More on Server System
Management

CS 256/456

Dept. of Computer Science, University of Rochester

4/11/2007 CSC 256/456 - Spring 2007 1

Server System Management

Multi-processing vs. multi-threading

o overhead vs. fault isolation

User threads

a blocking problem for servers using user threads
Event-driven servers

o all user-level management, no synchronization overhead

Overhead with high concurrency
o more context switches?

o memory (or buffer space) contention, additional management
overhead

Server overload
o if requests have o be abandoned, abandon them ASAP

4/11/2007 CSC 256/456 - Spring 2007 2

Isolation in Server Systems

Isolation of request execution in
0 resource accounting

o fault protection

0 resource provisioning

o system configuration

Challenges

o what is the existing OS principal for resource accounting and
fault isolation?

o challenge #1: process/thread does not complete encapsulate a
request execution

o challenge #2: lack of mechanisms for isolation in resource
provisioning, fault protection, and system configuration

4/11/2007 CSC 256/456 - Spring 2007 3

Request-granularity Resource Accounting

Request Request Arrival of

Problems: arrival completion another request
o request processing over S f .
multiple thread/process thread
o thread/process pooling
. Database server Time
o resource accounting for thread

interrupt handlers

Request execution
encapsulation in OS:

o Resource containers

[Banga et al., OSDI 1999] \ f /
o Magpie [Barham et al., \ /\ /

OSDI 2004]
o Request tracking using /

message tagging

4/11/2007 CSC 256/456 - Spring 2007 4

Isolation Using Virtual Machines

Virtual machines (VMware, Xen) allow

o strong fault isolation

o isolation in resource provisioning

o customized system configuration

Proportional CPU scheduling

o virtual time-based

o lottery scheduling [Waldspurger&Weihl, O0SDI1994]

Issue

o excessive overhead when there are many virtual machines
Coarse-grain isolation in service hosting centers
Light-weight virtual machines

o Denali [Witaker et al., 0SDI2002]

4/11/2007 CSC 256/456 - Spring 2007 5

Background for Data-intensive Servers

Performance of most CPU-bound workloads has exceeded
what is needed

o throughput of a Web server when all data is in memory?

Server performance when the data size far exceeds the
available memory

o caching is not very effective in this case.

o throughput of a Web server when all data resides on disk?

4/11/2007 CSC 256/456 - Spring 2007

Problem Description

Performance on default Linux 2.4.20

100%
80%
60%
40%

20% = index searching

— Apache web servers
0%,
1 4 16 64 256 1024

Number of concurrent request handlers

Normalized throughput

The problem:
o frequent I/0 switching (disk seeks) under concurrent requests

4/11/2007 CSC 256/456 - Spring 2007 7

Improving the I/O Efficiency

Anticipatory scheduling [Iyer & Druschel, SOSP 2001]

o when an I/0 request completes, the scheduler will wait a bit
(despite there is other work to do), in anticipation that a
new request from the same process (typically with good
locality) will be issued.

o there is a timeout associated with this wait, and the disk
scheduler would go ahead to schedule another request if no
such new request appears before timeout.

Anticipatory scheduling is ineffective when:
o each individual process performs interleaving I/0.

arun arun

astream ————m f————]

%

a stream ME————pf @

arun arun

o there is a lack of process context [Jones et al., USENIX2006]

4/11/2007 CSC 256/456 - Spring 2007

8

Aggressive Prefetching

Aggressive prefetching: another way to reduce the
I/0 switching frequency
Pitfalls of over-aggressive prefetching
o kernel-level prefetching may retrieve unneeded data
magnified by aggressive prefetching
o increasing memory contention
maghified by high server concurrency

Must balance I/0 efficiency with these pitfalls

Linux 2.4 read-ahead for sequential access stream
a 3,7,13,25, 32,32, 32, 32 pages,

4/11/2007 CSC 256/456 - Spring 2007

Competitive Prefetching

The problem:

o we do not know exactly how much data is needed by the
application ahead of time.

o balance the efficiency of large-granularity I/0 and the
overhead of retrieving unneeded data

Competitive prefetching [Li et al., EuroSys2007]

o when the prefetching size is equal to the amount of data
that can be transferred within a single seek/rotation time,
the total disk consumption is at most twice that of the
optimal offline strategy

o provides a worst-case performance bound

o competitive prefetching size in practice

average seek time 6.3ms; average rotation delay 3ms; average
transfer rate 53.7MB/sec

4/11/2007 CSC 256/456 - Spring 2007 10

Increased Memory Contention

Prefetching-incurred page thrashing

o aggressive prefetching creates higher memory contention
o magnified by high execution concurrency in online servers
o pathology: a prefetched page may be evicted before being

accessed
o0 300
g
& =
R 220 §
5 Fi
(=9 o
'§| 6 180 g
2 =
£ 4 120 =
o
5 £
E 2 — application throughput ke &
= — page thrashing rate &
a 0
= 1 200 400 600 800 1000

Number of concurrent request handlers

4/11/2007 CSC 256/456 - Spring 2007

Managing Prefetching Memory

Prefetch memory
o memory pages that were prefetched but not yet accessed

Which page should we evict when there is memory
pressure?

o access history/frequency-based policies (e.g., LRU or LFU)
make no sense since no pages in the pool have even been
accessed

o LRU according to access history on prefetching streams
instead of on pages [Li&Shen, FAST2005]

1. Pages whose owner request handler has exited
2. Last page from the longest prefetch stream
3. Last page from the least recently accessed prefetch stream

4/11/2007 CSC 256/456 - Spring 2007 12

