
Operating Systems 2/21/2007

CSC 256/456 - Spring 2007 1

2/21/2007 CSC 256/456 - Spring 2007 1

Virtual Memory

CS 256/456

Dept. of Computer Science, University of Rochester

2/21/2007 CSC 256/456 - Spring 2007 2

Virtual Memory
Virtual memory – separation of user logical memory from
physical memory (usually to save physical memory space).

Logical independent memory pieces may map to the same
physical memory.

Allows physical memory sharing by several processes.
Copy-on-write: allows for more efficient process creation.

Some logical memory pieces may not map to any physical
memory at all.

Allows a program to run with only part of its image in physical
memory

Paging makes virtual memory possible at fine-grain
Demand paging

Make a physical instance of a page in memory only when
needed.

2/21/2007 CSC 256/456 - Spring 2007 3

Backing Store
With virtual memory, the whole address space of each
process has a copy in the backing store (i.e., disk)

program code, data/stack

Consider the whole program actually resides on the
backing store, only part of it is cached in memory.

With each page table entry a valid–invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory or invalid logical page)

2/21/2007 CSC 256/456 - Spring 2007 4

Page Table with Virtual Memory
With each page table entry a valid–invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory or invalid logical page)

Operating Systems 2/21/2007

CSC 256/456 - Spring 2007 2

2/21/2007 CSC 256/456 - Spring 2007 5

Page Fault

Invalid logical page:
⇒ abort.

Just not in memory:
Get a free frame.
Swap page into the
free frame.
Reset the page table
entry, valid bit = 1.
Restart the program
from the fault
instruction.

A reference to a page with the valid bit set to 0 will trap to OS ⇒
page fault

What if there is no free frame?

2/21/2007 CSC 256/456 - Spring 2007 6

Page Fault Overhead

Page fault exception handling

[swap page out]

swap page in

restart user program

memory access

2/21/2007 CSC 256/456 - Spring 2007 7

Memory-Mapped Files
Memory-mapped file I/O allows file I/O to be treated as
routine memory access by mapping a disk block to a page in
memory.

At page fault:
A certain portion of the file is read from the file system into
physical memory.
Subsequent reads/writes to/from the file are like ordinary
memory accesses.

Simplifies file access by treating file I/O through memory
rather than read() write() system calls.

2/21/2007 CSC 256/456 - Spring 2007 8

Page Replacement
Page replacement is necessary when no physical frames are
available for demand paging

a victim page would be selected and replaced

A dirty bit for each page
indicating if a page has been changed since last time loaded
from the backing store
indicating whether swap-out is necessary for the victim page.
How is it maintained? Does it need to be in the page table
entry?

Operating Systems 2/21/2007

CSC 256/456 - Spring 2007 3

2/21/2007 CSC 256/456 - Spring 2007 9

Page Replacement Algorithms
Page replacement algorithm: the algorithm that picks the
victim page.

Metric:
low page-fault rate.
implementation cost/feasibility.

For the page-fault rate:
Evaluate an algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string.

2/21/2007 CSC 256/456 - Spring 2007 10

First-In-First-Out (FIFO) Algorithm
Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
3 frames (3 pages can be in memory at a time)

4 frames

Anomaly for the FIFO Replacement
more frames not necessarily leading to less page faults

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

5

1

2

4

5 10 page faults

4 3

2/21/2007 CSC 256/456 - Spring 2007 11

Optimal Algorithm

Optimal algorithm:
Replace page that will not be used for longest period of time.

4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

4

6 page faults

4 5

2/21/2007 CSC 256/456 - Spring 2007 12

Least Recently Used (LRU) Algorithm
Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Not always better than FIFO, but more frames always lead
to less or equal page faults

imagine a virtual stack (infinite size) of pages
each page is moved to the top after being accessed
this virtual stack is independent of the number of frames
page fault number when there are N frames:

the number of accesses that do not hit the top N pages in the
virtual stack.

1

2

3

5

4

4 3

5

Operating Systems 2/21/2007

CSC 256/456 - Spring 2007 4

2/21/2007 CSC 256/456 - Spring 2007 13

Implementations
FIFO implementation

Time-of-use LRU implementation:
Every page entry has a time-of-use filed; every time page is
referenced through this entry, copy the clock into the field.
When a page needs to be changed, look at the time-of-use
fields to determine which are to change.

Stack LRU implementation – keep a stack of page numbers
in a double link form:

Page referenced: move it to the top
Always replace at the bottom of the stack

2/21/2007 CSC 256/456 - Spring 2007 14

Feasibility of the Implementations
FIFO implementation.
LRU implementations:

Time-of-use implementation
Stack implementation

What needs to be done at each memory reference?
What needs to be done at page loading or page
replacement?

2/21/2007 CSC 256/456 - Spring 2007 15

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

