
Operating Systems 2/28/2007

CSC 256/456 - Spring 2007 1

2/28/2007 CSC 256/456 - Spring 2007 1

I/O Systems

CS 256/456

Dept. of Computer Science, University of Rochester

2/28/2007 CSC 256/456 - Spring 2007 2

Segmentation

One-dimensional address
space with growing pieces
At compile time, one table
may bump into another

Segmentation:
generate segmented
logical address at
compile time
segmented logical
address is translated
into physical address at
execution time

2/28/2007 CSC 256/456 - Spring 2007 3

Example of Segmentation

2/28/2007 CSC 256/456 - Spring 2007 4

Sharing of Segments

Convenient sharing
of libraries

Operating Systems 2/28/2007

CSC 256/456 - Spring 2007 2

2/28/2007 CSC 256/456 - Spring 2007 5

I/O Device Controllers

I/O devices have mechanical component & electronic
component
The electronic component is the device controller

It contains control logic, command registers, status
registers, and on-board buffer space

2/28/2007 CSC 256/456 - Spring 2007 6

I/O Ports & Memory-Mapped I/O

I/O methods:
Separate I/O and
memory space;
special I/O
commands (IN/OUT)
Memory-mapped I/O

Issues with them:
Convenience/efficiency when use high-level language;
Protection mechanisms;
Special data access schemes: TEST
Data caching

2/28/2007 CSC 256/456 - Spring 2007 7

Direct Memory Access (DMA)

• Are the addresses CPU sends to the DMA controller virtual or
physical addresses?

• Can the disk controller directly reads data into the main memory
(bypassing the controller buffer)?

2/28/2007 CSC 256/456 - Spring 2007 8

How is I/O accomplished?
Polling-based

CPU spins and polls the I/O until it completes

Periodical polling
Continuous polling consumes too much CPU
Instead, we poll periodically - saving CPU
overhead, may not react immediately to
hardware events

Interrupt-driven
CPU initiates I/O and then does something else;
gets notified when the I/O is done (interrupts)

Operating Systems 2/28/2007

CSC 256/456 - Spring 2007 3

2/28/2007 CSC 256/456 - Spring 2007 9

Interrupt Handlers
1. Save registers of the old process

2. Set up context for interrupt service procedure (switch from
the user space to kernel space: MMU, stack, …)

3. Run service procedure; when safe, re-enable interrupts

4. Run scheduler to choose the new process to run next
5. Set up context (MMU, registers) for process to run next
6. Start running the new process

How much cost is it? Is it a big deal?

For Gigabit Ethernet, each packet arrives once every 12us.

2/28/2007 CSC 256/456 - Spring 2007 10

I/O Software Layers

Device-dependent OS I/O software; directly interacts with
controller hardware
Interface to upper-layer OS code is standardized.

2/28/2007 CSC 256/456 - Spring 2007 11

Device Driver Reliability
Device driver is the device-specific part of the
kernel-space I/O software. It also includes interrupt
handlers.

Device drivers must run in kernel mode.
⇒ The crash of a device driver typically brings down
the whole system.
Device drivers are probably the buggiest part of the
OS. Why?

How to make the system more reliable by isolating the
faults of device drivers?

Run most of the device driver code at user level.
Restrict and limit device driver operations in the
kernel.

2/28/2007 CSC 256/456 - Spring 2007 12

Upper-level I/O Software
Device independence

reuse software as much as possible across different types
of devices

Buffering
data coming off a device is stored in intermediate buffers

Need for buffering
caching
speculative I/O

Operating Systems 2/28/2007

CSC 256/456 - Spring 2007 4

2/28/2007 CSC 256/456 - Spring 2007 13

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

