I/O Systems

‘ Segmentation

Virtual address space
= One-dimensional address Cal stack |
space with growing pieces } Froe
= At compile time, one table

may bump into another Addrass space

CS 256/456

Dept. of Computer Science, University of Rochester

2/28/2007 CSC 256/456 - Spring 2007

= Segmentation:

o generate segmented
ogical address at
compile time

o segmented logical
address is franslated
into physical address
execution time

Address space
Parse tree

parse tree

Constant table '

at Source text f

Space currently being
used by the parse treq

} Symbol table has

‘Example of Segmentation

subrouting stack
1400
“segment 3 segment 0|
1 2400
| | symbol
segment 0 table
| sqr | segment 4 o[1000 | 1400
e 1| 400 | 6300
main 2| 400 | 4300
program 3| 1100 | 3200
4 1000 | 4700
L 1 _ il
sogment 1 segmant 2 e
logical address space |
5700 -
300 |
{803 |
6700
physical momory
2/28/2007 CSC 256/456 - Spring 2007 3

Symbol table bumped into the
source text table
2/28/2007 CSC 256/456 - Spring 2007 2
oo
= Convenient sharing T
A ! mar
of libraries _ aaosz |
o [Chmet | basa
i O] 25286 | 43082
sogment 1 T) ey b
nogmand tatis
process P,
lesgpeal mamee, L
il oy
80003 |
sl data 2
J GEE53 T
sogmant 0
dela 2 o: ,;?";ﬁ T .::; E physical mamary
pres—r 1| 8850 | 90003
sogmant tabie
logical mamary o
process P,
2/28/2007 CSC 256/456 - Spring 2007 4

1/0O Device Controllers
T? A .

controlier

I/0 devices have mechanical component & electronic
component
The electronic component is the device controller

a It contains control logic, command registers, status
registers, and on-board buffer space

2/28/2007 CSC 256/456 - Spring 2007

I/0O Ports & Memory-Mapped 1/0O

Two address One address space
0xFFFF.. | Memary I/O meThOds:

Separate I/0 and

. memory space;

VO ports special I/0
commands (IN/OUT)

" [Memory-mapped I/0
(a) b

Tssues with them:
Convenience/efficiency when use high-level language;
Protection mechanisms;
Special data access schemes: TEST
Data caching

2/28/2007 CSC 256/456 - Spring 2007

Direct Memory Access (DMA)

@ a— Drive
1.CPU
programs DMA Disk Main
CcPU the DMA controller controller memoary
controller ‘_/Euﬂer
L
1 s
4. Ack
PP e N
4 L L [}
Interrupt when 2. DMA requests
done transfer to memary 3. Data transferred
——Bus

* Are the addresses CPU sends to the DMA controller virtual or
physical addresses?

+ Can the disk controller directly reads data into the main memory
(bypassing the controller buffer)?

2/28/2007 CSC 256/456 - Spring 2007

How is I/O accomplished?

Polling-based
o CPU spins and polls the I/0 until it completes

Periodical polling
o Continuous polling consumes too much CPU

o Instead, we poll periodically - saving CPU
overhead, may not react immediately to
hardware events

Interrupt-driven

o CPU initiates I/0 and then does something else;
gets notified when the I/0 is done (interrupts)

2/28/2007 CSC 256/456 - Spring 2007

Interrupt Handlers

Save registers of the old process

Set up context for interrupt service procedure (switch from
the user space to kernel space: MMU, stack, ...)

Run service procedure; when safe, re-enable interrupts
Run scheduler to choose the new process to run next

Set up context (MMU, registers) for process to run next
Start running the new process

How much cost is it? Is it a big deal?

For Gigabit Ethernet, each packet arrives once every 12us.

2/28/2007 CSC 256/456 - Spring 2007 9

I/O Software Lavers

{ User
sl;:a:a P, program

)

Rest of the operating system ‘

Waemal |
space | 1 l
Prirter Camcorder CD-ROM
cimar crivar arives
L |]
¥ ¥ L]
Hardware | Prirter controbier | [Cameerder controtier] [CO-AOM controter]

|
. —]

Device-dependent OS I/0 software; directly interacts with
controller hardware

Interface to upper-layer OS code is standardized.

2/28/2007 CSC 256/456 - Spring 2007 10

Device Driver Reliability

Device driver is the device—s%ecific part of the
llfler'rgiclaI-s:pace I/0 software. It also includes interrupt
andlers.

Device drivers must run in kernel mode.

= The crash of a device driver typically brings down
the whole system.

Device drivers are probably the buggiest part of the
0S. Why? P Y %9 P

How to make the system more reliable by isolating the
faults of device drivers?

o Run most of the device driver code at user level.
a Ees‘rr‘}cf and limit device driver operations in the
ernel.

2/28/2007 CSC 256/456 - Spring 2007 11

Uppet-level 1/O Software

Device independence

o reuse software as much as possible across different types
of devices

Buffering
o data coming of f a device is stored in intermediate buffers

Need for buffering
o caching
o speculative I/0

2/28/2007 CSC 256/456 - Spring 2007 12

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intfended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

2/28/2007 CSC 256/456 - Spring 2007

