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Symbol table bumped into the
source text table
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1/0O Device Controllers
T? A .

controlier

I/0 devices have mechanical component & electronic
component
The electronic component is the device controller

a It contains control logic, command registers, status
registers, and on-board buffer space
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I/0O Ports & Memory-Mapped 1/0O

Two address One address space
0xFFFF.. | Memary I/O meThOds:

Separate I/0 and

. memory space;

VO ports special I/0
commands (IN/OUT)

" [ Memory-mapped I/0
(a) b

Tssues with them:
Convenience/efficiency when use high-level language;
Protection mechanisms;
Special data access schemes: TEST
Data caching
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Direct Memory Access (DMA)
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* Are the addresses CPU sends to the DMA controller virtual or
physical addresses?

+ Can the disk controller directly reads data into the main memory
(bypassing the controller buffer)?
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How is I/O accomplished?

Polling-based
o CPU spins and polls the I/0 until it completes

Periodical polling
o Continuous polling consumes too much CPU

o Instead, we poll periodically - saving CPU
overhead, may not react immediately to
hardware events

Interrupt-driven

o CPU initiates I/0 and then does something else;
gets notified when the I/0 is done (interrupts)

2/28/2007 CSC 256/456 - Spring 2007




Interrupt Handlers

Save registers of the old process

Set up context for interrupt service procedure (switch from
the user space to kernel space: MMU, stack, ...)

Run service procedure; when safe, re-enable interrupts
Run scheduler to choose the new process to run next

Set up context (MMU, registers) for process to run next
Start running the new process

How much cost is it? Is it a big deal?

For Gigabit Ethernet, each packet arrives once every 12us.
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I/O Software Lavers

{ User
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Device-dependent OS I/0 software; directly interacts with
controller hardware

Interface to upper-layer OS code is standardized.
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Device Driver Reliability

Device driver is the device—s%ecific part of the
llfler'rgiclaI-s:pace I/0 software. It also includes interrupt
andlers.

Device drivers must run in kernel mode.

= The crash of a device driver typically brings down
the whole system.

Device drivers are probably the buggiest part of the
0S. Why? P Y %9 P

How to make the system more reliable by isolating the
faults of device drivers?

o Run most of the device driver code at user level.
a Ees‘rr‘}cf and limit device driver operations in the
ernel.
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Uppet-level 1/O Software

Device independence

o reuse software as much as possible across different types
of devices

Buffering
o data coming of f a device is stored in intermediate buffers

Need for buffering
o caching
o speculative I/0
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Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intfended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).
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