
Configuration-Space Performance Anomaly Depiction

Christopher Stewart Kai Shen
Department of Computer Science

University of Rochester
{stewart,kshen}@cs.rochester.edu

Arun Iyengar Jian Yin
IBM Watson Research Center

{aruni, jianyin}@us.ibm.com

ABSTRACT
Complex distributed systems (like those based on J2EE plat-
forms) are designed to perform well for a variety of appli-
cation workloads and configuration settings. In practice,
however, the system performance may not meet the expec-
tation at all execution conditions. This short paper de-
scribes our research on depicting performance anomaly man-
ifestations over a large execution condition space for dis-
tributed systems. Specifically, we provide a case examina-
tion of our research target and describe our work in three
areas—performance anomaly identification, configuration-
space anomaly depiction, and the utilizations of depiction
results.

Categories and Subject Descriptors
C.4 [computer systems organization]: performance of
systems—modeling techniques, performance attributes; C.5.5
[computer systems organization]: computer system im-
plementation—servers; D.2.9 [software engineering]: man-
agement—configuration management ; D.4.8 [software]: op-
erating systems—modeling and prediction, queuing theory

General Terms
Performance anomaly, performance bug, system manage-
ment, resource allocation, decision tree

Keywords
Performance Anomaly Depiction

1. PROBLEM DESCRIPTION AND
RESEARCH GOAL

Performance anomalies, situations in which performance falls
below expectations, are not uncommon in complex com-
puter systems [1–3, 17, 21]. Causes for performance anoma-
lies include overly simplified implementations, mis-handling
of special/boundary cases, and improper management of
system component interactions. Aside from their effect on

performance degradation, these anomalies also make the
system performance behaviors hard to predict. Many sys-
tem management functions would benefit from such pre-
dictability. For instance, they can guide policy decisions
on quality-of-service management and optimal resource pro-
visioning [5,8,18–20,23].

Our research investigates scalable techniques to examine a
large space of potential system execution conditions and
depict the conditions under which performance anomalies
are likely to occur. Here by an execution condition, we
mean the specification of a system running environment
that includes system configuration parameters (e.g., com-
ponent placement policy and caching protocol) and input
workload properties (e.g., component CPU needs and inter-
component communication patterns). Figure 1 illustrates an
example of execution conditions and performance anomaly
depiction of a multi-dimensional space.

System configuration X

System configuration Y

Workload property Z

A depicted region of

performance anomalies

A sampled execution condition under which no performance anomaly manifests

A sampled execution condition under which a performance anomaly manifests

Figure 1: Execution conditions and performance
anomaly depiction across a multi-dimensional space
of system configurations and workload properties.
The black and white dots represent sampled con-
ditions where we have measured the actual perfor-
mance to determine if a performance anomaly man-
ifests. These sampled conditions are the basis for
performance anomaly depiction.

The performance anomaly depiction provides a probabilistic
view of anomaly manifestations under each potential execu-
tion condition. The results can be used to guide the avoid-
ance of anomaly-inducing system configurations under given
input workload properties. In particular, system configura-
tions that are expected to meet performance requirements

according to high-level system design may fail to do so when
anomalies manifest under such configurations. Additionally,
we can identify the execution conditions that are most cor-
related with anomaly manifestations. This information can
help narrow the search space for performance debugging to
the system functions that are affected by the problematic
conditions.

In principle, the proposed anomaly depiction approach can
be applied to any software system that allows many con-
figuration settings and supports various application work-
loads. We are particularly interested in the case study on
component-based distributed systems. A typical example of
such systems may be built on a J2EE platform and may
support various application components, provide common
services (possibly remotely), and manage application-level
protocols to access storage and remote services. Addition-
ally, these systems are often deployed in distributed envi-
ronments with high-concurrency workloads. Our current
empirical studies employ an open-source J2EE distributed
middleware platform (JBoss) as well as a commercial J2EE
distributed middleware platform (IBM WebSphere).

Related Work
Prior research investigated techniques to discover behav-
ioral anomalies or failure causes in large system software [6,
11]. However, the identification of performance anomalies is
uniquely challenging because they typically relate to high-
level system semantics while they do not exhibit easily iden-
tifiable system crashes, incorrect states, and source-level
patterns.

The detection, characterization, and debugging of perfor-
mance anomalies have been investigated in recent research [1–
3, 14]. In general, these studies focused on anomaly-related
issues under the specific execution conditions encountered
during a particular execution. However, distributed sys-
tems often allow many configuration settings (e.g., cache
coherence protocol and thread pool size) and support work-
loads with varying properties (e.g., service concurrency and
database access rate). It is desirable to explore performance
anomalies over a comprehensive set of execution conditions,
which allows quality assurance under varying conditions and
exposes anomaly-correlated execution conditions to help the
root cause analysis.

There is a large body of previous work addressing fault tol-
erance and high availability of distributed system designs,
such as distributed consensus [4, 10] and replication man-
agement [13, 16]. At a high level, our research does not
propose new design techniques or principles for distributed
systems, but instead it tries to discover implementation er-
rors that cause deviations of system behaviors from the high-
level design (called anomalies). Implementation deviations
from design are not rare in distributed systems given their
increasing complexity.

2. A CASE EXAMINATION
To gain a concrete understanding on our target problem,
we provide a case examination of the large execution condi-
tion space and condition-specific performance anomalies for
distributed systems.

System configurations Values

Database connector Buffered results, streaming results

EJB component cache No cache, exclusive-access,
coherence verification-based

Remote invocation Java RMI, JBoss-specific

Component placement All components co-located (with
strategy web server, database, or neither),

cpu-heavy comp. co-located (with
web server, database, or neither),
net-heavy comp. co-located (with
web server, database, or neither),
cpu load-balanced placement,
net load-balanced placement

Invocation retry policy Never retry, retry once

Maximum system Small (10), medium (128),
concurrency medium-high (512), high (2048)
(max web-server threads)

Workload properties Values

HTTP session type HTTP 1.0, HTTP 1.1, SSL

Database access 0%, 25%, 50%, 75%, 100%
frequency in the (percentage of requests with more
workload request mix than one database access)

Type of hosted RUBiS Servlet only (no EJB components),
components EJB components with bean

managed state persistence (BMP),
EJB components with container
managed state persistence (CMP),
EJB components with session state,
stateless EJB components

Workload request rate 1, 3, 6, 9, · · · , 180 requests
per sec. (61 distinct settings)

Figure 2: Some possible system configurations and
workload conditions in a JBoss/RUBiS system. The
component placement strategy affects which ma-
chines RUBiS EJB components run on. For in-
stance, the “cpu-heavy co-located with web server”
setting means that the EJBs with high CPU usage
run on the same machine as the web server. The
other components would run on the their own ma-
chine (i.e., the “neither” machine).

Specifically, we consider a deployed system on the JBoss
Application Server [9], the most widely used open-source
J2EE platform. The whole system contains the JBoss Ap-
plication Server, the Tomcat Servlet container and related
plugins, MySql database with its JDBC connector, and the
RUBiS online auction benchmark [15]. RUBiS is a three-tier
web service comprising a web server, a database, and nine
middle-tier Enterprise Java Beans (EJB). The various RU-
BiS application components are distributed across a three-
machine cluster. The web-server is bound to one machine,
the database to another, and the EJB components can be
assigned to any machine. Figure 2 lists six J2EE config-
urations and four properties of the application workload.
Different parameter values on each of the ten parameters al-
low about 4.8 million possible execution conditions for this
system.

We describe an example performance anomaly scenario. In

this example, we observe a degradation of system perfor-
mance when an increasing proportion of the input requests
trigger multiple database accesses (the ”original performance”
in Figure 3). The cause of this performance degradation is
described below. The Servlet-only implementation of RU-
BiS bypasses the default JBoss database connection man-
agement and it instead manages database connections on
its own. When a database connection is closed on the server
side, RUBiS may not always properly restart the broken
connection. Some future requests may then be assigned the
broken connection and fail on database accesses, which man-
ifests as a reduction of successful request completions. A
simple correction is to check for broken database connections
and reconnect them when necessary. Figure 3 shows that the
correction can eliminate the anomalous performance degra-
dation at high database access rates.

0% 25% 50% 75% 100%
60

70

80

Database access rate

T
hr

ou
gh

pu
t (

in
 r

eq
ue

st
s/

se
co

nd
)

original system performance
corrected system performance

Figure 3: An example performance anomaly over
certain workload configurations and its correction
for the JBoss/RUBiS system. Here the database
access rate of a workload indicates the percentage of
requests with more than one database access. Note
that the Y-axis does not start from zero.

3. RESEARCH ISSUES AND
PRELIMINARY WORK

We describe several research issues and provide an overview
of our preliminary results on these issues.

3.1 Performance Anomaly Identification
Literally speaking, a performance anomaly arises when the
system performance behavior deviates from the expectation.
Performance expectations can be made in different ways,
such as design-driven models, service-level agreements, or
programmer specifications. Our goal is to derive perfor-
mance expectations that match high-level design principles
and that can be intuitively interpreted. For instance, the
expected performance of a distributed cache should match
that intended by the high-level caching algorithm. Given
a design-driven expectation, a performance anomaly would
indicate an implementation deviation from the high-level de-
sign.

Performance expectations can be derived by following some
(typically bottom-up) design semantics to assemble expecta-
tions from low-level system metrics that are acquired through
offline calibration or online measurements. Past efforts (in-
cluding others [7, 22, 23] and our own [18–20]) have con-
structed design-driven performance expectation models for

distributed systems. It is worth noting that the IRONModel
paper [22] has recognized the discrepancies between real sys-
tem performance behaviors and traditional design-driven ex-
pectation models. They tried to incorporate these anomalies
into the expectation models while our work attempts to bet-
ter understand them (and particularly their manifestation
patterns over the large execution condition space).

In our preliminary work, we derive performance expecta-
tions under each configuration based on our prior modeling
work [20]. Specifically, we model multi-component network
services by capturing the first-order resource consumption in
individual component executions and inter-component com-
munications. Given characterized application behavior pro-
files, our model allows us to derive performance expecta-
tions under different distributed component placement and
resource provisioning policies. We are aware that a devi-
ation from the high-level design expectations may also be
due to measurement errors or natural behavior instability in
complex systems, including effects of sporadic background
maintenance like garbage collection and system event log-
ging. Anomalies caused by these factors are usually small in
magnitude. We may screen them out by only counting the
relatively large performance deviations.

3.2 Configuration-Space Anomaly Depiction
From a representative set of sampled execution conditions
(each labeled “normal” or “anomalous”), we derive perfor-
mance anomaly depiction over a comprehensive execution
condition space. The depiction is essentially a classifier of
system configurations and workload properties that parti-
tions the execution condition space into normal and anoma-
lous regions. There have been a great number of well-proven
classification techniques, such as naive Bayes classifiers, per-
ceptrons, decision trees, neural networks, Bayesian networks,
support vector machines, and hidden Markov models. We
use decision trees to build our anomaly depictions because
they have the desirable properties of easy interpretability,
prior knowledge free, and robustness in handling noises.

Our depiction is a decision tree that classifies a vector of
workload properties and system configurations into one of
two target classes—“normal” or “anomalous”. Guided by
the Iterative Dichotomiser 3 algorithm [12], the decision
tree is generated in a top-down fashion by iteratively select-
ing an attribute that best classifies current training sam-
ples, partitioning samples based on their corresponding val-
ues of the attribute, and constructing a sub-tree for each
partition. At each step of the tree-generation algorithm,
we choose the attribute most effective in classifying training
samples according to the measure of information gain. Intu-
itively, information gain represents the amount of reduction
on the co-existence of normal and anomalous conditions in
one partition. Our preliminary results on anomaly depiction
has been presented in [21]. Figure 4 illustrates an exam-
ple performance anomaly depiction for a sub-space of the
JBoss/RUBiS execution conditions.

3.3 Depiction Utilizations
Performance anomaly depictions are useful when configur-
ing or re-configuring online J2EE services. Our depictions
can identify anomaly-inducing configuration settings given
the input workload to the system, which can then guide

Workload

request rate

Normal

0-90

Reqs/sec

Component

placement

Anomalous Normal

NormalAnomalous

All components

on one node

CPU-heavy

components

co-located

Net-heavy

components

co-located

Load balanced

placement

150-180

Reqs/sec

Max request

concurrency

90-150

Reqs/sec

Anomalous

>=2048

Normal

<2048

Figure 4: An example performance anomaly depic-
tion in the form of a two-level decision tree. In this
example, the top-level classifying attribute in the de-
cision tree is the workload request rate. Two second-
level attributes are the maximum request concur-
rency and the component placement policy.

the system to avoid such anomalous configurations. Specif-
ically, our depiction results enable an approach to quantify
the performance dependability of each configuration setting.
Consider a system with possible configurations C={c1, c2,
· · · , cm}. The system users may exert a set of workload
conditions W={w1, w2, · · · , wn} while the probability for
condition wi to occur is pi (

Pn

i=1 pi = 1). Our perfor-
mance anomaly depiction indicates whether a specific work-
load condition will trigger an anomaly under a specific sys-
tem configuration. In other words, the anomaly depiction

is a function that maps (C, W)
f

−→ {normal, anomalous}.
We may then assess a system configuration c’s performance
dependability using the probability that the system will per-
form normally under the full range of possible input work-
loads:

P

1≤i≤n, (c,wi)
f

−→normal
pi.

We can also utilize performance anomaly depictions to aid
performance debugging. Specifically, the depiction’s inter-
nal structure may uncover correlations between execution
conditions and performance anomalies. In the decision tree,
each anomalous leaf node is correlated with the set of ex-
ecution conditions present in its path from the root. Us-
ing system-specific expert knowledge, one can further link
anomaly-correlated execution conditions to relevant system
functions in the implementation. As an example, the perfor-
mance anomaly described in Section 2 was discovered using
our approach.

Acknowledgment
This work was supported in part by NSF grants CCF-0448413,
CNS-0615045, CCF-0621472, and by an IBM Faculty Award.
Ming Zhong (currently at Google) helped us in identifying
the decision tree classifier for performance anomaly depic-
tions.

4. REFERENCES
[1] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance Debugging for
Distributed Systems of Black Boxes. In ACM Symp.

on Operating Systems Principles, pages 74–89, Bolton
Landing, NY, Oct. 2003.

[2] M. Chen, A. Accardi, E. Kiciman, J. Lloyd,
D. Patterson, A. Fox, and E. Brewer. Path-Based
Failure and Evolution Management. In USENIX

Symp. on Networked Systems Design and

Implementation, pages 309–322, San Francisco, CA,
Mar. 2004.

[3] I. Cohen, J. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating Instrumentation Data to
System States: A Building Block for Automated
Diagnosis and Control. In USENIX Symp. on

Operating Systems Design and Implementation, pages
231–244, San Francisco, CA, Dec. 2004.

[4] F. Cristian and C. Fetzer. The Timed Asynchronous
Distributed System Model. IEEE Trans. on Parallel

and Distributed Systems, 10(6):642–657, June 1999.

[5] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.
Model-based Resource Provisioning in a Web Service
Utility. In USENIX Symp. on Internet Technologies

and Systems, Seattle, WA, Mar. 2003.

[6] D. Engler, D. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as Deviant Behavior: A General
Approach to Inferring Errors in Systems Code. In
ACM Symp. on Operating Systems Principles, pages
57–72, Banff, Canada, Oct. 2001.

[7] G. C. Hunt and M. L. Scott. The Coign Automatic
Distributed Partitioning System. In USENIX Symp.

on Operating Systems Design and Implementation,
pages 187–200, New Orleans, LA, Feb. 1999.

[8] IBM Autonomic Computing.
http://www.research.ibm.com/autonomic/.

[9] The JBoss J2EE Application Server.
http://www.jboss.com.

[10] L. Lamport. The Part Time Parliament. ACM Trans.

on Computer Systems, 16(2):133–169, May 1998.

[11] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
Tool for Finding Copy-paste and Related Bugs in
Operating System Code. In USENIX Symp. on

Operating Systems Design and Implementation, pages
289–302, San Francisco, CA, Dec. 2004.

[12] J. Quinlan. Induction of decision trees. Machine

Learning, 1(1):81–106, 1986.

[13] R. Renesse and F. Schneider. Chain Replication for
Supporting High Throughput and Availability. In
USENIX Symp. on Operating Systems Design and

Implementation, pages 91–104, San Francisco, CA,
Dec. 2004.

[14] P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah,
and A. Vahdat. Pip: Detecting the Unexpected in
Distributed Systems. In USENIX Symp. on Networked

Systems Design and Implementation, San Jose, CA,
May 2006.

[15] RUBiS: Rice University Bidding System.
http://rubis.objectweb.org.

[16] F. Schneider. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial. ACM

Computing Surveys, 22(4):299–319, Dec. 1990.

[17] K. Shen, M. Zhong, and C. Li. I/O System
Performance Debugging Using Model-driven Anomaly
Characterization. In USENIX Conf. on File and

Storage Technologies, pages 309–322, San Francisco,
CA, Dec. 2005.

[18] C. Stewart, T. Kelly, and A. Zhang. Exploiting
nonstationarity for performance prediction. In Second

EuroSys Conf., Lisbon, Portugal, Mar. 2007.

[19] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A Dollar
from 15 Cents: Cross-Platform Management for
Internet Services. In USENIX Annual Technical Conf.,
Boston, MA, June 2008.

[20] C. Stewart and K. Shen. Performance Modeling and
System Management for Multi-component Online
Services. In USENIX Symp. on Networked Systems

Design and Implementation, pages 71–84, Boston,
MA, May 2005.

[21] C. Stewart, M. Zhong, K. Shen, and T. O’Neill.
Comprehensive Depiction of Configuration-dependent
Performance Anomalies in Distributed Server
Systems. In Second Workshop on Hot Topics in

System Dependability, Seattle, WA, Nov. 2006.

[22] E. Thereska and G. R. Ganger. IRONModel: Robust
Performance Models in the Wild. In ACM

SIGMETRICS, pages 253–264, Annapolis, MD, June
2008.

[23] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer,
and A. Tantawi. An Analytical Model for Multi-tier
Internet Services and Its Applications. In ACM

SIGMETRICS, pages 291–302, Banff, Canada, June
2005.

