
EntomoModel: Understanding and Avoiding
Performance Anomaly Manifestations

Christopher Stewart
The Ohio State University

cstewart@cse.ohio-state.edu

Kai Shen
University of Rochester

kshen@cs.rochester.edu

Arun Iyengar
IBM Watson Research Center

aruni@us.ibm.com

Jian Yin
Pacific Northwest National Labs

jian.yin@pnl.gov

Abstract—Subtle implementation errors or mis-configurations
in complex Internet services may lead to performance degrada-
tions without causing failures. These undiscovered performance
anomalies afflict many of today’s systems, causing violations
of service-level agreements (SLAs), unnecessary resource over-
provisioning, or both. In this paper, we re-inserted realistic
anomaly causes into a multi-tier Internet service architecture and
studied their manifestations. We observed that each cause had
certain workload and management parameters that were more
likely to trigger manifestations, hinting that such parameters
could be effective classifiers. This observation held even when
anomaly causes manifested differently in combination than in
isolation.

Our study motivates EntomoModel, a framework for depicting
performance anomaly manifestations. EntomoModel uses deci-
sion tree classification and a design-driven performance model
to characterize the workload and management policy settings
under which manifestations are likely. EntomoModel enables
online system management that avoids anomaly manifestations
by dynamically adjusting system management parameters. Our
trace-driven evaluations show that manifestation avoidance based
on EntomoModel, or entomophobic management, can reduce 98th-
percentile SLA violations by 67% compared to an anomaly-
oblivious adaptive approach. In a cloud computing scenario with
elastic resource allocation, our approach uses less than half of
the resources needed in static over-provisioning.

I. INTRODUCTION

The complexity of Internet services continues to rise, in

terms of the variety of supported user workloads and the

interactions between off-the-shelf software components. It is

increasingly challenging to manage these services for high

and predictable performance. Consider the following service-

level agreement (SLA)—“at least 98% of online transactions

should be completed within 2 seconds”. A monthly perfor-

mance report on 11 leading e-commerce services from July to

December 2008 [10] suggests that only three of the services

could have satisfied this SLA.

Recent research has made it easier to manage performance

in the face of workload fluctuations [16], [22], [25], system

evolutions [26], and hardware changes [15], [23]. However,

situations where Internet services exhibit poor performance

may also stem from mis-configurations, poorly implemented

functions, or unexpected software interactions [2], [3]. These

performance anomaly manifestations are rare but realistic, and

This work was supported in part by the U.S. National Science Foundation
grants CCF-0448413, CNS-0615045, CCF-0937571, and by an IBM Faculty
Award.

it is widely accepted that many Internet services suffer from

the manifestations of undiscovered performance anomalies.

In the first part of this work, we reinserted authentic

anomaly root causes into a multi-tier Internet service archi-

tecture and studied their manifestations. In total, we exam-

ined 3,176 performance anomaly manifestations from 21,408

experiments with root causes reinserted in isolation and in

combination. Our study found that for each root cause (or

combination of causes) there were certain workloads and man-

agement policies that were more likely to trigger manifesta-

tions. This finding held even when the combination of multiple

causes produced new, unexpected manifestations (emergent

mis-behavior) and when the combination of multiple causes

surprisingly masked each other’s manifestations (emergent

good behavior) [8], [14].

In the second part of this work, we propose EntomoModel,

a framework for depicting the manifestations of undiscovered

anomaly root causes in Internet services. EntomoModel uses

decision-tree classification to depict anomaly manifestations

over a multi-dimensional system parameter space. Entomo-

Model achieves high classification accuracy for realistic sys-

tems that are afflicted by multiple anomaly root causes.

Further, our analysis shows that emergent behavior between

performance anomaly causes has a positive effect on Entomo-

Model’s accuracy.

EntomoModel enables a new system management approach

in which anomaly manifestations are avoided by adjusting

management policies in response to workload changes. A sys-

tem augmented with such entomophobic management behaves

like a person suffering from entomophobia—it avoids condi-

tions where bugs are likely (hence, the name). Our experiments

show that entomophobic management can integrate with adap-

tive control techniques [12], [15], [16] to substantially reduce

SLA violations while using fewer resources. In summary, our

contributions are:

1. We present an empirical study that highlights the char-

acteristics of realistic performance anomaly causes and

their manifestations in combination.

2. We present EntomoModel, a framework for identifying

the operating conditions where anomalies manifest.

Fig. 1. Multi-tier architecture of our targeted services. Each machine
runs the software component described to its left. Components at the
web server and application server tiers may be replicated and run on
multiple machines. Note that different application server machines
may host different sets of functions (and thus different coloring in
the figure). Arrows represent communication channels used during
request execution. Arrow labels specify the communication protocols.

3. Finally, we describe an online management system that

uses EntomoModel to steer system parameters away from

settings that may cause anomaly manifestations.

II. A STUDY OF ANOMALY MANIFESTATIONS

We reimplemented six realistic anomaly root causes from

online bug repositories and studied their manifestations in

isolation as well as in combination. Our goal was to iden-

tify characteristics that can help in anomaly-aware system

management. In this section, we first describe our targeted

Internet service architecture and our experimental setup. Then

we discuss the results of experiments conducted with anomaly

root causes in isolation and in combination across a wide range

of operating conditions.

A. Target System

We targeted a typical multi-tier Internet service architecture

shown in Figure 1. The software packages that we used for

the four tiers were: the Distributor TCP load balancer (version

0.7), the Apache Tomcat web server and servlet container

(version 5.5), the JBoss application server (version 5.0), and

the MySQL database (version 4.1).

To extract general patterns in the anomaly manifestations

under our multi-tier architecture, our study considered the

impact of many confounding factors. One factor was the effect

of different application services. Our empirical study explored

manifestations across multiple application services, including

TPC-W [5] and four versions of RUBiS [4]:

1. TPC-W is an e-commerce bookstore that supports

requests ranging from browsing the best selling books to

searching book titles to buying books. It is implemented

using 15 Servlets that access the database through JDBC.

2. RUBiS Servlets is an implementation of the RUBiS

online auction, a benchmark service that supports requests

ranging from searching for items to viewing bids to

buying items. It uses 26 Servlets.

3. RUBiS CMP implements RUBiS using J2EE En-

terprise Java Beans (EJBs). EJBs execute complex

application-specific functions, like processing bids. They

may be selectively distributed on only certain applica-

tion server nodes. The acronym CMP stands for con-

tainer managed persistence; such EJBs cache only simple

database queries. This version uses 22 Servlets and 27

EJBs.

4. RUBiS BMP also uses a mixture of EJBs and Servlets.

The acronym BMP stands for bean managed persistence;

these EJBs can cache complex database queries. This

version uses 22 Servlets and 10 EJBs.

5. RUBiS Session uses EJBs that specify multiple

database queries for the application server to cache—i.e.,

the multiple queries used to process a user request. This

version uses 22 Servlets and 17 EJBs.

We also considered the effect of four workload parameters

that significantly affect the performance of Internet services.

We hypothesized that these parameters would also affect

anomaly manifestations.

• INTENS: The request arrival intensity is the request

arrival rate divided by a reference capacity1 of the tar-

geted service. In our experiments, we allow five settings:

low (approx. 10%), low-medium (30%), medium (50%),

medium-high (70%), and high (90%).

• REQMIX controls the percentage of user requests that

require more than one database access. We allow five

settings: none (0%), light access (25%), medium ac-

cess (50%), medium-heavy access (75%), heavy access

(100%).

• HTTP controls the complexity of the HTTP protocol

used. We allow three settings for this parameter: simple

(HTTP 1.0), complex (HTTP 1.1), and very complex

(HTTPS).

• RMIPRO controls the protocol used to invoke EJBs. In

our experiments, we use two protocols: the JAVA RMI

standard and a JBoss-specific protocol.

We also considered four system management parameters

that could potentially mitigate manifestations.

• REPLICA controls the number of machines that the

web server and application server are replicated on.

The database and load balancer are not replicated. This

1We define the reference capacity of a service as the largest request arrival
rate where at least 95% of the requests return successfully. We measure the
reference capacity using a request mix that exercise all tiers in our services.
The reference capacities for TPC-W, RUBiS Servlets, RUBiS CMP, RUBiS
BMP, and RUBiS Session are 210, 240, 135, 145, and 135 requests per second,
respectively.

parameter determines how many machines are used to

run replicated web servers and EJBs.

• REBOOT is a boolean parameter that determines

whether to restart the service before each test. Rebooting

mitigates manifestations that arise gradually over the

course of an experiment.

• EJBGRP controls the grouping of EJBs so that EJBs

within each group are always co-located and replicated

together. The EJBGRP parameter significantly impacts

networked communications. Components placed in the

same group enjoy fast-tracked RMI invocations without

network transport of TCP processing.

We support five possible EJB groups: all EJBs, CPU-

heavy, CPU-lite, network-heavy, and network-lite. The

first group (all) co-locates all EJBs together. The

CPU-heavy/lite group co-locates EJBs that require

the significant/insignificant processing per request. The

network-heavy/lite group co-locates EJBs that exchange

large/small database results. Each of our experiments

involves two EJB groups (from the possible five). We

allow flexible grouping in that the two groups are not

necessarily exclusive (in which case some EJBs exist

in both groups), nor do they need to cover all EJBs

in combination (in which case the remaining EJBs are

hosted in a designated application server).

• EJBWGHT controls the ratio used when EJB groups

are assigned to application servers. For instance, a setting

of 2:1 indicates that EJB group A is assigned to twice as

many application servers as EJB group B. By replicating

certain groups more aggressively, we can mask anomalies

that are caused by only a few machines. In total, we allow

nine settings: 1:1, 2:1, 3:1, 4:1, 5:1, 1:2, 1:3, 1:4, 1:5.

Our experimental hardware platform is an 8-machine cluster

in which each machine is equipped with two 1.266GHz Intel

Xeon processors, 2GB memory, and 1Gbps Ethernet. The load

balancer and database run on their own isolated machines.

Web servers and application servers can share machines. All

databases fit within memory.

For a given setting of the workload, management, and

application-service parameters (i.e., a workload-policy set-

ting), we compared the performance with an anomaly root

cause enabled to the performance with the root cause disabled.

We labeled a setting as an anomaly manifestation when the

anomaly-enabled case exhibited a clearly lower performance

(i.e., the lowest measurement out of several tests for the

anomaly-disabled case outperformed the best measurement for

the anomaly-enabled case). Our performance metric was the

ratio of successful requests to all incoming requests. Specif-

ically, that is the percentage of requests that were completed

within 2 seconds with an error-free response.

B. Root Causes in Isolation

We pulled six performance anomaly root causes, presented

in Table I, from online bug repositories. Collectively, these

causes span all layers in our multi-tier architecture. We used

three selection criteria: First, we considered only performance

anomalies. Second, each root cause had to be real, i.e., it

degraded performance in a real service. Third, each selected

root cause had to have a well documented fix, i.e., a code

patch or configuration change that disabled the bug. The latter

requirement allows a direct measurement on the effects of the

root causes—a key step in our study.

For each root cause, we conducted experiments under 1,300

randomly selected workload-policy settings. Each experiment

compared performance with the targeted root cause enabled

and with it disabled, as described above. We observed that

manifestations occurred in 5–11% of the tested settings.

The average degradation caused by a manifestation ranged

from 18–65%. These results confirmed our intuition that

manifestations probably represent a small fraction of overall

executions (i.e., they occur infrequently), but their impact can

be significant.

We also wanted to understand the correlation between sys-

tem parameters and anomaly manifestations. We used the nor-

malized information gain (or the uncertainty coefficient) [18]

to measure correlation. Over a set of experiments S, the

normalized information gain of a parameter p is:

NG(S, p) = 1 −

∑
v∈values(p)

|Sv|
|S| · H(Sv)

H(S)

where Sv , in our context, represented the experiments in S

where parameter p was set to value v, and H(S) was the

Shannon information entropy of S. Our study concerned the

binary categorization of observed performance as normal or

manifestation, so the Shannon entropy was:

H(S) = −α · log2(α) − (1 − α) · log2(1 − α).

where α was the proportion of experiments in S where

we observed manifestations. 1 − α was the proportion of

manifestation-free experiments (i.e., normal).

Table I shows that, for each root cause, the most correlated

system parameter explained at least 33% of manifestation

uncertainty. However, the most correlated system parameter

varied from one root cause to another. This result made

sense because manifestations likely depend on the control

flow specified by system parameters. For systems afflicted

by multiple anomaly root causes, this result suggested that

manifestations stemming from multiple root causes might

have low correlation to system parameters. Low correlation

could make it difficult to mitigate manifestations using system

parameters.

C. Root Causes in Combination

We also compared performance without any anomaly root

causes enabled to performance with several root causes en-

abled. An anomaly manifestation occurred when performance

with the combined root causes enabled was clearly lower. We

conducted these experiments under the same 1,300 workload-

policy settings that we used to test the root causes in isolation.

Tag Root cause description Source Online
Repository

Manifestation
frequency

Performance
degradation

Correlated
parameter

LB The implementation of round-robin load balancing distributed requests
unevenly, starving the last web server listed in the configuration file.
This bug manifested as slower response times for the HTTP requests
sent to the other web servers.

Distributor ver-
sion 0.6

11% 65% REPLICA
(43%)

LOC Explicit attempts to access EJBs on remote machines were ignored if
the application server on the local machine also hosted the EJB. This
bug caused slower response times when local machines need to offload
some of their workload. Note, our EJBs are stateless, so the redirection
does not cause incorrect behavior.

JBoss.org JIRA
#JBAS-1442

7% 48% APP.
SERVICE
(34%)

RMI Accesses to local EJBs unnecessarily incurred the same overhead as
accesses to remote EJBs. This bug caused slower response times for
services that use EJBs, especially services where a high percentage of
EJB accesses are local.

JBoss.org JIRA
#JBAS-1181

10% 32% EJBGRP
(66%)

TC The connection timeout for some web servers was set too low (<200ms)
which caused the load balancer to occasionally mark them as unavailable.
This bug caused ‘connection timeout’ errors for HTTP requests sent to
the mis-configured server.

Tomcat archive
#46D6F4A6

8% 18% INTENS
(35%)

THR Each application server allowed only 10 concurrent EJB executions.
Requests that issued multiple RMI incurred increased queuing delay.
Sometimes requests could not proceed until other requests timed out
(2-second delay).

JBoss.org JIRA
#JBAS-4586

5% 44% EJBGRP
(72%)

DNS The domain name server (DNS) did not map some cluster IP addresses to
a domain name. Network communications with the unmapped machines
were delayed whenever they passed through the DNS.

MYSQL Forums
#11685

7% 21% HTTP
(60%)

TABLE I
THE ANOMALY ROOT CAUSES USED IN OUR STUDY. FOR EACH ROOT CAUSE, WE PROVIDE A DESCRIPTION, A REFERENCE, THE

OBSERVED PERCENTAGE OF WORKLOAD-POLICY SETTINGS THAT EXHIBITED ANOMALY MANIFESTATION, THE AVERAGE OBSERVED

PERFORMANCE DEGRADATION OF THE MANIFESTATIONS, AND THE WORKLOAD-POLICY PARAMETER MOST CORRELATED WITH

MANIFESTATIONS WITH ITS INFORMATION GAIN. WE EXPERIMENTED WITH EACH ROOT CAUSE UNDER 1300 RANDOMLY-SELECTED
WORKLOAD-POLICY SETTINGS.

We compared our results with root causes in isolation

to our results with the root causes combined. Specifically,

we classified each tested workload-policy setting across the

following potential outcomes:

• Normal-to-Normal All experiments with the root

causes in isolation exhibited normal performance and

the experiment with the root causes combined exhibited

normal performance.

• Manifestation-to-Manifestation One or more exper-

iments with the root causes in isolation exhibited an

anomaly manifestation and the experiment with the root

causes combined exhibited an anomaly manifestation.

• Normal-to-Manifestation All experiments with the root

causes in isolation exhibited normal performance but the

experiment with the root causes combined exhibited a

manifestation.

• Manifestation-to-Normal One or more experiments

with the root causes in isolation exhibited a manifesta-

tion but the experiment with the root causes combined

exhibited normal performance.

The latter two cases (normal-to-manifestation and

manifestation-to-normal) reflect manifestations that cannot be

explained from each root cause’s standalone manifestations.

Fig. 2. Comparison of experiments with root causes in isolation
to root causes in combination. 1,300 workload-policy settings were
tested.

We call the normal-to-manifestation cases as emergent

mis-behaviors. We then call the manifestation-to-normal cases

emergent “good” behaviors. While emergent mis-behaviors

of complex distributed systems have been studied in the

past [14], little attention has been paid to the emergent

manifestation-to-normal cases. These cases are particularly

counter-intuitive and unexpected.

Figure 2 shows the distribution of tested workload-policy

settings across our classification scheme. Surprisingly, we

observed that manifestation-to-normal classifications occurred

often, e.g., in 8% of the tested settings in the TC+RMI

combination. In five of the eight studied combinations, these

emergent manifestation-to-normal classifications outnumbered

normal-to-manifestation classifications. These emergent good

behaviors contributed to an overall resilience to anomaly

manifestations in our multi-tier architecture. Even with four

root causes combined together, 83% of the tested workload

settings were normal. Without emergent good behavior, the

proportion of normal workload settings could have dropped to

as low as 73%.

At first, we were surprised by the existence of emergent

manifestation-to-normal conditions. How can performance-

degrading anomalies combine to produce normal performance?

Further, why would this happen more often than normal-

to-manifestation conditions? To answer these questions, we

investigated the reasons for emergent behavior in our study.

While the exact reasons varied depending on which root causes

were combined, we noted two properties of Internet services

that helped to explain the phenomena. First, Internet services

are measured according to a whole-system performance met-

ric, e.g., response time, even though their components (and

anomaly root causes) operate on low-level resources, e.g., CPU

and network links. Emergent good behavior typically occurred

when the low-level effects of an anomaly did not propagate

to our whole-system performance metric. This matches estab-

lished theory on emergent behavior [8]. The second property

of Internet services that contributed to emergent good behavior

is that they are designed to perform well under a variety

of workload conditions. Emergent good behavior, like the

examples given below, often occurred because the introduction

of another anomaly changed low-level resource consumption

in a way that allowed the system’s robust performance features

to mask anomaly manifestations.

Manifestation-to-Normal Example #1: The DNS root cause

delayed communications between the load balancer and certain

replicated web servers. When this root cause was reinserted

in isolation, the communication delay manifested as response

time degradation. However when we reinserted the DNS

and LB causes in combination, we observed instances of

manifestation-to-normal emergent behavior. Many of these

instances occurred because LB unbalanced the workload for

replicated web servers unaffected by the DNS cause, es-

sentially trading CPU consumption on the unaffected nodes

for communication delay. In many cases, the unaffected web

servers could robustly handle the additional load.

Manifestation-to-Normal Example #2: When a heavily

loaded web server ran on the same machine as an application

server, the RMI root cause could increase the queuing time

to access the CPU which increased response times. However,

when TC forced timeouts on the heavily loaded web server,

the high-performance design in the load balancer adapted by

sending requests to lightly loaded web servers.

III. DEPICTING ANOMALY MANIFESTATIONS

Anomaly manifestations can significantly degrade an Inter-

net service’s performance, potentially causing SLA violations.

Root cause Anomaly classifications

Normal Manifest
LB actual normal 384 12

actual manifest 4 45
LOC actual normal 415 0

actual manifest 11 19
RMI actual normal 372 22

actual manifest 8 37
TC actual normal 366 35

actual manifest 22 22
THR actual normal 404 8

actual manifest 19 14
DNS actual normal 338 74

actual manifest 6 27

LB+DNS actual normal 393 6
actual manifest 7 39

TC+RMI actual normal 327 76

actual manifest 5 37
LOC+RMI actual normal 347 30

actual manifest 15 53
LB+RMI actual normal 318 33

actual manifest 13 81
DNS+RMI actual normal 304 97

actual manifest 6 38
THR+RMI actual normal 299 39

actual manifest 16 91
THR+RMI+LOC actual normal 319 32

actual manifest 22 72
THR+RMI+LOC+TC actual normal 340 28

actual manifest 15 62

TABLE II
PREDICTION ACCURACY OF DECISION TREE CLASSIFICATION FOR

COMBINED ANOMALY ROOT CAUSES. MANIFESTATIONS WERE

IDENTIFIED USING THE APPROACH IN SECTION II. THE DECISION

WAS CONSTRUCTED USING 855 WORKLOAD-POLICY SETTINGS

AND EVALUATED ON 445 SETTINGS. RESULTS ARE SHOWN IN THE

FORM OF A CONFUSION TABLE—THE UPPER-LEFT AND

LOWER-RIGHT CORNERS REFLECT ACCURATE CLASSIFICATIONS

WHILE THE UPPER-RIGHT AND LOWER-LEFT CORNERS REFLECT

MIS-CLASSIFICATIONS.

This motivates the need to predict and avoid anomaly man-

ifestations before they happen. We present EntomoModel, a

framework for depicting workload-policy settings under which

manifestations are likely. Figure 3 illustrates our three-step

approach as follows: 1) we collect a training set of workload-

policy settings; 2) we label the training settings as “normal”

or “manifestation” through offline experimentation; 3) we use

the labeled training settings to construct a decision tree that

classifies every workload-policy setting in the parameter space.

The result is a comprehensive portrait of manifestations and

normal settings over an entire parameter space for the targeted

service.

This paper tackles two challenges for the EntomoModel

framework. Section III-A describes our approach to classify

a parameter space from training samples of workload-policy

settings. In Section III-B, we address the challenge of labeling

anomaly manifestations without being able to enable and

disable anomaly root causes, i.e., labeling manifestations from

unknown causes.

W
o
rk
lo
a
d
 p
ro
p
e
rt
y
 Y

Ma
na
ge
me

nt
po
licy

 Z

Management policy X

Sampled workload-

policy settings

Anomaly

Normal

setting

Step 1. Training samples Step 2. Label anomalies Step 3. Full-space depiction

Depicted

anomalous region

Depicted normal

region

Fig. 3. EntomoModel’s approach for performance anomaly depiction in a multi-dimensional space of workload-policy settings. Each parameter
in the space is a workload property or system management policy.

A. Decision Tree Anomaly Classification

Decision trees classify points in an input feature space

according to a set of discrete outcomes. For our purposes, the

feature space is a set of workload and management parameters

and a point in this space is a workload-policy setting. The

two outcomes in our context are “normal” and “manifesta-

tion”. Using the Iterative Dichotomiser 3 algorithm [17], our

decision tree is generated in a top-down fashion by iteratively

selecting the system parameter with highest information gain,

partitioning samples based on their corresponding values of

the parameter, and constructing a sub-tree for each partition

until current samples all fall into the same category.

There are a number of other widely used classification

techniques, such as naive Bayes classifiers, perceptrons, neural

networks, Bayesian networks, support vector machines, and

hidden Markov models. Our decision to use decision trees

as the basis for EntomoModel was reached from qualitative

(not quantitative) considerations. Some specific factors were:

1) decision trees did not require any a-priori assumptions about

the anomaly manifestations patterns in our systems, 2) decision

trees have been successfully tested on noisy data in prior

systems studies [11], [26], and 3) after they have been built,

decision trees can be evaluated quickly to provide hints during

system management. Our choice of decision trees does not

mean that it is the only appropriate technique for classifying

bug manifestations in EntomoModel. The exploration of the

different machine-learning algorithms for performance bug

classification is an interesting area for future work.

1) Experimental Validation: To evaluate the prediction

accuracy of EntomoModel’s decision tree classification, we

leveraged our collection of realistic anomaly root causes.

Like in Section II, we labeled a workload-policy setting as

a performance anomaly manifestation if the performance with

a targeted root cause enabled was lower than the performance

with the root cause disabled. Using this method, we classified

1,300 workload-policy settings. We used 885 (about two

thirds) of the classified settings to train the classifier and 445

to test its accuracy.

The top portion of Table II shows classification results when

the anomaly root causes were reinserted in isolation. The

decision tree correctly classified most settings, including rare

anomaly manifestations. For example, the mis-classification

rate for LOC in isolation was only 2.5%. These results were

in line with previous studies that successfully used decision

trees to classify system evolutions [26] and application-level

failures [11].

The EntomoModel decision tree classifier was also accurate

when root causes were enabled in combination (the bottom

portion of Table II). The median ratio of true manifestations

(lower right) to false normals (lower left) was 5.5. This

ratio ranged from 3.2–6.3 across all of our experiments.

These results speak to the agility of decision tree classifiers.

Even though manifestations from different root causes are

correlated with different parameters, as shown in Section II,

our classification approach still identified anomalous regions

of the workload-policy parameter space.

2) Impact of Emergent Behaviors: We studied the impact

of emergent good behaviors (manifestation-to-normal settings

described in Section II-C) on decision tree classification.

Specifically, we compared decision tree results when the

bugs were combined to the results of a hypothetical scenario

where emergent good behaviors were labeled as manifesta-

tions. Figure 4 shows that emergent behavior decreased mis-

classification rates by up to 50%.

To gain intuition for the results in Figure 4, we examined the

conditions that exhibited emergent good behaviors when we

combined the LB and RMI root causes. That is, we examined

only the conditions classified as manifestation-to-normal for

this combination of root causes. We found that these conditions

were evenly distributed across all system parameter settings.

No parameter offered information gain greater than 1%. Our

interpretation of Figure 4 is that emergent good behaviors

essentially removed manifestations without bias, making it

easier to classify the resulting fewer manifestations.

B. Depiction of Unknown Anomaly Causes

In the real world, anomaly causes are typically unknown

and fixes are certainly unavailable. We extended Entomo-

Model with an anomaly identification heuristic that classifies

a workload-policy setting as a potential manifestation if it

exhibits poor performance against expectation. Specifically,

we screen out workload-policy settings that perform poorly

due to inherent capacity overloading using a whole-system

Fig. 4. The effect of emergent behavior on the misclassification rate
for anomaly manifestations. Lower misclassification rate is better.

performance expectation model based on the high-level design

of multi-tier Internet services [25]. Under our heuristic, a

workload-policy setting that exhibits low performance that

actually matches expectations is not due to performance bug

manifestation (i.e., we consider it “normal”).

Performance expectations can be constructed using past

efforts in online service performance modeling [13], [25] as

well as simple operational analysis [7]. In this paper, we

utilize a performance expectation model for multi-tier Internet

services that considers system management parameters includ-

ing distributed component placement, remote invocation, and

component replication level [25]. It is sufficient to support our

system case study in this paper. However, emerging systems

with radically different architectures [19], [24] may require

new design-based performance models before our framework

can be applied.

1) Performance Expectation Model: Our performance

model accepts the specification of an input workload and

management policy setting, and then outputs a prediction of

application-level throughput. To reduce the modeling com-

plexity, we employ a stacked performance model (shown in

Figure 5) in which low-level system metrics are assembled into

high-level metrics according to multiple largely independent

measurements or sub-models. Below we describe each part of

our model. We also provide a running example of performance

expectations at each step.

• Resource Consumption Measurement—

The first step in our model is to measure the resource con-

sumptions of each application component. Specifically,

we would like to capture the innate resource needs that

are independent of the system management policies. To

start our running example, consider an application with

two components. Measurements from this step may yield

CPU observations of 18% and 10% for each component

under the default configuration with base workload inten-

sity of one request per second.

• Component Invocation Overhead—

Component invocations have a complex relationship

with the component placement. Specifically, application

servers often implement fast-path invocations that con-

sume few resources when interacting components are co-

component

placement

policy,

component

invocation

protocol

System parameters

Resource consumption for each component

Distributed component placement and invocation

Predicts the per-request resource usage at each node

Step 1: for each component pair i and j:

if (i invokes j) and (placement(i) != placement(j))

c’i = ci + invocationprotocol – invocationdefault

Step 2: for each node n, node-wide resource demand is:

Dn = ∑ (c’i: placement(i) = n)

request

arrival rate

Resource utilization

Predicts whole-system throughput

tput = min {1.0/D1,
1.0/D2 ,…,1.0/Dn, request arrival rate}

ci = per-request resource consumption for component i

Fig. 5. A stacked performance expectation model for multi-
component distributed online services. Each level transforms lower-
level system metrics into its prediction targets based on the impact
of input system parameters (on the right).

located on the same physical machine. For simplicity, we

assume such local invocation cost is zero. We measure the

costs of remote invocation for two J2EE protocols as the

difference between the summed resource consumption of

two interacting components first run separately and then

co-located.

• Distributed Component Placement—

Adjusting the component placement policy allows us

to predict the resource consumption of each distributed

node. Specifically, we sum the expected per-component

resource consumption for each component placed on a

particular node. Assume the components in our running

example are placed on separate nodes and the component

with heavier utilization invokes the other. 2% overhead

may be added to the invoking component, leaving us

with 20% and 10% resource utilization on the two nodes

respectively.

• Resource Utilization Model—

Our throughput model is based on the Utilization Law [7]

which describes system throughput as the quotient of

resource utilization divided by the average per-request

resource demand. The saturation throughput for a par-

ticular node occurs at 100% resource utilization. From

the previous level of our stacked model, we have derived

an estimate of the average per-request demand (Dn,r) on

a particular type of resource r (e.g., CPU and network

bandwidth) at each node n in the system. In the sim-

ple case without adaptive load balancing, the maximum

throughput is reached as soon as one of the servers cannot

handle any more load. Therefore, our model estimates the

maximum throughput as the lowest saturation rate for all

Fig. 6. The EntomoModel decision tree depiction for the system parameter space described in Section II. The target system is free of any
of the known performance bugs.

resource types at all servers:

τmax = min
for all server nodes n, resource types r

100%

Dn,r

(1)

Given a request arrival rate τworkload, the expected

throughput should be the smaller of τmax and τworkload.

Consider our running example of a two-node system in

which the average per-request CPU utilization was 20%

and 10% respectively. For any workload intensity below

5 requests/second, we would expect all incoming requests

to be serviced. Under heavier workloads, throughput

would be expected to be around 5 requests/second.

2) Experimental Results and Validation: We show En-

tomoModel’s depictions of anomaly manifestations due to

unknown anomaly causes. The target system is free of any

of the known performance bugs listed in Table I. From a set

of training workload-policy settings, we label their normal

or anomalous states by comparing measured performance

and the performance model expectation. Figure 6 shows the

EntomoModel decision tree depiction for the whole system

parameter space. Each path from the root (split on the APP

parameter) to a leaf represents the prediction of a class of

workload-policy settings as potential manifestations or likely

normal. We observe similar properties as in our empirical

study with real performance bugs. First, six of the eight

workload and management parameters are correlated with at

least one potential manifestation. Second, the manifestations

occur across a range of workload-policy settings: including

under well-provisioned cases (e.g., REPLICA > 3) and light

request arrival intensities (e.g., INTENS = low).

Tested on 445 workload-policy settings (not used in train-

ing), EntomoModel’s depiction of manifestations due to un-

known anomaly causes showed low misclassification. Specif-

Fig. 7. The misclassification rate of EntomoModel using different
sample sizes. Sample size refers to the numbers of system measure-
ments used to train the EntomoModel’s decision tree classifier.

ically, we observed that the misclassification rate was only

9%. The ratio of true anomaly classifications to false normal

classifications was 4.5. These results are in line with the

findings when the root cause was known, which suggests that

our model captures the intended performance of multi-tier

architectures.

3) Impact of Sample Size and Parameter Selection: Our

results thus far have used measurements under 885 randomly

sampled workload-policy settings (approximately 2
3 of 1,300

sampled settings) to train the decision tree classifier that

underlies EntomoModel. We used the remaining 445 samples

to evaluate the classifier’s accuracy. Figure 7 shows the accu-

racy of our decision tree classifier on the same 445 samples

but with smaller sample sizes. EntomoModel converges to a

misclassification rate below 12% when the training sample

exceeds 500 settings.

We also studied the effect of using fewer system parameters

during decision tree classification. First, we prevented the

ID3 algorithm from splitting on the management parameters

described in Section II-A and then we prevented the algorithm

from splitting on the workload parameters. Using 885 samples,

the workload-only tree achieved a misclassification rate of

21% and the management-only tree achieved a misclassifica-

tion rate of 28%. While Figure 6 showed that the combination

of management and workload parameters could produce an

accurate classifier, these results showed that considering a

wide range of parameters was essential for EntomoModel’s

accuracy.

IV. AVOIDING ANOMALY MANIFESTATIONS

EntomoModel predicts potential anomaly manifestations

(anomalies) across a range of workloads and management poli-

cies. This enables a new approach to system management in

which EntomoModel is queried to avoid anomalies during on-

line execution. Here, EntomoModel works in conjunction with

existing adaptive or model-driven management approaches

that address other factors that affect performance [16], [25].

Entomophobic management is beneficial because anomaly

manifestations may cause violations of service-level agree-

ments (SLAs), and existing management approaches may not

properly address such manifestation-induced SLA violations.
We used the multi-tier architecture described in Section II

to implement an adaptive management framework for the

RUBiS BMP auction service. We subjected the service to a

sequence of realistic workload settings derived from a publicly

available trace [22], [23]. We allowed the REPLICA and

EJBGRP parameters to be changed in response to the changes

in the workload. The REPLICA parameter, which controls

the number of server machines used to service the workload,

could take any value from 1–6. The EJBGRP policy could be

ALL replicated, CPU-heavy co-located, or network-heavy co-

located. Our goal was to adjust these parameters to minimize

SLA violations. Practical SLAs may be specified in different

ways. In our study, an SLA specifies the minimum percentage

of requests that must respond correctly within a response-time

bound of 2 seconds.
We incorporated EntomoModel into the adaptive manage-

ment approach (called entomophobic management) as illus-

trated in Figure 8. Our approach works on fixed-length time

intervals (e.g., 3 minutes). Performance observation over each

interval is used to derive adaptive management policy. System

re-configurations, if desired, are made at interval boundaries.

Specifically, our adaptive management approach follows one

of three paths:

1. If the percentage of successful requests is 100% for

three consecutive intervals, our adaptive management

reduces the REPLICA parameter by 1 (to avoid over-

provisioning resources).

2. If there was no SLA violation, our adaptive manage-

ment makes no changes to the EJBGRP or REPLICA

parameters.

3. If there was an SLA violation, our adaptive manage-

ment queries EntomoModel to determine if the cause was

due to an anomaly manifestation. If so, we use Entomo-

Model to identify an alternative setting of the EJBGRP or

REPLICA parameters. If EntomoModel determines that

Fig. 8. An overview of EntomoModel used in adaptive management.
EntomoModel is used to determine if a triggering SLA violation was
caused by a potential anomaly manifestation. Management policy
can be changed to avoid a repeat violation. The EJBGRP and
REPLICA parameters can be changed only after a test completes,
not during a test. Other parameters in our multi-tier architecture
described in Section II are fixed. Specifically, we run the RUBiS BMP
auction service with the load balancer configured to accept HTTP 1.1
requests. Application servers are configured to use the JBoss-specific
RMI protocol and to distribute server resources to EJBs evenly. The
target system is free of any of the known performance bugs. We
use the EntomoModel anomaly manifestation predictions illustrated
in Figure 6.

the SLA violation was not caused by a manifestation,

we assume the problem is related to under-provisioned

resources and increase the REPLICA parameter by 1.

We compare our adaptive EntomoModel-based management

to three alternative approaches.

• The anomaly-oblivious adaptive approach responds to

all SLA violations by increasing the REPLICA parameter.

The EJBGRP parameter is fixed to the CPU-Heavy/ALL-

Replicated setting which offers the highest reference ca-

pacity. This approach assumes that performance problems

can always be solved by using more machines.

• The over-provisioning approach takes the “add more ma-

chines” philosophy to the extreme. Here, the REPLICA

parameter is always set to 6. The system is not dynami-

cally adjusted at all.

• The partial entomophobic approach uses EntomoModel

to determine if a violation is caused by a manifestation-

induced anomaly. However, this approach is only allowed

to adjust the REPLICA parameter.

A. Experimental Setup

We subjected the services to a sequence of realistic work-

load settings derived from a publicly available trace [22],

[23]. The trace provides a non-stationary sequence of integers

that correspond to the sequence of request types seen by a

real Internet service. The trace website provides instructions

on mapping these integers to RUBiS request types according

to the popularity of request types in original service and in

RUBiS. In total, we produced a sequence of 10,000 settings

Fig. 9. The number of repeat SLA violations encountered using
different management approaches. Each point reflects the total num-
ber of repeat SLA violations for our RUBiS application subjected
to 10,000 trace-driven request rates and mixes. Using entomophobic
management, our RUBiS application avoids repeat SLA violations in
99.1% of trace-driven workload settings.

of the REQMIX parameter (described in Section II). The

sequence changes gradually over time. 70% of the adjacent

settings in the produced REQMIX trace do not change or differ

only slightly.

Also, we varied the request arrival rate in a sinusoidal

fashion according to real-world diurnal fluctuations. More con-

cretely, our request arrival rate makes about 200 fluctuations

between 10 requests per second and 130 requests per second,

with a step size of 10 requests per second. Our workload

generator issued HTTP 1.1 requests according to the specified

request mix and request rate settings from the trace. Tests

at each setting were applied for 3 minutes. We simplify our

experiments by stopping operations while the system is re-

configured.

B. Results

Figure 9 demonstrates the benefit of entomophobic manage-

ment for avoiding SLA violations. Compared to the anomaly-

oblivious adaptive approach, full entomophobic adaptive man-

agement reduces SLA violations by 62–67%. Compared to

the over-provisioned approach, full entomophobic adaptive

management reduces SLA violations by up to 62% when the

SLA requirement on the percentage of successful requests is

set to 99.9%. Full entomophobic adaptive management made

758 changes to the EJBGRP parameter and 251 changes to the

REPLICA parameter in order to avoid potential SLA viola-

tions. Results with the partial entomophobic approach suggest

that by using EntomoModel to identify potential performance

manifestations, an adaptive approach that only changes the

REPLICA parameter could get close to the performance of

over-provisioned management.

An implicit sub-goal of our adaptive approach is to effi-

ciently set the REPLICA parameter to avoid wasting resources.

In practice, over-provisioning resources can be costly. We

define the metric of a machine unit to indicate the use of

1 server machine for 1 test. A machine unit is intended to be

an elastic resource allocation unit on a cloud platform, such

as EC2 [1]. Figure 10 compares the number of machine units

used by entomophobic management and the anomaly-oblivious

Fig. 10. The number of Machine Units used using different man-
agement approaches. The high watermark is when the percentage of
successful requests is 100% for more than 3 consecutive intervals. A
machine unit indicates the use of a server machine for 1 3-minute
interval. The default over-provisioning approach uses 60,000 machine
units (indicated by the dotted line). Using a pricing structure similar
to Amazon EC2 (at $0.1 per unit) the full entomophobic management
would save $3543 compared to the over-provisioned approach (while
encountering fewer SLA violations).

adaptive approach. Under stringent SLA requirements of 99%

and 99.9%, the full entomophobic management approach uses

22% and 19% fewer machines. This is because it is able to

change the EJBGRP parameter to avoid potential anomaly

manifestations without increasing the cluster size. Results with

partial entomophobic management suggest that an adaptive

anomaly-aware technique that changes only the REPLICA

parameter can offer substantial improvements in resource

usage compared to the over-provisioned approach.

V. RELATED WORK

EntomoModel is essentially a predictive system model that

improves automatic performance management. Generally, this

topic has received a lot of attention in the research community

and industry [9]. Menasce and Almeida have codified today’s

best practices with respect to queuing theory models and

non-elastic cost models [13]. Stewart et al. [22], [23], [25]

and Urgaonkar et al. [27] described the performance effects

of varying important factors in multi-tier architectures, like

processor cache size, request mix, and distributed component

placement. Cohen et al. [6] use machine learning techniques to

automatically predict SLA violations. These models are often

integrated with control theory [12], [15], [16], [21] to manage

the online performance of multi-tier services. EntomoModel

builds upon these contributions by considering the effect of

known and unknown performance anomalies. We showed

that EntomoModel, in combination with adaptive policy, can

significantly reduce SLA violations.

Researchers have also attempted to reduce the manual effort

required to find and remove the root causes of performance

anomalies. Shen et al. [20] attributed anomalous performance

variation across system configurations to low-level system

metrics which were useful for root cause analysis. Thereska

et al. [26] used a hybrid machine-learned and human-designed

performance model, based on decision trees, to find root causes

in a storage file system. Kiciman and Fox [11] used decision

trees to find availability degrading anomaly root causes in

early multi-tier systems. Our study provides new insight on the

runtime behavior of anomaly root causes, which can improve

the heuristics of these measurement-based debugging systems.
Mogul examined emergent mis-behavior in today’s com-

puter systems via examples in networking, distributed systems,

and operating systems [14]. The work categorized the causes

and manifestations of emergent mis-behaviors, like those ob-

served in our study. We build upon this work by studying both

emergent mis-behavior and emergent good behavior across

a range of operating conditions. Our study provides new

empirical evidence on the existence and frequency of emergent

behaviors in multi-tier architectures.
Some companies provide detailed reports when their cus-

tomers experience severe performance anomalies [2], [3].

These reports share our goal of providing empirical data on

real-world anomalies. Sometimes, they describe root causes

similar to the anomalies studied in this paper, albeit at a

much larger scale. For example, a performance anomaly that

temporarily brought down Amazon S3 [2] was caused by a

complex interaction between two root causes: 1) the system

configuration placed critical account verification components

on the same machines as CPU-intensive authentication com-

ponents and 2) monitoring software overlooked a spike in

authentication requests. These causes would have been benign

in isolation, but in combination, a severe performance anomaly

emerged. Our study of anomaly manifestations across a range

of operating conditions complements and confirms these ex-

perience reports.

VI. CONCLUSION

This paper presents EntomoModel, a framework that sys-

tematically depicts the workloads and management policies

under which potential performance anomalies are likely to

manifest. EntomoModel uses a design-driven model of Internet

services to label potential manifestations without knowing the

underlying root cause. These labels are then fed into a decision

tree classifier that depicts potential manifestations across a

whole system parameter space. Using known anomalies as

ground truth, we showed that EntomoModel’s classifications

have a low misclassification rate. Further, EntomoModel is ac-

curate in realistic settings when multiple anomaly root causes

are active, in part because of the effect of emergent behavior

between anomaly root causes. EntomoModel is useful during

online system management to avoid anomaly manifestations

that could cause SLA violations. In our experiments, such en-

tomophobic management reduced manifestation-caused SLA

violations by 58–67% compared to alternative approaches.

REFERENCES

[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.
[2] Amazon web services developer community. http://developer.

amazonwebservices.com/connect/thread.jspa?threadID=197%14&start=
75&tstart=0.

[3] More on today’s gmail issue. http://gmailblog.blogspot.com/2009/09/more-
on-todays-gmail-issue.html.

[4] Rice university bidding system. http://rubis.objectweb.org/.
[5] Transaction processing performance council: E-commerce benchmark.

http://www.tpc.org/tpcw/.
[6] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase. Correlating

instrumentation data to system states: A building block for automated
diagnosis and control. In 6th USENIX Symp. on Operating Systems

Design and Implementation, San Francisco, CA, Dec. 2004.
[7] P. Denning and J. Buzen. The operational analysis of queueing network

models. ACM Computing Surveys, 10(3):225–261, Sept. 1978.
[8] J. Goldstein. Emergence as a construct: History and issues. Emergence,

1:49–72, Apr. 1999.
[9] IBM autonomic computing. http://www.research.ibm.com/autonomic/.
[10] Keynote Systems. Transaction performance index for online retail

web sites electronics. http://keynote.com/keynote competitive research/
performance indices/ret%ail/retail electronics index.html, 2008.

[11] E. Kiciman and A. Fox. Detecting application-level failures in
component-based Internet services. IEEE Trans. on Neural Networks,
16, Sept. 2005.

[12] X. Liu, J. Heo, L. Sha, and X. Zhu. Adaptive control of multi-tiered
web application using queueing predictor. In Network Operations and

Management Symposium, 2006.
[13] D. Menasce and V. Almeida. Capacity Planning for Web Services:

Metrics, Models, and Methods. Prentice Hall, 2001.
[14] J. Mogul. Emergent (mis)behavior vs. complex software systems. In

First European Conf. on Computer Systems, Leuven, Belgium, Apr.
2006.

[15] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated control of multiple virtualized resources.
In 4th European Conf. on Computer Systems, pages 13–26, Nuremburg,
Germany, Mar. 2009.

[16] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized resources in
utility computing environments. In Second European Conf. on Computer

Systems, pages 289–302, Lisbon, Portugal, Mar. 2007.
[17] J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,

1986.
[18] C. Sarndal. A comparative study of association measures. Psychome-

trika, 39(2):165–187, June 1974.
[19] K. Sauer, A. Ganapathi, C. Reiss, A. Constantin, A. Fox, M. Jordan,

and D. Patterson. Automatic workload evaluation (awe): Predicting web
2.0 workload behavior. In Poster Session of SOSP, Big Sky, Montana,
Oct. 2009.

[20] K. Shen, C. Stewart, C. Li, and X. Li. Reference-driven performance
anomaly identification. In ACM SIGMETRICS Int’l Conf. on Measure-

ment and Modeling of Computer Systems, Seattle, WA, June 2009.
[21] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource management

for cluster-based Internet services. In 5th USENIX Symp. on Operating

Systems Design and Implementation, Boston, MA, Dec. 2002.
[22] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for

performance prediction. In Second European Conf. on Computer

Systems, Lisbon, Portugal, Mar. 2007.
[23] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from 15 cents:

Cross-platform management for Internet services. In USENIX Annual

Technical Conf., Boston, MA, June 2008.
[24] C. Stewart, M. Leventi, and K. Shen. Empirical examination of a

collaborative web application. In IEEE International Symposium on

Workload Characterization, Seattle, WA, Sept. 2008.
[25] C. Stewart and K. Shen. Performance modeling and system management

for multi-component online services. In Second USENIX Symp. on

Networked Systems Design and Implementation, Boston, MA, May
2005.

[26] E. Thereska and G. R. Ganger. IRONModel: Robust performance models
in the wild. In ACM SIGMETRICS Int’l Conf. on Measurement and

Modeling of Computer Systems, Annapolis, MD, June 2008.
[27] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi.

An analytical model for multi-tier Internet services and its applications.
In ACM SIGMETRICS Int’l Conf. on Measurement and Modeling of

Computer Systems, Banff, Canada, June 2005.

