisites 
∀ i,j,k, a,b,e . Try(stack(a,b),e,i) ∧ Clear(a,j) ∧ 

Overlaps(j,i) ∧ Clear(b,k) ∧ SameEnd(i,k) 
⊃ Stack(a,b,e,i) ∧ pre1(e)=j ∧ pre2(e)=k. 

3  THE PLANNING FORMALISM 
A planning system can now be specified using the 
temporal logic developed above. This system can 
reason about certain classes of interacting simultaneous 
events and it has a limited capability for reasoning 
about the future. In particular, while it cannot plan to 
change any external events predicted to occur in the 
future, it can construct plans that take future events into 
account and reason about interactions with such events. 
Pelavin [1988] and Allen et al [1991] present an 
extended logic that can represent future possibilities as 
well. 

In order to construct plans, an agent needs to predict 
future states of the world. STRIPS-like problem solvers 
do this by using the add and delete lists to transform the 
current state into the next state. With a representation 
based on an explicit temporal logic, however, it is more 
complicated. In particular, if a proposition P is asserted 
to hold at a time T1 and then some action A occurs after 
T1 that makes P false, it is still true that P held at time 
T1. So the representation of the world should still 
contain this assertion. What has changed once the new 
action is introduced is some prediction about whether P 
holds in the future. For example, before A is known 
about, the agent might have predicted that P still holds 
in the future. Once the action A is expected, however, 
this prediction might change.  

Thus it is the predictions (or expectations) about the 
future that change as an agent plans. Since an agent 
may change its mind about what future actions it might 
do, most conclusions about the future must be 
retractable. This suggests that some form of non-
monotonic reasoning is necessary in order to maintain 
the world model and some models such as deKleer's 
ATMS [deKleer 1986] might be useful. But there is a 
simpler route: a model can be outlined that views all 
predictions about the future as conditional statements 
based on what the agent assumes about the future 
including its own actions. Given an initial world 
description W and a goal statement G, the plan is a set 
of assumptions A1,...,An  such that 

W ¯ (A1 ∧ A2 ∧...∧ An ⊃ G.) 

Of course, if the Ai’s are inconsistent then this 
statement is vacuously true, so we must also add the 
condition that 

A1 ∧ A2 ∧...∧ An is consistent. 

Stack(A,B,E1,T1)

 Clear(C,eff3(E1))

   Clear(B,pre2(E1))  On(A,B,eff2(E1))

Holding(A,con1(E1))  Clear(A,eff1(E1))

 On(A,C, Oac)

Clear(A,pre1(E1))

 
Figure 1: The necessary conditions for Stack(A,B,E1,T1) in a situation 

where A is originally on C  (using stacking axioms 1 and 2) 
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Finally, we want to avoid assuming the problem away. 
For instance, if A1 is simply equivalent to the goal 
statement G, the above conditions are true but we can’t 
say we’ve solved the problem! This is handled by 
restricting the form of assumptions that the planner can 
make, as described below.  

With this analysis, we can view the planning problem 
as consisting of two types of reasoning: 

- prediction - what is the world like (based 
on a given set of assumptions) 

- planning - what assumptions should the 
agent make about its future behavior, 
and the future world. 

These two types of reasoning are explored in detail in 
the remainder of this section. 

3.1 Predicting the Future 
If an agent had full knowledge about a world, then 
predicting the future would be a relatively well-defined 
task. The agent would simply simulate the future course 
of events starting from the present state. In practice, 
however, the agent never has such detailed knowledge 
about the world - the agent's knowledge of the present 
state is partial, and the world is not well-understood 
enough to make precise predictions. Even qualitative 
models, such as those discussed in Bobrow [1985], 
assume a level of knowledge about the state of the 
world and the processes that change it that are not 
realizable in most situations.  

Here we develop a very conservative model of 
prediction based on maintaining limited consistency of 
the agent's beliefs about the world. Essentially, given 
some set of beliefs about the future, the predictions are 
simply what is inferable from those beliefs using the 
agent’s knowledge of the structure of the world and the 
definitions of actions. The particular system we will 
specify uses a forward chaining strategy on Horn 
clauses coupled with constraint propagation techniques 
for time (Allen, 1983, Koomen, 1989) to make the 
predictions. 

To drive the predictor, we need knowledge about the 
actions, such as defined in the last section, as well as 
general knowledge of the domain. For instance, to 
reason about the door latch problem given at the start of 
this paper, we would have to know that a door cannot 
be open and shut at the same time. This motivates a 
forward chaining rule that guarantees that this cannot 
occur: 

Domain Constraint 1 
∀ t1,t2 . DoorOpen(,t1) ∧ DoorClosed(,t2) ⊃ 

Disjoint(t1,t2). 

Similarly, the latch is either open or shut, but not both: 

Domain Constraint 2 
∀ t1,t2  . LatchShut(t1) ∧ LatchOpen(t2) ⊃ 

Disjoint(t1,t2). 

Allen & Koomen (1983) show that a prediction 
algorithm using action definitions and domain 
constraints similar to those presented here can capture 
many important aspects of non-linear planning systems. 

3.2 Making Assumptions 
There are two main classes of assumptions that the 
planner must make. It must decide what actions it will 
attempt to perform, and it must make assumptions 
about how the external world will behave. While the 
planner may assume it can attempt any action at any 
time, the action will only succeed if the appropriate 
conditions hold. As we'll see below, this is 
implemented by allowing the planner to add an 
assertion of the form Try(a,e,t) without proof.  

The assumptions about the external world are limited at 
present to persistence assumptions [Dean & 
McDermott 1987], that once a property is established, it 
tends to remain true until explicitly changed. More 
precisely, a literal P(i1,...,in,t) can be proven by 
persistence if there is a literal in the database of form 
P(i1,...,in,t') where it is possible that t=t'. This definition 
not only allows persistence into the future, it also 
allows persistence into the past. It will be examined 
further after the basic planning algorithm is presented.. 
Note that we have a constant-time method of 
heuristically checking whether t=t' is possible given the 
network representation of temporal information: the 
system simply checks if "=" is one of the disjuncts still 
present on the arc connecting the node for t and the 
node for t' (see [Allen 1983]). 

4  THE PLANNING SYSTEM 
To a first approximation, the planning algorithm is 
simply a backwards-chaining proof strategy driven by  
the goal statement, where assumptions about action 
attempts and persistence  can be made without further 
proof. While very simple, this planner is similar in 
power to the regression planners (e.g. Waldinger, 
1977). 

To distinguish the logic developed so far from the 
system, which involves heuristic reasoning on a 
restricted formalism, we will use a different notation. A 
literal consists of a predicate name and a list of 
arguments enclosed in square brackets. Thus the literal 
corresponding to the formula On(A,B,G) is: 

[On A B G]. 

Knowledge about actions is captured by a set of 
planning rules, which are a modified notation of Horn 
clauses using "?" as a prefix to indicate variables. In 
general, a planning rule is of the form 
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C <<<  D1 D2 ... Dn   such that  A1, ..., Ak 

and can be interpreted formally as a Horn clause: the 
consequent literal C is true (or provable) if the 
antecedent literals D1,...,Dn are true and the constraints 
A1,...,Ak are true. The system, however, will treat the 
antecedents and constraints differently to produce an 
efficient inference strategy.  

Two planning rules for the action of pulling the door 
open are as follows: First, pulling on door when the 
latch is open results in the door being open: 

(PullOpen.1)  
[DoorOpen ?t'] <<<  
 [PullOpen ?e ?t]  such that [EQ eff1(?e) ?t']. 

Second, you may open the door any time you try to, if 
it’s closed and the latch is unlocked: 

(PullOpen.2)  
[PullOpen ?e ?t] <<<  
 [DoorClosed pre2(?e)]  
 [LatchOpen pre1(?e)]  
 [Try [pull] ?e ?t]  

The temporal structure for the PullOpen action must 
also be defined in the system. Rather than present 
details we will summarize such information by an 
axiom in the original logic that defines two 
precondition intervals (for the latch being open, and the 
door being shut), and one effect interval (for the door 
being open): 

PullOpen Axiom 0: Temporal Structure 
∀ e,t . PullOpen(e,t)  ⊃  OverlapsDuring(pre1(e), t) ∧ 

Meets(t,pre2(e)) ∧ Starts(eff1(e),t) 

Planning rules will be used by the system in both a 
forwards (i.e. from antecedent to consequent) and a 
backwards (from consequent to antecedent) chaining 
manner. To apply a rule in a backwards chaining 
manner, the rule's consequent C is unified with the goal. 
Then the constraints A1,..., An are added to the 
database and the antecedent literals D1,...,Dn are 
introduced as subgoals. To apply the rule in a forward 
manner, if a literal is added to the database that unifies 
with some antecedent literal Di, and all the other Dj (j ≠ 
i) and the constraints A1,...,An are in the database, then 
we also assert the consequent C. For instance, rule 
(PullOpen.1) could be used to suggest that a goal 
[DoorOpen Do1] could be accomplished by an event E1 
if we can prove [PullOpen E1 T1] under the constraint 
eff1(E1)=Do1. The same rule is also used to predict the 
consequence of the same event E1 occurring at time T1: 
ie., if [PullOpen E1 T1] is added then add [DoorOpen 
eff1(E1)].  

This simple example illustrates the basic technique for 
generating plans - planning rules are used to backward 
chain to suggested actions, and then in a forward 
manner to compute the consequences of those actions. 

In addition, all the domain prediction rules are also used 
in a forward chaining manner to compute additional 
consequences of the action. For example, Domain 
constraint 1 above would be asserted as the following 
forward chaining rule: 

[Disjoint ?t1 ?t2] <forward< 
 [DoorOpen ?t1] [DoorClosed ?t2]. 

All the other domain constraints can be expressed 
similarly. 

There are several additional issues to consider before 
the final algorithm is specified. First, the planner must 
be able to create event structures as needed, since the 
appropriate events will not generally be known to occur 
in advance of the planning. This is accomplished during 
the backwards chaining phase: whenever a literal 
containing an unbound event variable is to be 
introduced as a goal, a new event constant is generated 
and the temporal structure associated with that event is 
added to the database together with any other 
constraints specified in the planning rule. As an 
example, given the goal [DoorOpen Do1], rule 
(PullOpen.1) suggests a subgoal of proving [PullOpen 
?e ?t]. Before this is considered further, a new event, 
say E1, and a new time, say T1, are created and the 
following constraints are added to the database from the 
definition of the temporal structure of Stack events 
(StackingAxiom 0): 

[OverlapsDuring pre1(E1) T1] 
[Meets T1,pre2(E1)] 
[Start eff1(E1) T1]. 

What we have done is create the temporal structure for 
an event that could accomplish the goal clause. We 
have not asserted that this event yet occurs. This will 
require further chaining to prove [PullOpen E1 T1]. 
This process of creating event and temporal constants to 
replace the unbound variables will be called 
instantiating the planning rule. 

4.1 The Algorithm 
The following algorithm defines a planner that does not 
commit to the persistence assumptions until the entire 
plan is otherwise complete. It uses the simple 
backwards chaining technique from the goals as 
described informally above, and forward chaining to 
compute the consequences of its assumptions about 
persistence and action attempts. Because the temporal 
aspects of the plan are independent of the planning 
algorithm, the simple back-chaining strategy does not 
restrict the plans that can be produced. 

It consists of two main parts: the plan generator, 
which creates a particular plan and the assumption 
verifier, which takes a suggested plan and evaluates 
whether the persistence assumptions that support it still 
appear to be consistent. Let GS be the goal stack, which 
is initialized to the initial set of goals when the 
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algorithm is invoked. The output of this algorithm is a 
set of actions to be attempted by the agent (the action 
list), a set of assumptions about the world (the 
assumption list), and the world state generated by the 
prediction reasoner. Each persistence assumption 
consists of a literal P true over some time period T and 
an equality relation involving T that captures the 
persistence assumption. 

Plan Generation  
This is a non-deterministic version of the planning 
algorithm. A PROLOG-style search strategy to iterate 
through all possible proof paths can be added in the 
obvious way. 

(0) Do until GS is empty; then go to verification 
stage: remove the top element of GS and call it G; 

(1) Choose: 

(1.1) If a formula unifying with G is 
found in the database, then bind any 
variables in G as necessary; 

(1.2) If G can be proven by a persistence 
assumption, then pass G to the 
prediction reasoner, and add G 
together with the equality assertion 
that justifies the assumption to the 
assumption list;  

(1.3) If G is of the form Try(A,e,t), for 
some action A, then add G to the 
action list, pass G to the prediction 
reasoner;  

(1.4) Find a planning rule R whose 
consequent unifies with G, instantiate 
the rule as defined above (i.e. binding 
the event and temporal variables and 
adding the constraints) and push the 
antecedents onto GS. 

Verifying Assumptions 
This algorithm uses the temporal reasoner to check that 
all the persistence assumptions appear to be globally 
consistent. It does this by first re-checking the temporal 
constraints for each assumption individually to see if it 
is still possible. It then adds all the assumptions 
together to see if they appear to be globally consistent 
(according to the temporal reasoning algorithm). If 
some assumptions are no longer consistent, the 
planning stage is re-activated. 

(2.1) Check each persistence assumption individually 
to see if it is still possible given the current temporal 
network generated by the prediction reasoner. If not, 
add the literal associated with each assumption that is 
now impossible to GS and restart at step (0). 

(2.2) (Given that step (5) succeeded) Add the 
persistence assumptions to the prediction reasoner. 

Unless the prediction reasoner returns an inconsistency, 
we are done. If an inconsistency is found, then we must 
select an assumption to retract. Designing a good 
strategy for this is left as future work. For now we 
simply select an assumption at random. Remember that 
assumptions consist of a literal P, and an equality 
assertion t=t'. Given the selected assumption, add t≠t' to 
the prediction reasoner, add P to GS and restart at step 
(0). 

5 THE DOOR-LATCH PROBLEM 
One of the major goals of this work was allowing plans 
that necessarily required simultaneous actions. The 
Door-Latch Problem was posed as the simplest example 
of this type of situation. In this section, we show how 
the domain can be formalized and a plan constructed 
from first principles that will open the door. First we 
present the planning axioms that define the actions, and 
then give an overview of the solution. 

Remember that the complication in this example is that 
the agent must realize that it must continue to hold the 
latch open while it is pulling on the door. The actions 
needed are turning the latch, holding the latch open, and 
pulling the door. Unless the latch is held open, it snaps 
shut. Given that the planner uses persistence 
assumptions about the world, some technique must be 
introduced to prevent the planner from using this 
technique to infer that the latch stays open. This would 
best be handled by adding some causal reasoning to the 
predictor, but a simpler technique can be used in this 
class of situations. We will define the turn-latch action 
such that its effect holds exactly for a moment, i.e. a 
non-decomposable period. Thus any action that requires 
the latch to be open for an extended period of time 
cannot accomplish this by persistence, since a moment 
cannot be equal to an interval by definition. The hold-
latch action is then defined so that it requires the latch 
to be open at the time the action starts (which may be a 
moment) and has the effect that the latch stays open for 
the duration of the action. Specifically, we have the 
planning rules below which are used by the predictor to 
maintain the world representation.  
The temporal structures for each event are axiomatized 
below and shown graphically in Figure 2. The 
PullOpen action was defined earlier. TurnLatch events 
have a precondition interval (for the latch being closed) 
and an effect moment (for the latch being open): 

TurnLatch Axiom 0: Temporal Structure 
∀ e,t . TurnLatch(e,t) ⊃ Finishes(t,pre1(e)) ∧ 

Moment(eff1(e)) ∧ Meets(t,eff1(e)). 

HoldingLatch events define a single precondition 
period (for the latch being open) and an effect interval 
simultaneous with the event interval: 
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HoldingLatch Axiom 0: Temporal Structure 
∀ e,t . HoldOpen(e,t) ⊃ Meets(pre1(e),t) ∧ EQ(eff1(e),t) 

The planning rules for these actions are as follows: 
Turning the Latch has the effect that the latch is 
momentarily open: 

(TurnLatch.1)  
[LatchOpen ?t'] <<<   
 [Moment ?t']  
 [TurnLatch ?e ?t]  
  such that [EQ ?t’ eff1(?e)]. 

Turning the latch can be accomplished by trying to do it 
when the latch is shut: 

(TurnLatch.2)  
[TurnLatch ?e ?t] <<<  
 [LatchShut pre1(?e)]  
 [Try [turnlatch] ?e ?t]. 

The latch remains open if and only if it is held open. In 
particular, note that the effect and the action in this rule 
must be simultaneous: 

(HoldOpen.1) 
[LatchOpen ?t'] <<< 
  [Interval ?t']  

 [HoldOpen ?e ?t]
 such that [EQ eff1(?e) ?t']. 

Holding the latch open succeeds whenever the latch is 
open at the start of the holding act: 

(HoldOpen.2) 
[HoldOpen ?e ?t] <<< [LatchOpen pre1(?e)]  
  [Try [holdopen] ?e ?t] 

Assuming a situation, in which the agent is near the 
door , the initial world description would be as follows, 
where I is the current time, and G is the time when the 
goal must hold: 

[In I ls1]  [LatchShut ls1] 
[In I dc1] [DoorClosed dc1] 
[Before I G]. 

The goal is simply to have the door open over time G, 
i.e. [DoorOpen do1] such that [In G do1]. The initial 
planning situation is shown in Figure 3. 

Here’s a brief sketch of the planner in operation. Given 
the goal  [DoorOpen do1], rule (PullOpen.1) applies 
and introduces the subgoals after instantiation: 

GS: [PullOpen E1 T1]  
where [EQ eff1(E1) do1] and the temporal 

TurnLatch(E1,T1)

LatchShut(pre1(E1))

LatchOpen(eff1(E1))

LatchOpen(pre1(E2))

HoldLatch(E2,T2)

LatchOpen(eff1(E2))

PullOpen(E3,T3)

LatchOpen(pre1(E3))

DoorClosed(pre2(E3))

DoorOpen(eff1(E3))

 
Figure 2: The temporal structure for three events in the door problem 

DoorOpen(do1)DoorClosed(dc1)

LatchShut(ls1)

I
G

 
Figure 3: The Door-latch problem 
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constraints for the new PullOpen 
event E1, i.e. [OverlapsDuring 
pre1(E1) T1}, [Meets T1 pre2(E1)] 
and [Starts eff1(E1) T1] are added to 
the database 

The subgoal [PullOpen E1 T1] can be proven by rule 
(PullOpen.2) producing the new set of subgoals: 

GS: [DoorClosed pre2(E1)] 
 [LatchOpen pre1(E1)] 
 [Try [pull] E1 T1]. 

The first subgoal is proven by persistence from the 
initial state, using the assumption that pre2(E1)=dc1. 
The second subgoal, [LatchOpen pre1(E1)], requires 
further planning.  Rule (TurnLatch.1) cannot apply here 
as it requires the interval pre1(E1) to be a moment.  
Rule (HoldOpen.1) does apply, however, and 
introduces the subgoal [HoldOpen E2 pre1(E1)] (note 
that by the planning rule pre1(E1)=eff1(E2), which in 
turn equals the time of the HoldOpen event by its 
definition).  Rule (HoldOpen.2) then applies to this 
subgoal and introduces the following subgoals after 
instantiation: 

GS:[LatchOpen pre1(E2)]  
 [Try [holdopen] E2 pre1(E1)] 
 [Try [pull] E1 T1]. 

This time, rule (TurnLatch.1) can apply (since pre1(E2) 
can be a moment) and the action [TurnLatch E3 T3] is 
introduced.  After using rule (TurnLatch.2) to reduce 
this goal, the following subgoals remain: 

GS: [LatchShut pre1(E3)] [Try [turnlatch] E3 T3]   
 [Try [holdopen] E2 pre1(E1)]  
 [Try [pull] E1 T1]. 

The first of these subgoals can be proven by 
persistence, since it is possible that pre1(E3)=ls1, and 
the remaining three subgoals are trivially proven as they 
are under the control of the planner. As each of these is 
assumed, it is added to the database triggering the 
forward-chaining prediction rules. As a result, the door 
is predicted to be open at time do1.  

Finally, the persistence assumptions must be verified, 
and then added to the predictor producing the final plan 

as shown in Figure 4, with the persistence assumptions 
shown in grey. Note that the Pull action must start 
within the time when the HoldOpen action occurs, as 
desired. If this were not the case, the final effect, 
namely that the door is open, would not be predicted by 
the prediction mechanism. Thus we’ve shown that the 
planner can find the correct plan, and that it would not 
accept the faulty plan that would arise from a STRIPS-
style planner, or from a naive persistence mechanism. 

6. PLANNING WITH EXTERNAL EVENTS 
Another simple example of some interest shows that the 
planner can co-ordinate with external events that it 
knows will occur sometime in the future. For example, 
consider a different initial situation, which is the same 
as before except that the planner knows that the door is 
unlocked automatically between 8AM and 9PM every 
day, and the goal is to get the door open sometime 
between 7AM and 9AM. This situation is shown in 
Figure 5, where the times of day are represented by 
moments. 

The initial database consists of the following assertions: 

[In I ls1]  
[LatchShut ls1]  [Meets ls1 lo1]  
[LatchOpen lo1]  [Meets ls1 8AM] 
[In I dc1]  [DoorClosed dc1] 
[Before I 7AM]   [Before 7AM 8AM 
[Before 8AM 9AM] [Before 7AM G]  
[Before G 9AM]  [Moment 7AM] 
[Moment 8AM]  [Moment 9AM]. 

The initial goal is as before, to accomplish [DoorOpen 
do1] such that [In G do1]. Using rule (PullOpen.1) we 
get the subgoal of [PullOpen E1 T1], where 
eff1(E1)=do1. Rule (PullOpen.2) gives two 
preconditions for this action, namely 

[DoorClosed pre2(E1)]  
[LatchOpen pre1(E1)]. 

In this case, both can be proven by persistence. 
[DoorClosed pre2(E1)] would be true if pre2(E1)= dc1, 
and [LatchOpen pre1(E1)] would be true if 
pre2(E1)=lo1. Adding these assumptions creates a plan 
that involves pulling the door after 8AM (since the 

DoorOpen(do1)DoorClosed(dc1)

LatchShut(ls1)

I
G

TurnLatch(E3, T3)

HoldOpen(E2, pre1(E1))

LatchOpen(pre1(E1))

PullOpen(E1,T1)

LatchOpen(pre1(E2))

 
Figure 4: The solution to the Door-Latch Problem 
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Latch must be open) and before 9AM (to satisfy the 
goal conditions on G). Thus we have constructed a plan 
that takes advantage of the automatic latch, a known 
event in the future, by scheduling its own actions to 
take advantage of the latch being open. If, on the other 
hand, the goal had been to open the door before 8AM, 
i.e. G is constrained to be before 8AM, then this plan 
will not be suggested since the persistence assumption 
pre1(E1)=lo1 is not consistent with the database. 

7 DISCUSSION AND EXTENSIONS 

7.1 Persistence Assumptions 
One of the critical techniques used to construct plans 
was the use of assumptions about the equality of times. 
In essence, this technique allows a time period to 
extend as far as possible given its constraints to other 
periods. Thus, if a proposition P is known to be true 
over an interval that contains a time t, and nothing is 
known to prevent P remaining true after t, then an 
assumption may be made that P is true after t if needed 
in a plan. Similarly, if nothing prevents P from being 
true before t, an assumption might be made that P was 
true some time before t. This capability to extend 
forwards or backwards in time might seem strange at 
first, but is quite useful in tasks that require plan 
recognition, or planning in worlds where information 
has to be acquired. 

In Allen et al (1991), we show that this technique 
corresponds to the technique of Dean & McDermott 
[1987] if the persistence is into the future. The 
differences arise in two cases: first when there is 
uncertainty as to the starting time of the property, and 
second when a property is proven by extending 
backwards. Thus, the interval persistence rule is 
considerably more liberal than the rule used by Dean 
and McDermott. To handle these latter cases, Dean 
introduces another mechanism based on abduction. The 
different cases, however, seem to all reflect the same 
interactions, so a single uniform method for handling 
them seems preferable. In addition, the interval 
persistence rule is considerably simpler to describe and 

analyze. Situations requiring the more general rule 
appear frequently in everyday situations. 
For example, if we are told that our airline tickets will 
be at the Bursars Office at 3 on Tuesday, then that 
suggests that they might be there earlier - it depends on 
the unknown information about when they were 
delivered. Similarly, being there at 3 suggests that the 
tickets will be there after 3 as well, and how long 
depends on unknown information about when they 
were picked up. In a single-agent domain, we have a 
high degree of confidence that the tickets remain at the 
office until we pick them up, since no other agent exists 
to pick them up. Note, of course, in a single agent 
domain, there wouldn't be an agent to deliver the tickets 
to the office in the first place, so that the tickets would 
need to be at the office in the initial situation. Thus, 
with a single agent, and a completely defined initial 
world, there is a strong bias to persistence only into the 
future. With multi-agent worlds, and partially defined 
situations, extension into the past becomes an equally 
important technique.  

Of course, a simple persistence technique like this has 
problems. Using logical consistency is too weak a 
measure for the plausibility of a persistence 
assumptions. Rather, it would be better to evaluate the 
likelihood of a persistence using a causal theory, or a 
probabilistic method such as in Dean & 
Kanazawa[1988]. Note that since the assumptions are 
explicitly part of the final plan, such techniques could 
be introduced into this framework to produce a 
likelihood that a given plan will succeed if attempted. 

7.2 A Hierarchical Planning Algorithm 
The representation and algorithm above can easily be 
extended to include reasoning based on action 
decomposition as found in hierarchical planners such as 
NONLIN (Tate, 1977), SIPE (Wilkins, 1988) or 
FORBIN (Dean, Firby & Miller, 1989).  

We could do this by introducing axioms that allow us to 
prove formulae of  the form [Try a e t] rather than 
assuming them. But it turns out that the algorithm is 
easier to specify if we introduce a new predicate 

 
Figure 5: The door problem with an automatic latch system 
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Decomp on actions. The relation between Decomp and 
Try is that you try an action by performing one of its 
decompositions, ie. 

∀ e,t,a . Decomp(a,e,t) ⊃ Try(a,e,t). 

For example, a stacking action is accomplished by 
moving the arm to the block desired, opening the hand, 
lowering the hand over the block, grasping the block, 
raising the arm and moving it to the desired destination, 
and then lowering the arm and opening the hand again. 
Figure 6 shows the decomposition of the Stack action 
together with the necessary persistence assumptions 
required to make the decomposition effective. In 
particular, the effect of picking up b1, namely 
Holding(b1,eff1(e1)), must extend to satisfy the 
precondition on the PutDown action. In addition, this 
effect is identical to the constraint originally defined for 
the Stacking action. 
We capture this information by adding a planning rule 
that specifies this as one way to decompose the action:  

Stack Decomposition Axiom 
[Decomp [stack ?x ?y] ?e ?t] <<< [Pickup ?x ?e1 ?t1] 

[MoveArmTo ?y ?e2 ?t2] [PutDown ?x ?e3 ?t3] 
such that [Meets ?t1 ?t2][Meets ?t2 ?t3][Starts ?t1 

?t] [Finishes ?t3 ?t] [EQ eff1(?e1) pre1(?e3)] 
[EQ eff1(?e1) con1(?e)]. 

The only other complication is that the initial algorithm 
used a second stage to verify that all persistence 
assumptions made in the plan were still consistent. We 
could leave this second stage until the entire plan is 
decomposed, but it is more in line with traditional 
hierarchical planners to verify these assumptions at 
each decomposition level before the next level is 
constructed. This can be accomplished simply in the 
new algorithm by adding a "dummy" goal on the 
bottom of the goal stack that invokes the consistency 
checking algorithm. When this goal rises to the top of 
the stack, one complete level of decomposition has 
been completed. The constraints are checked and the 
dummy goal is added again at the bottom of the goal 
stack to signal the end of the next level of 
decomposition. We will call this dummy goal 
[VerifyAssumptions]. A precise specification of the 
algorithm is as follows:This algorithm is a slight 

variation of the earlier algorithm. It differs in how 
action attempts are treated, and in the time that 
assumptions are verified. As before, this is a non-
deterministic version of the algorithm, and the goal 
stack GS is initialized to the goal statement. 
Do until GS is empty: 

(0) Remove the top element of GS and call it G; 

(1) Choose 

(1.1) If a formula unifying with G is 
found in the database, bind any 
variables in G as necessary. 

(1.2) Otherwise, if G can be proven by a 
persistence assumption, then pass G 
to the prediction reasoner, and add G 
together with the equality assertion 
that justifies the assumption to the 
assumption list. 

(1.3) Otherwise, if G is of the form 
Try(A,e,t), for some action A, add G 
to the action list and pass G to the 
prediction reasoner. Also, if there are 
axioms with a consequence of form 
Decomp(A,e,t) in the database, add 
Decomp(A,e,t) to the end of GS. 

(1.4) If G = [VerifyAssumptions], then 
invoke the assumption verifier. (Note, 
if verifying the assumptions fails, 
then G is not achieved and the 
algorithm backtracks). Unless GS is 
now empty, add a new goal 
[VerifyAssumptions] to the end to 
GS. 

(1.5) Otherwise, find a planning rule R 
whose antecedent unifies with G, 
instantiates the rule as defined above 
and push the antecedents of R onto 
GS. 

This algorithm expands a plan level-by-level through a 
decomposition hierarchy, validating the consistency of 
the plan at each level before the next level was 
addressed. Constraints imposed by the higher levels 

Stack(b1,b2,e,t)

Pickup(b1,e1,t1)           MoveArmTo(b2,e2,t2)          PutDown(b1,e3,t3)

Holding(b1,eff1(e1))

                                   eff1(e1)=pre1(e3)=con1(e)

 
Figure 6: The decomposition of the Stack Action 
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makes the accomplishment of the actions at the lower 
levels considerably easier.  

8 CONCLUSIONS 
We showed how traditional planning systems could be 
recast fairly directly as a specialized inference process 
on a temporal logic. By doing this, we have produced a 
framework that is much easier to understand and 
extend. By separating the temporal aspects of a plan 
from the procedural aspects of plan construction, for 
example, we found that even the simplest backwards 
chaining planning algorithm can generate non-linear 
plans. Similarly, a hierarchical planner can be generated 
by changing the set of assumptions about action 
attempts that the system is willing to make at any given 
time. As such, this work provides a uniform framework 
for examining many of the different planning 
frameworks developed to date. 
While the actual system described duplicated the 
abilities of traditional planning algorithms, the 
situations that can be represented and reasoned about 
are more general than can be represented in a state-
based model. In particular, we can reason about plans 
involving complex interactions between overlapping 
actions. It can reason about the effects of simultaneous 
actions that are not the effect of any one of the actions 
individually. The representation is limited, however, in 
representing partial interference between actions. This 
is because the current representation cannot explicitly 
capture the notion of possibility (as found in branching 
time models) and from the simple technique used for 
generating persistence assumptions.  

By separating the domain reasoning from the plan 
construction algorithm, we have developed a general 
representation for reasoning about action that is 
independent of the particular application that is driving 
it. A plan recognition system could use the same action 
definitions in the same representation. Plan recognition 
can be viewed as just another specialized inference 
process on this same world representation.  

More details on all these topics can be found in Allen et 
al (1991). 

Acknowledgements 
Thanks to George Ferguson and Nat Martin for 
comments on a draft of this paper. This work was 
supported in part by the Air Force Systems Command, 
RADC (now Rome Laboratory) and the Air Force 
Office of Scientific Research, under contract no. 
F30602-85-C-0008, and NSF grant N00014-90-J-1811. 

References 
Allen, J.F.  “Maintaining knowledge about temporal 

intervals,” CACM 26, 11, 832-843, 1983. 
Allen, J.F.  “Towards a general theory of action and 

time,” Artificial Intelligence 23, 2, 123-154, 1984. 

Allen, J.F. and P.J. Hayes.  “A common-sense theory of 
time,” Proc. IJCAI 85, Los Angeles, CA 1985. 

Allen, J.F. and J.A. Koomen, "Planning using a 
temporal world model", Proc. IJCAI 83, Karlsruhe, 
Germany, 1983. 

Allen, J.F.,H. Kautz, R. Pelavin, and J. Tenenberg  
Reasoning.About Plans Morgan Kaufmann, 1991. 

Bacchus, F., J. Tenenberg and H. Koomen, "A non-
reified temporal logic", Proc. of the First  Int'l 
Conf. on Principles of Knowledge Representation 
and Reasoning, Morgan Kaufmann, 1989. 

Davidson, D.  “The logical form of action sentences,” 
in N. Rescher (ed.).  The Logic of Decision and 
Action.  U. Pittsburgh Press, 1967. 

DeKleer, J.  “An assumption-based TMS,” Artificial 
Intelligence 28, 127-162, 1986. 

Dean, T., J. Firby and D. Miller.  “Hierarchical 
planning involving deadlines, travel time and 
resources,” Computational Intelligence, 1990. 

Fikes, R.E., and N.J. Nilsson. “STRIPS: A new 
approach to the application of theorem proving to 
problem solving,” Artificial Intelligence 2 231-272, 
1971. 

Harel, D. “Dynamic logic,” in Handbook of 
Philosophical Logic, Vol. II. Reidel, 1984. 

Koomen, J.A. "Localizing temporal constrain 
propagation", Proc. of the First  Int'l Conf. on 
Principles of Knowledge Representation and 
Reasoning, Morgan Kaufmann, 1989. 

McCarthy, J. and P. Hayes  “Some philosophical 
problems from the standpoint of artificial 
intelligence” in Machine Intelligence 4. Edinburgh 
University Press, 1969. 

McDermott, D.  “A temporal logic for reasoning about 
processes and plans,” Cognitive Science 6, 2, 101-
155, 1982. 

McDermott, D.  “Reasoning about plans,” in  J.R. 
Hobbs and R.C. Moore (eds.). Formal Theories of 
the Commonsense World,   Ablex, 1986. 

Pelavin, R.  “A formal approach to planning with 
concurrent actions and external events,” TR 254, 
Computer Science Dept., U. Rochester, 1988. 

Rosenchein, S.J.  “Plan synthesis:  A logical 
perspective,” Proc. IJCAI, 331-337.  Vancouver, 
British Columbia, 1981. 

Sacerdoti, E.D. A Structure for Plans and Behavior.  
New York:  American Elsevier, 1977. 

Shoham, Y.  “Temporal logics in AI:  Semantical and 
ontological considerations,” Artificial Intelligence 
33, 1, 89-104, 1987. 

Tate, A.  “Generating project networks,” Proc. IJCAI, 
888-93, Cambridge, MA, 1977. 

Vere, S.  “Planning in time: Windows and durations for 
activities and goals,” IEEE Trans. Pattern Analysis 
Mach. Intell. 5, 3, 246-67, 1983. 

Waldinger, R. "Achieving several goals 
simultaneously", in Elcock,E & Michie, D (eds),  
Machine intelligence 8, Ellis Horwood, pp 94-136. 



 

-13- 

13 

Wilkins, D. Practical Planning, Morgan Kaufmann, 
1988 


