Introduction to Artificial Intelligence

Logical Reasoning

Henry Kautz
Outline

• Logic
• Efficient satisfiability testing by backtracking search
• Efficient satisfiability testing by local search
• Applications
Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions.

Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Powerful & practical reasoning algorithms search through space of partial or total truth assignments
Knowledge bases

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):

Tell it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented

Or at the implementation level

i.e., data structures in KB and algorithms that manipulate them
Wumpus World PEAS description

Performance measure
 gold +1000, death -1000
 -1 per step, -10 for using the arrow

Environment
 Squares adjacent to wumpus are smelly
 Squares adjacent to pit are breezy
 Glitter iff gold is in the same square
 Shooting kills wumpus if you are facing it
 Shooting uses up the only arrow
 Grabbing picks up gold if in same square
 Releasing drops the gold in same square

Sensors Breeze, Glitter, Smell

Actuators Left turn, Right turn,
 Forward, Grab, Release, Shoot
Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent?? Yes—Wumpus is essentially a natural feature
Exploring a wumpus world

<table>
<thead>
<tr>
<th></th>
<th>P?</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 6, AIMA2e Chapter 7
Logic in general

Logics are formal languages for representing information such that conclusions can be drawn.

Syntax defines the sentences in the language.

Semantics define the “meaning” of sentences; i.e., define truth of a sentence in a world.

E.g., the language of arithmetic:

$x + 2 \geq y$ is a sentence; $x^2 + y >$ is not a sentence.

$x + 2 \geq y$ is true iff the number $x + 2$ is no less than the number y.

$x + 2 \geq y$ is true in a world where $x = 7$, $y = 1$.

$x + 2 \geq y$ is false in a world where $x = 0$, $y = 6$.
Entailment

Entailment means that one thing *follows from* another:

\[KB \models \alpha \]

Knowledge base \(KB \) entails sentence \(\alpha \)
if and only if
\(\alpha \) is true in all worlds where \(KB \) is true

E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”

E.g., \(x + y = 4 \) entails \(4 = x + y \)

Entailment is a relationship between sentences (i.e., *syntax*)
that is based on *semantics*

Note: brains process *syntax* (of some sort)
Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \).

\(M(\alpha) \) is the set of all models of \(\alpha \).

Then \(KB \models \alpha \) if and only if \(M(KB) \subseteq M(\alpha) \).

E.g. \(KB = \) Giants won and Reds won

\(\alpha = \) Giants won
Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for ?s assuming only pits

3 Boolean choices \Rightarrow 8 possible models
Wumpus models
$KB = \text{wumpus-world rules} + \text{observations}$
$KB = \text{wumpus-world rules + observations}$

$\alpha_1 = \text{"[1,2] is safe"}$, $KB \models \alpha_1$, proved by model checking
$KB = \text{wumpus-world rules + observations}$

$\alpha_2 = \text{"[2,2] is safe", } KB \not\models \alpha_2$
Inference

$KB \vdash_i \alpha$ = sentence α can be derived from KB by procedure i

Consequences of KB are a haystack; α is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: i is sound if
whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness: i is complete if
whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$
Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1, P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \implies S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \iff S_2$ is a sentence (biconditional)
Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. \(P_{1,2} \) \(P_{2,2} \) \(P_{3,1} \)
true true false

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model \(m \):

- \(\neg S \) is true iff \(S \) is false
- \(S_1 \land S_2 \) is true iff \(S_1 \) is true and \(S_2 \) is true
- \(S_1 \lor S_2 \) is true iff \(S_1 \) is true or \(S_2 \) is true
- \(S_1 \Rightarrow S_2 \) is true iff \(S_1 \) is false or \(S_2 \) is true
 i.e., is false iff \(S_1 \) is true and \(S_2 \) is false
- \(S_1 \Leftrightarrow S_2 \) is true iff \(S_1 \Rightarrow S_2 \) is true and \(S_2 \Rightarrow S_1 \) is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
\(\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true \)
Truth tables for connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \wedge Q$</th>
<th>$P \vee Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>
Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in $[i,j]$. Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

$\neg P_{1,1}$

$\neg B_{1,1}$

$B_{2,1}$

“Pits cause breezes in adjacent squares”
Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in $[i,j]$.
Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

\[-P_{1,1}\]
\[-B_{1,1}\]
\[B_{2,1}\]

“Pits cause breezes in adjacent squares”

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1})\]
\[B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})\]

“A square is breezy if and only if there is an adjacent pit”
Truth tables for inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>KB</th>
<th>α_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>
Inference by enumeration

Depth-first enumeration of all models is sound and complete

function TT-ENTAILS?(KB, α) returns true or false
 symbols ← a list of the proposition symbols in KB and α
 return TT-CHECK-ALL(KB, α, symbols, [])

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
 if EMPTY?(symbols) then
 if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
 else return true
 else do
 P ← FIRST(symbols); rest ← REST(symbols)
 return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
 TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))

\(O(2^n)\) for \(n\) symbols; problem is co-NP-complete

Don’t sweat the details: later we will see a much more efficient way of searching through model space!
Logical equivalence

Two sentences are logically equivalent iff true in same models:
\[\alpha \equiv \beta \] if and only if \[\alpha \models \beta \] and \[\beta \models \alpha \]

\[(\alpha \land \beta) \equiv (\beta \land \alpha) \] commutativity of \(\land \)
\[(\alpha \lor \beta) \equiv (\beta \lor \alpha) \] commutativity of \(\lor \)
\[((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \] associativity of \(\land \)
\[((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \] associativity of \(\lor \)
\[\neg(-\alpha) \equiv \alpha \] double-negation elimination
\[(\alpha \Rightarrow \beta) \equiv (-\beta \Rightarrow -\alpha) \] contraposition
\[(\alpha \Rightarrow \beta) \equiv (-\alpha \lor \beta) \] implication elimination
\[(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \] biconditional elimination
\[\neg(\alpha \land \beta) \equiv (-\alpha \lor -\beta) \] de Morgan
\[\neg(\alpha \lor \beta) \equiv (-\alpha \land -\beta) \] de Morgan
\[(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \] distributivity of \(\land \) over \(\lor \)
\[(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \] distributivity of \(\lor \) over \(\land \)
Validity and satisfiability

A sentence is valid if it is true in all models,
 e.g., True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:
 $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model
 e.g., $A \lor B$, C

A sentence is unsatisfiable if it is true in no models
 e.g., $A \land \neg A$

Satisfiability is connected to inference via the following:
 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 i.e., prove α by reductio ad absurdum
Formal Computational Complexity

- SAT = Prototypical NP-complete problem:
 - Given a Boolean formula, is there an assignment of truth values to the Boolean variables that makes it true?
 - As hard as any problem where an answer can be verified in polynomial time
 - Still NP-complete if formulas are restricted to Conjunctive Normal Form:

\[
(a \lor b \lor \neg c) \land (\neg a \lor c) \land (\neg b \lor c)
\]
Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
- Legitimate (sound) generation of new sentences from old
- **Proof** = a sequence of inference rule applications
 Can use inference rules as operators in a standard search alg.
- Typically require translation of sentences into a normal form

Model checking
- truth table enumeration (always exponential in \(n \))
- improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
- heuristic search in model space (sound but incomplete)
 e.g., min-conflicts-like hill-climbing algorithms
Forward and backward chaining

Horn Form (restricted)

\[KB = \text{conjunction of Horn clauses} \]

Horn clause =

- \(\diamond \) proposition symbol; or
- \(\diamond \) (conjunction of symbols) \(\Rightarrow \) symbol

E.g., \(C' \land (B \Rightarrow A) \land (C' \land D \Rightarrow B) \)

Modus Ponens (for Horn Form): complete for Horn KBs

\[
\frac{\alpha_1, \ldots, \alpha_n, \alpha_1 \land \cdots \land \alpha_n \Rightarrow \beta}{\beta}
\]

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in **linear** time
Expert System for Automobile Diagnosis

Knowledge Base:

\[
\begin{align*}
\text{GasInTank} \land \text{FuelLineOK} & \implies \text{GasInEngine} \\
\text{GasInEngine} \land \text{GoodSpark} & \implies \text{EngineRuns} \\
\text{PowerToPlugs} \land \text{PlugsClean} & \implies \text{GoodSpark} \\
\text{BatteryCharged} \land \text{CablesOK} & \implies \text{PowerToPlugs}
\end{align*}
\]

Observed:

\[\neg \text{EngineRuns}, \text{GasInTank}, \text{PlugsClean}, \text{BatteryCharged}\]

Prove:

\[\neg \text{FuelLineOK} \lor \neg \text{CablesOK}\]
Solution by Forward Chaining

Knowledge Base and Observations:

\((¬ \text{GasInTank} \lor ¬ \text{FuelLineOK} \lor \text{GasInEngine}) \)
\((¬ \text{GasInEngine} \lor ¬ \text{GoodSpark} \lor \text{EngineRuns}) \)
\((¬ \text{PowerToPlugs} \lor ¬ \text{PlugsClean} \lor \text{GoodSpark}) \)
\((¬ \text{BatteryCharged} \lor ¬ \text{CablesOK} \lor \text{PowerToPlugs}) \)
\((¬ \text{EngineRuns}) \)
\((\text{GasInTank}) \)
\((\text{PlugsClean}) \)
\((\text{BatteryCharged}) \)

Negation of Conclusion:

\((\text{FuelLineOK}) \)
\((\text{CablesOK}) \)
Resolution

Conjunctive Normal Form (CNF—universal)

\[(A \lor \neg B) \land (B \lor \neg C \lor \neg D) \]

E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D) \)

Resolution inference rule (for CNF): complete for propositional logic

\[
\frac{l_1 \lor \cdots \lor l_k, \quad m_1 \lor \cdots \lor m_n}{l_1 \lor \cdots \lor l_{i-1} \lor l_{i+1} \lor \cdots \lor l_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n}
\]

where \(l_i \) and \(m_j \) are complementary literals. E.g.,

\[
P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2} \quad \frac{P_{1,3}}{P_{1,3}}
\]

Resolution is sound and complete for propositional logic
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \).

\[(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}) \]

2. Eliminate \(\Rightarrow \), replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \).

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation:

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}) \]

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten:

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
Resolution Proof

DAG, where leaves are input clauses
Internal nodes are resolvants
Root is false (empty clause)

KB:
- If the unicorn is mythical, then it is immortal,
- if it is not mythical, it is an animal
- If the unicorn is either immortal or an animal, then it is horned.

Prove: the unicorn is horned.
A racehorse was stolen from a stable, and a bookmaker Fitzroy Simpson was accused. Sherlock Holmes found the true thief by reasoning from the following premises:

1. The horse was stolen by Fitzroy or by the trainer, John Straker.
2. The thief entered the stable the night of the theft.
3. The dog barks if a stranger enters the stable.
4. Fitzroy was a stranger.
5. The dog did not bark.

Create a resolution refutation proof, using the propositions:

- thief_fitzroy
- thief_john
- entered_fitzroy
- entered_john
- stranger_fitzroy
- stranger_john
- barks
Efficient Local Search for Satisfiability Testing
Greedy Local Search for SAT: GSAT

state = choose_start_state();
while ! GoalTest(state) do
 state := arg min \{ h(s) \mid s \text{ in Neighbors(state)} \}
end
return state;

- start = random truth assignment
- GoalTest = formula is satisfied
- h = number of false (unsatisfied) clauses
- neighbors = flip one variable (from true to false, or from false to true)
Smarter Noise Strategies

- For both random noise and simulated annealing, nearly all uphill moves are useless.

- Can we find uphill moves that are more likely to be helpful?

- At least for SAT we can...
Random Walk for SAT

• Observation: if a clause is unsatisfied, at least one variable in the clause must be different in any global solution
 \[(A \lor \neg B \lor C)\]

• Suppose you randomly pick a variable from an unsatisfied clause to flip. What is the probability this was a good choice?
Random Walk for SAT

• Observation: if a clause is unsatisfied, at least one variable in the clause must be different in any global solution.
 \[(A \lor \neg B \lor C)\]

• Suppose you randomly pick a variable from an unsatisfied clause to flip. What is the probability this was a good choice?

\[
\Pr(\text{good choice}) \geq \frac{1}{\text{clause length}}
\]
Random Walk Local Search

state = choose_start_state();
while ! GoalTest(state) do
 clause := random member { C | C is a clause of F and C is false in state }
 var := random member { x | x is a variable in clause }
 state[var] := 1 – state[var];
end
return state;
Properties of Random Walk

- If clause length = 2:
 - 50% chance of moving in the right direction
 - Converges to optimal with high probability in $O(n^2)$ time
Properties of Random Walk

• If clause length = 2:
 – 50% chance of moving in the right direction
 – Converges to optimal with high probability in $O(n^2)$ time

For any desired epsilon, there is a constant C, such that if you run for Cn^2 steps, the probability of success is at least $1 - \epsilon$.
Properties of Random Walk

• If clause length = 3:
 – 1/3 chance of moving in the right direction
 – Exponential convergence
 – Compare pure noise: 1/(n-Hamming distance) chance of moving in the right direction
 • The closer you get to a solution, the more likely a noisy flip is bad

```
absorbing

0    n/2    n  d - Hamming Distance

1/3   2/3

reflecting
```
Greedy Random Walk

```plaintext
state = choose_start_state();
while ! GoalTest(state) do
    clause := random member { C | C is a clause of F and C is false in state };
    with probability noise do
        var := random member { x | x is a variable in clause };
    else
        var := arg x min { #unsat(s) | x is a variable in clause, s and state differ only on x};
    end
    state[var] := 1 – state[var];
end
return state;
```
Refining Greedy Random Walk

• Each flip
 – makes some false clauses become true
 – breaks some true clauses, that become false

• Suppose $s_1 \rightarrow s_2$ by flipping x. Then:
 $$\#\text{unsat}(s_2) = \#\text{unsat}(s_1) - \text{make}(s_1, x) + \text{break}(s_1, x)$$

• Idea 1: if a choice breaks nothing, it is very likely to be a good move

• Idea 2: near the solution, only the break count matters
 – the make count is usually 1
Walksat

state = random truth assignment;
while ! GoalTest(state) do
 clause := random member \{ C | C is false in state \};
 for each x in clause do compute break[x];
 if exists x with break[x]=0 then var := x;
 else
 with probability noise do
 var := random member \{ x | x is in clause \};
 else
 var := arg x min \{ break[x] | x is in clause \};
 endif
 state[var] := 1 – state[var];
end
return state;

Put everything inside of a restart loop.
Parameters: noise, max_flips, max_runs
Sat Translation of N-Queens

- At least one queen each row:
 \((Q11 \lor Q12 \lor Q13 \lor \ldots \lor Q18)\)
 \((Q21 \lor Q22 \lor Q23 \lor \ldots \lor Q28)\)
 \(\ldots\)
 \(O(N^2)\) clauses

- No attacks:
 \((\neg Q11 \lor \neg Q12)\)
 \((\neg Q11 \lor \neg Q22)\)
 \((\neg Q11 \lor \neg Q21)\)
 \(\ldots\)
 \(O(N^3)\) clauses
Demo: Solving N-Queens with Walksat
Walksat Today

- Hard random 3-SAT: 100,000 vars, 15 minutes
 - Walksat (or slight variations) winner every year in “random formula” track of *International SAT Solver Competition*
 - Backtrack search methods: 700 variables
- Certain kinds of structured problems (graph coloring, Latin squares, n-queens, ...) \(\approx \) 30,000
 - But best systematic search routines better on certain other kinds of problems – e.g., verification
- Inspired huge body of research linking SAT testing to statistical physics (spin glasses)
Efficient Backtrack Search for Satisfiability Testing
Basic Backtrack Search for a Satisfying Model

Solve(F): return Search(F, {});

Search(F, assigned):
 if all variables in F are in assigned then
 if evaluate(F, assigned) then return assigned;
 else return FALSE;
 choose unassigned variable x;
 return Search(F, assigned U {x=0}) || Search(F, assigned U {x=1});
end;

State Space:
All partial or complete assignments of truth values to variables
Propagating Constraints

- Suppose formula contains
 \((A \lor B \lor \neg C)\)
 and we set \(A=0\).
- What is the resulting constraint on the remaining variables \(B\) and \(C\)?
 \((B \lor \neg C)\)
- Suppose instead we set \(A=1\). What is the resulting constraint on \(B\) and \(C\)?
 No constraint
Empty Clauses and Formulas

• Suppose a clause in F is shortened until it become empty. What does this mean about F and the partial assignment?

 \[F \text{ cannot be satisfied by any way of completing the assignment; must backtrack} \]

• Suppose all the clauses in F disappear. What does this mean?

 \[F \text{ is satisfied by any completion of the partial assignment} \]
Unit Propagation

• Suppose a clause in F is shortened to contain a single literal, such as
 \((A)\)
 What should you do?
 Immediately add the literal to assigned.
 Repeat if another single-literal clause appears.

• Applying resolution where one clause is a single literal is called *unit propagation*
DPLL

DPLL(F, assigned):
 while F has a unit clause (c) do
 assigned = assigned U {c};
 shorten clauses containing ~c;
 delete clauses containing c;
 end
 if F is empty then return assigned;
 if F contains an empty clause then return FALSE;
 choose an unassigned literal c; // variable and initial value
 return Search(F U { (c) }, assigned) || Search(F U { (~c) }, assigned);
end;
Improving Efficiency: Clause Learning

- Idea: backtrack search can repeatedly reach an empty clause (backtrack point) for the same reason

Example: Propagation from B=0 and C=0 leads to empty clause
Improving Efficiency: Clause Learning

- If reason was remembered, then could avoid having to rediscover it

Example: Propagation from $B=0$ and $C=0$ leads to empty clause

I had better set $C=1$ immediately!
Improving Efficiency: Clause Learning

- The reason can be remembered by adding a new learned clause to the formula.
Scaling Up

• Clause learning greatly enhances the power of unit propagation
• Tradeoff: memory needed for the learned clauses, time needed to check if they cause propagations
• Clever data structures enable modern SAT solvers to manage millions of learned clauses efficiently
What is BIG?

Consider a real world Boolean Satisfiability (SAT) problem

The instance `bmc-ibm-6.cnf`, IBM LSU 1997:

```
p cnf.
-1 7 0
-1 6 0
-1 5 0
-1 -4 0
-1 3 0
-1 2 0
-1 -8 0
-9 15 0
-9 14 0
-9 13 0
-9 -12 0
-9 11 0
-9 10 0
-9 -16 0
-17 23 0
-17 22 0
```

I.e., ((not \(x_1\)) or \(x_7\))

\(((\text{not } x_1) \text{ or } x_6)\)

etc.

\(x_1, x_2, x_3, \text{etc. our Boolean variables}\)

(set to True or False)

Set \(x_1\) to False ??
10 pages later:

\[
\begin{align*}
185 &\ -\ 9 \ 0 \\
185 &\ -\ 1 \ 0 \\
177 \ 169 \ 161 \ 153 \ 145 \ 137 \ 129 \ 121 \ 113 \ 105 \ 97 \\
89 \ 81 \ 73 \ 65 \ 57 \ 49 \ 41 \\
33 \ 25 \ 17 \ 9 \ 1 \ -\ 185 \ 0 \\
186 &\ -\ 187 \ 0 \\
186 &\ -\ 188 \ 0 \\
\end{align*}
\]

\[\text{l.e., (x_177 or x_169 or x_161 or x_153 ... x_33 or x_25 or x_17 or x_9 or x_1 or (not x_185))}\]

\[\text{clauses / constraints are getting more interesting...}\]

\textit{Note x_1 ...}
4000 pages later:

10236 -10050 0
10236 -10051 0
10236 -10235 0
10008 10009 10010 10011 10012 10013 10014
10015 10016 10017 10018 10019 10020 10021
10022 10023 10024 10025 10026 10027 10028
10029 10030 10031 10032 10033 10034 10035
10036 10037 10086 10087 10088 10089 10090
10091 10092 10093 10094 10095 10096 10097
10098 10099 10100 10101 10102 10103 10104
10105 10106 10107 10108 -55 -54 53 -52 -51 50
10047 10048 10049 10050 10051 10235 -10236 0
10237 -10008 0
10237 -10009 0
10237 -10010 0

...
Finally, 15,000 pages later:

Search space of truth assignments: HOW?

$$2^{50000} \approx 3.160699437 \cdot 10^{15051}$$

Current SAT solvers solve this instance in approx. 1 minute!
Demo: SatPlan
Progress in SAT Solvers

<table>
<thead>
<tr>
<th>Instance</th>
<th>Posit' 94</th>
<th>Grasp' 96</th>
<th>Sato' 98</th>
<th>Chaff' 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssa2670-136</td>
<td>40,66s</td>
<td>1,2s</td>
<td>0,95s</td>
<td>0,02s</td>
</tr>
<tr>
<td>bf1355-638</td>
<td>1805,21s</td>
<td>0,11s</td>
<td>0,04s</td>
<td>0,01s</td>
</tr>
<tr>
<td>pret150_25</td>
<td>>3000s</td>
<td>0,21s</td>
<td>0,09s</td>
<td>0,01s</td>
</tr>
<tr>
<td>dubois100</td>
<td>>3000s</td>
<td>11,85s</td>
<td>0,08s</td>
<td>0,01s</td>
</tr>
<tr>
<td>aim200-2_0-no-1</td>
<td>>3000s</td>
<td>0,01s</td>
<td>0s</td>
<td>0s</td>
</tr>
<tr>
<td>2dlx___bug005</td>
<td>>3000s</td>
<td>>3000s</td>
<td>>3000s</td>
<td>2,9s</td>
</tr>
<tr>
<td>c6288</td>
<td>>3000s</td>
<td>>3000s</td>
<td>>3000s</td>
<td>>3000s</td>
</tr>
</tbody>
</table>

Source: Marques Silva 2002