
Operating Systems 2/13/2007

CSC 256/456 - Spring 2007 1

2/13/2007 CSC 256/456 - Spring 2007 1

Basic Memory Management

CS 256/456

Dept. of Computer Science, University of Rochester

2/13/2007 CSC 256/456 - Spring 2007 2

Basic Memory Management
Program must be brought into memory and placed within a
process for it to be run.

Mono-programming
running a single user program at a time

Need for multi-programming
utilizing multiple instances of resources (multiple CPUs)
overlapping I/O with CPU

Memory management task #1:
Allocate memory space among user programs (keep track of
which parts of memory are currently being used and by whom).

2/13/2007 CSC 256/456 - Spring 2007 3

Running a user program

User programs go through
several steps before being
run.

source
program

compiler

object
program

linker

static
library

loadable
program

in-memory
execution

dynamic
library

2/13/2007 CSC 256/456 - Spring 2007 4

Address Binding
Binding of instructions and data to

physical memory addresses can
happen at different stages.
Compile&link time:

If memory location known a priori,
absolute code can be generated;
Must recompile code if starting
location changes.

Load time:
Must generate relocatable code if
memory location is not known at
compile time.

Execution time:
Binding delayed until run time.

Compare them on flexibility &
protection & overhead

source
program

compiler

object
program

linker

static
library

loadable
program

in-memory
execution

dynamic
library

Operating Systems 2/13/2007

CSC 256/456 - Spring 2007 2

2/13/2007 CSC 256/456 - Spring 2007 5

Logical vs. Physical Address Space
Two different addresses for execution-time addressing binding:

Logical address – those in the loaded user program; often generated
at compile time; will be translated at execution time; also referred
to as virtual address.
Physical address – address seen by the physical memory unit.

Memory management task #2:
address translation and protection.

Address translation from logical addresses and physical
addresses

pure software translation is too slow (why?)
(mostly) done in hardware

Memory-mapping unit (MMU): hardware device that maps
virtual to physical address; enforces memory protection
policies.

2/13/2007 CSC 256/456 - Spring 2007 6

Contiguous Allocation
Contiguous allocation

allocate contiguous memory space for each user program
MMU: address translation and protection

Assume that logical address always starts from 0;
Relocation register contains starting physical address;
Limit register contains range of logical addresses – each
logical address must be less than the limit register.

2/13/2007 CSC 256/456 - Spring 2007 7

Contiguous Allocation (Cont.)
Memory space allocation

Available memory blocks of various size are scattered
throughout memory.
When a process arrives, it is allocated memory from a free
block large enough to accommodate it.
Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

2/13/2007 CSC 256/456 - Spring 2007 8

Space Allocation Strategies
How to satisfy a request of size n from a list of free

memory blocks (holes).
First-fit: Allocate the first hole that is big enough.
Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size. Produces the
smallest leftover hole.
Worst-fit: Allocate the largest hole; max-heap (the data
structure) can help here.

Compare them on speed & space utilization.

Operating Systems 2/13/2007

CSC 256/456 - Spring 2007 3

2/13/2007 CSC 256/456 - Spring 2007 9

Fragmentation
External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous.

Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a minimal allocation unit,
but not being used.

Reduce external fragmentation by compaction
Shuffle memory contents to place all free memory together
in one large block.
Issues:

overhead
problems with programs currently doing I/O

2/13/2007 CSC 256/456 - Spring 2007 10

Paging (non-contiguous allocation)
Physical address space of a process can be
noncontiguous; process is allocated physical memory
whenever the latter is available.

Divide physical memory into fixed-sized blocks called
frames (typically 4KB).

Divide logical memory into blocks of same size called
pages.

To run a program of size n pages, need to find n free
frames and load program.

Internal fragmentation.

2/13/2007 CSC 256/456 - Spring 2007 11

Track Free Space
Keep track of free space:

free block/page chain
bitmaps

2GB physical memory, 4KB basic allocation unit ⇒ size of
the bitmap?

Discussions on
the space overhead
the performance of releasing/requesting free
memory

2/13/2007 CSC 256/456 - Spring 2007 12

Paging: Address Translation Scheme

A logical address is
divided into:

Page number (p) – used
as an index into a page
table which contains
base address of each
page in physical memory.

Page offset (d) – the
offset address with each
page/frame. The same
for both logical address
and physical address.

Operating Systems 2/13/2007

CSC 256/456 - Spring 2007 4

2/13/2007 CSC 256/456 - Spring 2007 13

Load A User Program: An Example

Before loading After loading

2/13/2007 CSC 256/456 - Spring 2007 14

Implementation of Page Table
Page table is (usually) kept in main memory

why not in registers?
kernel or user space?

Hardware MMU:
Page-table base register points to the page table.
Page-table length register indicates size of the page
table.

In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.
Solution:

A special fast-lookup hardware cache called translation
look-aside buffers (TLBs)

2/13/2007 CSC 256/456 - Spring 2007 15

Paging MMU With TLB

2/13/2007 CSC 256/456 - Spring 2007 16

Effective Access Time
Assume

TLB Lookup = 1 ns
Memory cycle time is 100 ns

Hit ratio (α)– percentage of times that a page number is
found in the TLB.
Effective memory Access Time (EAT)

EAT = 101×α + 201×(1 – α)

Operating Systems 2/13/2007

CSC 256/456 - Spring 2007 5

2/13/2007 CSC 256/456 - Spring 2007 17

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

