
1

README for the Matlab Package of Several
LRTC algorithms

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye

I. ABOUT THIS PACKAGE

This Matlab package implements several low rank tensor completion algorithms proposed in our paper [2], including
simple LRTC (SiLRTC), fast LRTC (FaLRTC), high accuracy LRTC (HaLRTC), and two extended algorithms of SiLRTC
and FaLRTC namely SiLRTCnr and FaLRTCnr respectively1. The algorithms in this package are more efficient than the
original LRTC algorithm proposed in our ICCV paper [1]. Hence, this package is an improved version of the LRTC
algorithm proposed in our ICCV paper [1]. One can run the “example.m” file to have a quick glance of all algorithms.

II. PROBLEM

This Matlab package aims to solve the following optimization problem:

min
X

: ‖X‖∗ :=
n∑

i=1

αi‖X(i)‖∗

s.t. : XΩ = TΩ,

(1)

where X is an n-mode (dimensional) tensor and αi > 0. See the paper [2] for more details.

III. ALGORITHMS

Before we explain all algorithms implemented in this package, let us introduce their common inputs and outputs. First,
all of them return

X the tensor estimated by this algorithm
errList the list of differences between two consecutive iterations

.

Second the inputs shared by all algorithms are:

T the input tensor with missing entries; the missing entries can be filled by any value
Omega(Ω) a binary tensor with the same size as T : 0 means missing and 1 means observed
alpha(α) the coefficient vector α which defines the tensor trace norm in Eq. (1)
maxIter the maximal iteration number
epsilon the tolerance of the difference between two consecutive iterations

X0 the initial value of X

.

A. SiLRTC

This algorithm is a simplified version of the LRTC algorithm proposed in our ICCV paper [1]. It relaxes the original
problem Eq. (1) into the following problem:

min
X ,Mi

:
n∑

i=1

αi‖Mi‖∗ +
βi

2
‖X(i) −Mi‖2F

s.t. : XΩ = TΩ.

(2)

One can see that when βi goes to positive infinity, the solution of Eq. (2) will converge to that of Eq. (1). Note that this
algorithm is a simplified version of the LRTC algorithm proposed in [1] by removing a redundant variable. The Matlab

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye are with Arizona State University, Tempe, AZ, 85287.
E-mail: {Ji.Liu, pmusials, Peter.Wonka, and Jieping.Ye}@asu.edu

1These two algorithms are not included in our paper, but we think that it is worth implementing them in our package.



2

function implementing Algorithm 1 in [2] is defined as follows:

[X, errList] =SiLRTC(
T,

Omega,

alpha,

beta, % the relaxation vector β = [β1, ..., βn] defined in Eq. (2)
maxIter,

epsilon,

X0);

B. SILRTCnr (SiLRTC without Relaxation)

This algorithm basically solves the same formulation in Eq. (2) as the SiLRTC algorithm, except increasing β iteratively
by βk+1 = βk/factor where factor is a constant in the range (0, 1] and k indicates the kth iteration. We define the
Matlab function in the following:

[X, errList] =SiLRTCnr(
T,

Omega,

alpha,

factor, % the increasing rate of β defined above
maxIter,

epsilon,

X0);

C. FaLRTC

This algorithm relaxes the dual variables and solves the following problem:

min
X

:
n∑

i=1

max
‖Yi(i)‖≤1

αi〈X ,Yi〉 − µi

2
‖Y‖2F

s.t. : XΩ = YΩ.

(3)

where µi > 0. One can verify that if µ := [µ1, ..., µ2] = 0, the problem is identical to the original problem in Eq. (1).
This following function implements Algorithm 2 in [2] except iteratively updating µ in the way introduced in the end
of Section 5:

[X, errList] =FaLRTC(
T,

Omega,

alpha,

mu, % the relaxation vector µ defined in Eq. (3)
L0, % the initial step size parameter, a positive number small enough, i.e., stepsize = 1 / L
C, % the decreasing rate in the range (0.5, 1)
maxIter,

epsilon,

X0);

D. FaLRTCnr (FaLRTC without Relaxation)

Basically, the FaLRTCnr algorithm solves Eq. (3) as well. The motivation of the FaLRTCnr algorithm is actually
similar to the SiLRTCnr algorithm, i.e., changing the relaxation parameter iteratively such that it is closer and closer to
the original problem in Eq. (1). This algorithm updates µk+1 = A/kfactor where factor is a positive constant given by



3

the user and A is a constant determined by the input tensor. We take factor = 2 in our example file. The function in
our package is defined as follows:

[X, errList] =FaLRTCnr(
T,

Omega,

alpha,

factor, % the parameter controlling the decreasing speed of the relaxation paramter µ in Eq. (1)
L0, % the initial step size parameter, a positive number small enough, i.e., stepsize = 1 / L
C, % the decreasing rate in the range (0.5, 1)
maxIter,

epsilon,

X0);

E. HaLRTC

The algorithm solves the original problem in Eq. (1). The function is defined as follows:

[X, errList] =FaLRTC(
T,

Omega,

alpha,

rho, % a number small enough, empirically rho = 10−7

maxIter,

epsilon,

X0);

REFERENCES

[1] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data. ICCV, pages 2114–2121, 2009.
[2] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2012.


