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Abstract

Online instructional applications, social networking sites,
Wiki-based web sites, and other emerging web applications that
rely on end users for the generation of web content are increas-
ingly popular. However, these collaborative web applications
are still absent from the benchmark suites commonly used in the
evaluation of online systems. This paper argues that collabora-
tive web applications are unlike traditional online benchmarks,
and therefore warrant a new class of benchmarks. Specifically,
request behaviors in collaborative web applications are deter-
mined by contributions from end users, which leads to qualita-
tively more diverse server-side resource requirements andex-
ecution patterns compared to traditional online benchmarks.
Our arguments stem from an empirical examination of WeB-
WorK — a widely-used collaborative web application that al-
lows teachers to post math or physics problems for their stu-
dents to solve online. Compared to traditional online bench-
marks (like TPC-C, SPECweb, and RUBiS), WeBWorK requests
are harder to cluster according to their resource consumption,
and they follow less regular patterns. Further, we demonstrate
that the use of a WeBWorK-style benchmark would probably
have led to different results in some recent research studies con-
cerning request classification from event chains and type-based
resource usage prediction.

1 Introduction

Traditional web applications service requests from content
supplied by some central content generation sources (in the
form of static web pages or dynamic content produced by hosted
content generation code). Although some user requests may re-
sult in persistent state changes on the server side, such changes
often exert very small effects on system-level applicationexecu-
tion behaviors. Due to the large dependence on central content
generation sources in these applications, the resource require-
ments and other characteristics for processing user requests are
typically well clustered into small numbers of groups [3,6,15].
Widely used online benchmarks such as TPC benchmarks
(e.g., TPC-C, TPC-H, TPC-W) [22], SPEC online benchmarks
(e.g., SPECweb, SPECjbb, SPECjAppServer) [16], and J2EE-
based multi-component benchmarks (e.g., RUBiS [13], Stock-
Online [21]) all reflect such request behavior patterns.

Recent years have witnessed an emerging class of web appli-
cations that rely on end users for their content. In some cases,

these sites even rely on end users for code that generates con-
tent. Examples of such applications include social networking
platforms [8], web-based productivity software [9], online in-
structional applications [24], and Wiki-based web sites [7]. The
popularity and vitality of thesecollaborative web applications
directly benefit from an ever-increasing pool of creative web
users. At the same time, due to the many contributions from in-
dependent end users, the behavior pattern of request processing
in these applications tends to be much less clustered or regular.
Despite the surging importance of these applications and their
behavior uniqueness, they have been ignored in the benchmark-
ing of online web applications.

This paper makes the case for a new class of benchmarks
that reflect the unique properties of collaborative web appli-
cations. Our arguments stem from an empirical examination
of WeBWorK [24], a real-world collaborative web applica-
tion. WeBWorK is a web-based homework checker that al-
lows teachers to post math or physics problems for their stu-
dents to solve online. In particular, teacher-supplied WeBWorK
problems are interpreted by the application server as content-
generating scripts. The WeBWorK deployment at the Univer-
sity of Rochester is used by around 50,000 students from 80 or
so institutions worldwide. Our empirical examination is driven
by realistic problem sets (ranging from pre-calculus to differen-
tial equations) and user requests extracted from three-year sys-
tem logs at the real site. We emphasize that the use ofrealistic
workload traces is particularly important in this study because
the user-supplied content may substantially affect the request
processing behavior pattern in WeBWorK.

As a representative collaborative web application, WeBWorK
provides a realistic basis to reevaluate past research findings de-
rived on traditional online benchmarks. In particular, this paper
reevaluates two recent contributions on the system-level man-
agement of online services: 1) Magpie-style online requestclas-
sification which is based on canonical request event chains [3];
2) system resource usage prediction based on a linear request-
type model [19].

This paper makes two contributions.

1. We present an empirical evaluation that exposes funda-
mental differences between a real-world collaborative web
application and traditional benchmarks commonly used to
evaluate web applications.

2. We demonstrate that the use of a collaborative web appli-
cation as an evaluation basis would probably have led to



different conclusions in some recent research studies.

This remainder of this paper is organized as follows: Sec-
tion 2 provides more background on WeBWorK and collabora-
tive web applications. Section 3 contrasts the request behavior
characteristics of WeBWorK against traditional online bench-
marks. Section 4 uses WeBWorK as an evaluation basis for two
recent research proposals, and finds that it may lead to different
conclusions compared to using traditional online benchmarks.
Section 5 describes related work and Section 6 concludes. We
also announce the release of our WeBWorK trace, dataset, and
deployment instructions at the end of this paper.

2 WeBWorK and Collaborative Web Applica-
tions

WeBWorK [24] supports two types of users. Teachers cre-
ate new problem sets to the online database. Students view
problems and submit solutions. Solution submission also trig-
gers online solution checking. In WeBWorK, the main con-
tent (problem sets and solution checkers) is generated collab-
oratively by a large number of teachers. In a three-year usage
log, we have observed more than 3,000 teacher-created problem
sets (which differ significantly from each other). The delivery
of different problem sets and corresponding solution checkers
may exhibit very different request processing behaviors atthe
server system.

In addition to the differing teacher-created problem sets,a
single problem may also be delivered to multiple students in
different ways. More specifically, WeBWorK allows teachers
to create problems in the form of dynamic code (written in a
Perl variant called theProblem Generation (PG) Language).
An example of PG code is given in Figure 1. Such code is
executed when a student accesses or submits a solution for a
homework problem. The power of dynamically producing ques-
tions and correcting answers offers a practical benefit to teach-
ers: the same core problem (e.g., integration or linear equation)
can be presented with some randomized variations to minimize
the chance of direct solution copying among students.

WeBWorK distinguishes between users that can create con-
tent (teachers) and those that can view content only (students).
Such dichotomies allow service providers to selectively revoke
content generation privileges, and are common among commer-
cial collaborative web applications. The Facebook Platform [8]
and Google Application Engine [2], for instance, require end
users to register as developers before they are allowed to gener-
ate content. Even Wiki-based applications, one of the original
domains that allow any user to create or modify content, are
increasingly password protected.

WeBWorK users are allowed to provide dynamically exe-
cuting code for content generation. Other popular collabo-
rative web applications also allow end users to create scripts
that produce web content. For example, the Facebook Plat-
form [8] invokes user-created scripts on remote machines and
provides a well-defined API for such applications to access pro-
prietary data. As another example, spreadsheet data processed

TEXT(beginproblem());
$showPartialCorrectAnswers = 0;

$x=random(-20,20,1);
$y=random(-20,20,1);
$z=random(-20,20,1);

$cox1 = non_zero_random(-5,5,1);
$coy1 = non_zero_random(-5,5,1);
$coz1 = non_zero_random(-5,5,1);
$cox2 = non_zero_random(-5,5,1);
$coy2 = non_zero_random(-5,5,1);
$coz2 = non_zero_random(-5,5,1);
$cox3 = non_zero_random(-5,5,1);
$coy3 = non_zero_random(-5,5,1);
$coz3 = non_zero_random(-5,5,1);

$b1 = $cox1*$x + $coy1*$y + $coz1*$z;
$b2 = $cox2*$x + $coy2*$y + $coz2*$z;
$b3 = $cox3*$x + $coy3*$y + $coz3*$z;

BEGIN_TEXT
Use Cramer’’s rule to find the value of \(z\) in the
solution of the following system:
\[
\begin{array}{r}
$cox1 x ? {$coy1} y ? {$coz1} z = $b1 \\\\
$cox2 x ? {$coy2} y ? {$coz2} z = $b2 \\\\
$cox3 x ? {$coy3} y ? {$coz3} z = $b3 \\\\
\end{array}
\]
$BR
\(z=\) \{ans_rule(25) \}
$BR
END_TEXT

$ans3 = $z;

ANS(num_cmp($ans3));

Figure 1:An example PG code segment — solving a system of linear
equations.

by Google Docs [9] can spur server-side execution of user-
created calculations and graphs. Finally, the Second Life [14]
virtual world allows users to create virtual items with dynamic,
compute-intensive properties.

WeBWorK is structurally similar to many collaborative web
applications, but it is not representative of all. We use WeB-
WorK as a case study to advocate a new research agenda on
benchmarking collaborative web applications. WeBWorK is
ideal for this purpose, because it is real and widely-used, and we
have made its workload traces publicly available [23]. There-
fore, our analysis is based on real usage patterns for an impor-
tant application, and our results can be reproduced for verifica-
tion.

3 Request Behavior Analysis

We examine WeBWorK’s request behavior characteristics
and contrast it with traditional online benchmarks. Here we
employ several widely used online benchmarks for the purpose
of comparison:

• TPC-C [22] simulates a population of terminal operators
executing Order-Entry transactions against a database. It
contains five types of transactions: “new order”, “pay-
ment”, “order status”, “delivery”, and “stock level”, con-
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Figure 2:Probability density distribution of per-request CPU usagefor three traditional online benchmarks. The probability density is normalized
to that under the even distribution. To avoid distortion dueto rare outliers requests, we consider aviable range of request CPU usage from the
1-percentile request CPU usage to the 99-percentile request CPU usage for each benchmark (X-axis value range in each plot).
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Figure 3:Probability density distribution of per-request behaviorfor
WeBWorK. Refer to the caption of Figure 2 for details on setup.

stituting 45%, 42%, 4%, 4%, and 4% of all requests, re-
spectively. We utilize a local implementation of TPC-C
that may not follow all benchmark performance reporting
rules. This is sufficient for our purpose of application be-
havior characterization.

• We use an assortment of dynamic content requests in the
SPECweb99 benchmark [16]. Following the benchmark
specification, we use a mix of 42% GET requests without
cookie, 42% GET requests with cookie, and 16% POST
requests.

• RUBiS[13] is a J2EE-based multi-component online ser-
vice that implements the core functions of an auction site
including selling, browsing, and bidding. It uses a three-
tier service model, containing a front-end web server, a
back-end database, and nine business logic components
implemented as Enterprise Java Beans.

For our empirical evaluation, we deploy WeBWorK and
the other three benchmarks in an experimental platform with
system-level event tracing. In our deployments, WeBWorK,
TPC-C, and RUBiS run on the MySQL 5.0.18 database.
SPECweb employs the Apache 2.0.44 web server. Additionally,

RUBiS runs on the JBoss 3.2.3 application server with an em-
bedded Tomcat 5.0 servlet container. The server machine in our
experimental platform contains dual 2 GHz Intel Xeon proces-
sors and 2 GB memory. All deployed application/benchmarks
are CPU-bound. The server operating system is Linux 2.6.10
with an augmented request context maintenance and event trac-
ing framework [15]. This framework allows us to collect per-
request event traces for multi-component server applications.
In particular, we have collected per-request traces on CPU con-
text switch events, system call events, network and storageI/O
events. The CPU context switch event trace allows us to derive
per-request CPU usage for each application/benchmark.

Figures 2 and 3 plot the probability density distribution of
per-request CPU usage for the three traditional online bench-
marks and for WeBWorK respectively. The probability density
is normalized to that under the even distribution. A visual exam-
ination uncovers two important behavior differences between
WeBWorK and traditional online benchmarks:

• Weaker clustering. Per-request CPU usage probability
density plots for traditional online benchmarks are strongly
dominated by sharp spikes (or request behavior tends to
form clusters). In contrast, WeBWorK exhibits much less
clustered per-request CPU usage.

• Less regularity. Request behaviors for traditional online
benchmarks sometimes exhibit regular patterns due to cer-
tain artificial effects of central content generation sources.
For instance, the repeating low spikes in the TPC-C plot
is due to an item count variable that is randomly selected
within {5, 6,· · · , 15} for each “new order” transaction (ac-
cording to Clause 2.4.1.3 of the TPC-C specification [22]).
In contrast, WeBWorK requests do not exhibit any obvious
regular patterns.

After examining request behavior patterns on a single request
property (CPU usage), we next examine the correlation between
multiple request properties. Figures 4 and 5 illustrate such cor-
relation between request CPU usage and request system call
count for the three traditional online benchmarks and for WeB-
WorK respectively. A visual examination uncovers another dif-
ference between them:
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Figure 4: Two-dimensional plots on request CPU usage and request system call count for the three traditional online benchmarks. Each dot
represents a request. Around 4,000 requests are illustrated for each benchmark.
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Figure 5: Two-dimensional plot on request CPU usage and request
system call count for WeBWorK. Each dot represents a request. 4,000
requests are illustrated in the plot.

• Weaker inter-property correlation . For TPC-C and RU-
BiS, the correlation is visually very strong — the request
CPU usage typically falls into a small value range when the
request system call count is known. Although such corre-
lation is weaker for SPECweb, it is still much stronger than
that for WeBWorK.

Fundamentally, these unique behavior characteristics of
WeBWorK can all be rationalized given that the behavior pat-
tern of request processing in collaborative applications is heav-
ily affected by user creation. Independent contribution from
large numbers of end users injects a sense of randomness in
request behaviors that lead to weaker request clustering, less
behavior regularity, and weaker inter-property correlation.

4 Reevaluation of Past Findings

Differences on inherent benchmark characteristics do not
necessarily lead to varying high-level conclusions from
benchmark-driven evaluations [17]. In this section, however,
we examine how the unique behavior of collaborative web ap-
plications may affect the evaluation results. By revisiting some
recent research studies evaluated using traditional online bench-
marks, we demonstrate that the use of a WeBWorK-style bench-

mark would probably have led to negative results.

4.1 Event Chain-based Request Classification

The Magpie work [3] proposed to transparently extract per-
request event traces online and then use request event chains as
signatures to classify similar requests into clusters. Finally, a
concise workload model consists of each cluster’s representa-
tive request and its relative size.

We implemented Magpie’s request classification algorithm
and applied it on the system call event trace for all four ap-
plication/benchmarks. In Magpie, the distance of two requests
is measured using the string-edit distance [10] of two requests’
event chains. The calculation of string-edit distance is expen-
sive for some of our application/benchmarks (both RUBiS and
WeBWorK contain requests with tens of thousands of system
call events). We use an alternative distance measure that can be
quickly calculated — ignoring the event order and considering
each request event chain as a counting set of events1; then cal-
culating the minimum number of additions/deletions to equalize
the two counting sets.

We evaluate the request classification accuracy by measuring
how well each cluster representative’s CPU usage predicts the
CPU usage of all cluster members. We use the coefficient of
determination (orR2) as the model prediction accuracy metric.
Specifically, given a set of samples (x1, x2, · · · , xn) with sam-
ple mean̄x and corresponding predictions (x̂1, x̂2, · · · , x̂n), the
coefficient of determination for the prediction is defined as:

R2 = 1 −

∑n

i=1
(xi − x̂i)

2

∑n

i=1
(xi − x̄)2

Intuitively 1−R2 represents the relative aggregate square error
of the prediction compared to that under the mean value predic-
tion. A larger coefficient of determination (which cannot exceed
1.0) indicates more accurate prediction. A negative coefficient
of determination indicates the prediction is less accuratethan
simply using the mean value prediction.

Table 1 compares the request classification accuracy eval-
uated using all four application/benchmarks when around 20

1In a counting set, we not only account for the system call types appearing
in the set, but also the number of events for each type.
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Figure 6:Type-based resource usage prediction over 50 five-minute intervals for RUBiS and WeBWorK. The dotted line in each plot indicates
the actual mean.

Benchmark R2 accuracy

TPC-C 0.98
SPECweb 0.94
RUBiS 0.89
WeBWorK −0.24

Table 1: Event chain-based request classification accuracy when the
evaluation is driven by different benchmarks.

clusters are formed. Results suggest that the request classifi-
cation is very accurate for the three traditional online bench-
marks (within which TPC-C was actually used in the Magpie
study [3]). In contrast, the WeBWorK-driven evaluation shows
very poor request classification accuracy. This result is not sur-
prising given our request behavior analysis in Section 3.

4.2 Type-based Resource Usage Prediction

Another recent work [19] analyzed real traces from pro-
duction web applications and uncovered an interesting phe-
nomenon: the relative frequencies of request types fluctuate
over short and long intervals. Such nonstationarity can be
used to calibrate models of application-level performanceusing
only logs of request arrivals and resource utilizations that are
routinely collected in production environments. One key sub-
model in this approach is a weighted linear characterization of
aggregate CPU utilization shown below:

U = β0 +
∑

j

βjNj (1)

whereβj represents the typical CPU demand of request typej

(β0 indicates the background CPU utilization not tied to specific
request processing), andNj is the number of requests of typej

occurring in a particular time interval (e.g., five minutes).
Using the trace-driven WeBWorK, we reevaluated the linear

request-type model to predict system resource utilization. We
consider three natural request types for WeBWorK: submitting
problems, viewing problems, and submitting solutions. Table 2
shows that the request-type model yields high prediction accu-
racy for RUBiS, as reported in the previous work [19]. How-
ever, the prediction accuracy for WeBWorK is much worse. Fig-

Benchmark R2 accuracy

RUBiS 0.90
WeBWorK 0.25

Table 2: Type-based resource usage prediction accuracy when the
evaluation is driven by different benchmarks.

ure 6 graphically depicts the prediction accuracy over 50 five-
minute intervals for the two benchmarks, which clearly shows
the poor accuracy for WeBWorK. Again, this result is not sur-
prising given our request behavior analysis in Section 3.

5 Related Work

Previous benchmarks reflect the behavior patterns of tradi-
tional web workloads. RUBiS and RUBBoS [1] characterize
the workload of a dynamic-content auction site and bulletin
board, respectively. TPC benchmarks [22] reflect e-commerce
and database workloads, and the SPEC suite [16] characterizes
workloads for static content and multi-tier services. In compar-
ison, WeBWorK captures the unique and emerging workload of
a collaborative web application. Specifically, request execution
patterns in WeBWorK are qualitatively more diverse compared
to previous benchmarks, because they depend on the contribu-
tions of end users.

Recent studies have characterized other emerging web work-
loads. Nagpurkaret al. [12] investigate the instruction and
cache miss behavior of a Web 2.0 blog, a social bookmark-
ing site, and model-view-controller (MVC) PetStore. Limet
al. [11] explore new architectural designs for datacenter servers
using interactive web mail and Mapreduce benchmarks. Chaet
al. [4] find that user-supplied content affects the popularity dis-
tributions of web objects in YouTube, another real-world collab-
orative web application. Our contribution is the characterization
of diversity in the server-side resource requirements and request
executions patterns of WeBWorK.

Finally, it is well known that Internet services—of all
varieties—are hard to manage. Stewartet al.demonstrate server
consolidation [19], power-aware platform selection [18],and
capacity planning [20] for dynamic-content Internet services.
Chenet al. [5] demonstrate energy-aware server provisioning



for a connection-intensive services, like video streamingand
instant messaging. Barhamet al. [3] demonstrate per-request
cost accounting and anomaly detection for services distributed
across a cluster. This paper shows that the workload of a col-
laborative web application is qualitatively unlike the workloads
used by previous studies, and may require different solutions.

6 Conclusion

In this paper, we empirically examined a real-world collabo-
rative web application — WeBWorK [23]. Our study finds that
WeBWorK requests exhibit much weaker request clustering,
less behavior regularity, and weaker inter-property correlation
compared to traditional online benchmarks. All these behavior
characteristics can be attributed to the independent content cre-
ation from large numbers of end users in emerging collaborative
web applications [7–9, 14]. Using WeBWorK, we reevaluated
some recent research findings (concerning event chain-based
request classification [3] and type-based resource usage pre-
diction [19]) and discovered that the use of a WeBWorK-style
benchmark would probably have led to different results. We ex-
pect that the importance of collaborative web applicationswill
rapidly rise given their surging popularity and vitality through
direct user creation. The goal of this work is to raise awareness
on the need for collaborative web application benchmarks, par-
ticularly for the purpose of evaluating computer system support
for online services [3,6,15,18–20].

Availability Our WeBWorK setup, including the request trace
and dataset from the University of Rochester, is publicly avail-
able [23]. We hope other researchers will use WeBWorK to
evaluate their research proposals on a collaborative web appli-
cation workload.
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