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ABSTRACT
Bloom filters are compact set representations that support
set membership queries with small, one-sided error proba-
bilities. Standard Bloom filters are oblivious to object pop-
ularity in sets and membership queries. However, sets and
queries in many distributed applications follow known, sta-
ble, highly skewed distributions (e.g., Zipf-like). This paper
studies the problem of minimizing the false-positive proba-
bility of a Bloom filter by adapting the number of hashes
used for each data object to its popularity in sets and mem-
bership queries. We model the problem as a constrained
nonlinear integer program and propose two polynomial-time
solutions with bounded approximation ratios — one is a 2-
approximation algorithm with O(Nc) running time (c ≥ 6
in practice); the other is a (2 + ǫ)-approximation algorithm

with running time O(N2

ǫ
), ǫ > 0. Here N denotes the to-

tal number of distinct data objects that appear in sets or
queries. We quantitatively evaluate our proposed approach
on two distributed applications (cooperative caching and
full-text keyword searching) driven by real-life data traces.
Compared to standard Bloom filters, our data popularity-
conscious Bloom filters achieve up to 24 and 27 times false-
positive probability reduction for the two applications re-
spectively. The quantitative evaluation also validates our
solution’s bounded approximation ratio to the optimal.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: distributed applications.
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Algorithms, experimentation, performance.
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1. INTRODUCTION
A Bloom filter [2] is a compact, lossy set representation

that supports set membership queries with a small proba-
bility of false-positives. In principle, they are useful for any
distributed application that requires compact set/list repre-
sentations (e.g., due to limited network bandwidth for com-
municating data) and can tolerate occasional errors. Con-
sequently, Bloom filters have been used widely to reduce
the communication cost in distributed data-intensive sys-
tems. Examples include network content delivery [4], co-
operative distributed caching [7, 25], peer-to-peer informa-
tion retrieval [15, 23], distributed databases [16, 19], pass-
word checkers [17,26], and resource routing [14,24].

In many data-intensive applications, the popularity of data
objects exhibits highly skewed distributions (e.g., Zipf-like) [1].
Furthermore, due to the stability of such skewness [27], sig-
nificant object popularities are typically estimable from col-
lected system traces. However, such knowledge is not uti-
lized in standard Bloom filters, which treat each data object
equally by using the same number of hashes for each object.
Intuitively, one can follow the simple principle of “long en-
codings for important objects” to adapt the per-object hash
number. Specifically, a large number of hashes should be
used to encode those objects that are frequent candidates for
false-positives (popular in queries but unpopular in queried
sets). For other objects, fewer hashed can be used to save
space without causing significant error increase.

This paper studies the problem of minimizing the false-
positive probability of Bloom filters for known object pop-
ularities in sets and membership queries. We model a re-
stricted version of the problem as a non-linear integer pro-
gramming problem, where the results (numbers of hashes
for data objects) must be integers within a realistic range.
The lower threshold of the range is 1, which indicates that
at least one hash must be assigned to each data object. The
upper threshold of the range is set to ensure limited com-
putation cost of object insertions and membership queries.
Nonlinear integer programming problems are hard in gen-
eral unless problem-specific features are exploited. We dis-
cover a feature in this problem that allows us to achieve
polynomial-time approximability. The feature is an object
importance metric that can guide the assignment of hashes
— the higher the score of an object, the more hashes should
be used. Such an in-order hash assignment greatly reduces



the solution search space, and it leads to a 2-approximation
algorithm with O(Nc) running time (typically c ≥ 6 in prac-
tice) by brute-force search. We further transform the opti-
mization problem into a variant of the knapsack problem —
with ordered, variable-value objects — and use dynamic pro-
gramming to solve it. The result is a (2 + ǫ)-approximation

algorithm with running time O(N2

ǫ
), for any ǫ > 0.

Compared to standard Bloom filters, our proposed popularity-
conscious Bloom filters achieve reduced false-positive prob-
abilities (or reduced Bloom filter sizes when the same er-
ror probability threshold is satisfied). However, popularity-
conscious Bloom filters incur additional cost in offline com-
putation (for estimating object popularities and determin-
ing the customized hash scheme) and local space (for storing
the generated hash scheme). This is typically a preferable
trade-off in distributed applications where network commu-
nication overhead is the dominant performance constraint.
We also provide a brief discussion on the computation and
local space overhead.

The remainder of this paper discusses related work, for-
mulates our optimization problem, and then presents our
solution with relevant analytical results. We also provide
quantitative evaluation results on an artificial workload and
two distributed applications driven by real-life data traces.

2. RELATED WORK
A recent work by Bruck et al. [3] pursues the same goal as

ours — to minimize the Bloom filter false-positive probabil-
ity for given object popularities by customizing the number
of hashes for each object. Their approach is to derive an op-
timal real-number solution (in which the number of hashes
for each object is allowed to be an arbitrary real number)
and then to round the real-numbers to nearest positive in-
tegers. Since the number of hashes in practice must be an
integer and restricted to a realistic range (e.g., {1, 2, · · · ,
10}), the rounding process may lead to significant increase
in the false-positive probability. From an analytical point of
view, their approach provides no bound on the ratio between
their performance and the optimal performance. From a
practical point of view, our trace-driven quantitative evalu-
ation results (in Section 5) show that our proposed integer
solution (with bounded approximation ratio) achieves up to
10 times false-positive probability reduction compare to the
nearest rounding based solution under realistic application
settings.

There are also studies on optimizing Bloom filters in terms
of error probabilities and space overhead. Mitzenmacher [18]
proposes compressed Bloom filters, which adjust Bloom fil-
ter parameters in order to optimize the compressed size of
Bloom filters rather than the original Bloom filter size. His
results show that compressed Bloom filters can achieve up
to 30% space savings compared to standard Bloom filters.
Pagh et al. [20] propose a new multi-set data structure as
a substitute for standard Bloom filters for constant lookup
time, smaller space usage, and succinct hash function encod-
ings. Hao et al. [8] try to reduce the false-positive rate of
Bloom filters by allowing each set element choose between
multiple hash families, in order to set far fewer Bloom filter
bits than standard Bloom filters. In comparison, we seek
to reduce Bloom filter error rate from a different angle by
exploiting the knowledge on data object popularity distri-
butions.

Standard Bloom filters only support element insertions
and membership queries. Recently, many variants have been
proposed to support additional operations. Counting Bloom
filters [7] support dynamic element deletions by replacing the
bits in Bloom filters with small counters. Attenuated Bloom
filters [24] use arrays of Bloom filter to store routing path
information. Spectral Bloom filters [6] enhance Bloom fil-
ters in order to support frequency-based queries. Bloomier
filters [5] generalize standard Bloom filters in a way that
associative arrays can also be encoded and evaluated. Ex-
ponentially Decaying Bloom Filters [14] probabilistically en-
code routing tables in a highly compressed way that allows
for efficient aggregation and propagation of routing informa-
tion in unstructured peer-to-peer networks. Their results are
orthogonal to our work since they do not focus on reducing
the false positive probability of Bloom filters.

2.1 Background: Standard Bloom Filters
A Bloom filter [2] represents an n-object set

S = {s1, s2, · · · , sn} using an array of m bits, initially all set
to 0. To insert each si, one computes k different hash func-
tions on si, producing (up to) k hash values in {1, 2, · · · , m},
and then sets all the bits corresponding to the k hash values
to 1. Note that hash functions can be reused over different
objects and hence only k different hash functions are needed
in total. The membership query process is similar to the in-
sertion process: To decide whether an object x belongs to S,
compute the k hash values on x, and examine all the corre-
sponding bits. If any of them is 0, then x definitely does not
belong to S; if all are 1’s, then answer that it does, although
with some probability of a false-positive.

Assuming there is no dependency between set elements,
here we will explain how standard Bloom filters determine
the optimal number of hashes (k) used per object. If k

independent, uniformly random hash functions are used to
construct an m-bit Bloom filter for an n-element set, then
the probability that an arbitrary bit in the Bloom filter is
set to 1 is:

B = 1 −

„

1 −
1

m

«kn

. (1)

Consequently, the false-positive probability of this Bloom
filter is the probability for k hashed bits of the queried object
being all 1’s, or:

f(k) = Bk =

 

1 −

„

1 −
1

m

«kn
!k

= e
k·ln

“

1−(1− 1
m )kn

”

.

(2)
Given m and n, f(k) is minimized when B = 1

2
(each bit in

the Bloom filter has equal probability to be 0 or 1), or (for
large m’s):

k =
m

n
· ln 2, (3)

In this case, the false-positive probability f is minimized to:

(
1

2
)k ≈ 0.6185

m
n (4)

3. REAL-NUMBER PROBLEM
In this section, we study the optimization of data popularity-

conscious Bloom filters when the number of hashes for each
object can be an arbitrary real-number. In the next section,



we study the practical case in which the number of hashes
must be an integer within a realistic range.

3.1 Problem Formulation
Let V = {x1, x2, · · · , xN} denote the universe of data ob-

jects. Let m be the size of a Bloom filter and n be the size
of the set S represented by the Bloom filter. Similar to the
analysis for standard Bloom filters, we assume that there is
no dependency between different elements of a set. Let p be

the membership popularity distribution — p(i) = Pr(xi∈S)
n

.

The scaling factor 1
n

ensures that
PN

i=1 p(i) = 1.0. Let q

be the query popularity distribution — q(i) is the probabil-
ity that xi gets queried. For the purpose of examining the
false-positive rate of Bloom filters, the non-member query
popularity distribution q′ is more interesting than the com-
plete query distribution, q. More specifically, q′(i) is the
probability that xi occurs in a missed query (hence should
return false). In practice, p, q′ are often stable and hence can
be easily estimated from set and membership query traces
collected during application execution [1,27].

Let ki be the number of hashes used for xi. The false-
positive probability of a Bloom filter, the probability that a
non-member query receives a positive answer is:

N
X

i=1

q
′(i) · Pr( the ki bits that xi is hashed to

are all 1’s in the Bloom filter ) =

N
X

i=1

q
′(i) · Bki ,

(5)

where B, the probability that an arbitrary bit of the Bloom

filter is 1, is 1 −
`

1 − 1
m

´

P

xi∈S ki . In other words, we want
to choose ki’s in a way that the false-positive probability is
minimized, while ensuring that the total number of hash op-

erations for set S satisfies
P

xi∈S
ki = ln(1−B)

ln(1− 1
m

)
. In practice,

there are many sets, each of which may lead to different so-
lutions of ki’s. Given that, here we only require that the ex-
pected value for

P

xi∈S
ki (over all set S’s of size n) is equal

to ln(1−B)

ln(1− 1
m

)
, i.e.,

PN

i=1 Pr(xi ∈ S) · ki =
PN

i=1 n · p(i) · ki =

ln(1−B)

ln(1− 1
m

)
. Note that the actual value of a specific set may

deviate from the expected value. When ki’s are restricted
to certain ranges later in Section 4, such deviation can be
shown to be asymptotically small for large n’s with high
probability (according to Hoeffding’s inequality [9]).

Therefore, we define our optimization problem as finding
k1, k2, · · · , kN that:

Minimize
N
X

i=1

q
′(i) · Bki ,

subject to

N
X

i=1

p(i) · ki =
ln(1 − B)

n · ln(1 − 1
m

)
.

(6)

Let K = ln(1−B)

n·ln(1− 1
m

)
. Then the constraint in (6) can be

rewritten as
PN

i=1 p(i) · ki = K.

3.2 Optimal Solution to the Real-Number Prob-
lem

We use the Lagrange multiplier to derive the optimal so-
lution to (6). As there is just a single constraint, we use

only one multiplier λ to combine the constraint and the op-
timization goal together into the Lagrangian function:

Λ(k1, k2, · · · , kN , λ) =

N
X

i=1

q
′(i) · Bki − λ · (

N
X

i=1

p(i) · ki −K).

(7)
The critical values of Λ is achieved only when its gradients
on k1, k2, · · · , kN , λ are all zero. Concerning its gradients on
ki’s, we have:

∂Λ

∂ki

= q
′(i) · lnB · Bki − λ · p(i) = 0 =⇒

Bki =
1

lnB
· λ ·

p(i)

q′(i)
, 1 ≤ i ≤ N.

(8)

Therefore, we know that the optimal solution of k1, k2, · · · , kN

to the real-number problem must satisfy:

Bki ∝
p(i)

q′(i)
=⇒ ki = C + log 1

B

q′(i)

p(i)
, 1 ≤ i ≤ N, (9)

where C is a constant independent of i.
Concerning the Lagrangian function Λ’s gradient on λ, we

have:

∂Λ

∂λ
= 0 =⇒

N
X

i=1

p(i) · ki −K = 0. (10)

Thus we can compute C in (9) as follows:

N
X

i=1

p(i) · ki = K

=⇒

N
X

i=1

»

p(i) ·

„

C + log 1
B

q′(i)

p(i)

«–

= K

=⇒C +
N
X

i=1

p(i) · logB

p(i)

q′(i)
= K

=⇒C = K + Dp||q′ · logB

1

2
,

(11)

where Dp||q′ =
PN

i=1 p(i) · log2
p(i)
q′(i)

is the Kullback-Leibler

divergence [13] (or information divergence) between p, q′,
which naturally measures the deviation of q′ from p. Putting
together (9) and (11), we have the real-number solution of
ki’s as:

ki = K + Dp||q′ · logB

1

2
+ log 1

B

q′(i)

p(i)
, 1 ≤ i ≤ N. (12)

The optimization objective achieved by this real-number so-
lution is:

N
X

i=1

q
′(i) · Bki =

N
X

i=1

p(i) · BK ·

„

1

2

«D
p||q′

= BK ·

„

1

2

«D
p||q′

= B
ln(1−B)

n·ln(1− 1
m

) ·

„

1

2

«D
p||q′

.

(13)

Given m and n, the above optimization objective is mini-
mized when Bln(1−B) is minimized. Therefore we have B = 1

2
and K = m

n
· ln 2 (for large m’s). Consequently the solution

of ki’s in (12) can be rewritten as:

ki =
m

n
· ln 2+Dp||q′ +log2

q′(i)

p(i)
, 1 ≤ i ≤ N (14)



Similarly, the achieved false-positive probability in (13) can
be rewritten as:

„

1

2

«m
n

·ln 2

·

„

1

2

«Dp||q′

(15)

Note that in standard Bloom filters, m
n

· ln 2 is the number

of hashes used by each object and
`

1
2

´m
n

·ln 2
is the achieved

false-positive probability. The solution here always leads to
an error probability no larger than standard Bloom filters in
that Dp||q′ ≥ 0 is known to hold for all possible p, q′’s and
Dp||q′ = 0 iff p = q′. This also suggests that standard Bloom
filters minimize the false-positive probability only when p =
q′ — their set elements and non-member queries follow the
same distribution. Uniform distributions of p and q′ are one
special case of this condition.

More specifically, the solution of ki consists of three parts:
1) m

n
· ln 2, the number of hashes used by standard Bloom

filters; 2) Dp||q′ , a data distribution dependent constant that

determines false-positive probability reduction; 3) log2
q′(i)
p(i)

,

an individual deviation that only depends on the properties
of object xi. This result is consistent with our intuition that
an object appearing very often in missed queries but very
rare in sets should use a large number of hashes. On the
contrary, those objects that are popular in sets but unpop-
ular in queries should use few hashes. In the extreme case,
if object xi only occurs in queries but never in sets, then its
number of hashes should be ki = ∞. Similarly, objects that
only occur in sets but never in queries lead to ki = −∞.

4. RANGED INTEGER PROBLEM
In practice, the per-object hash numbers (ki’s) must be

positive integers. Further, the hash number in Bloom fil-
ters directly affects the overhead for element insertion and
membership queries. In order to limit such overhead, it is
desirable to set an upper threshold for ki’s. We use kmax to
denote this upper threshold.

To derive a realistic integer solution, we can round the
real-number solution of ki’s (derived in Section 3.2) into the
range of positive integers [1, kmax]. Such simple rounding,
which has been used in [3], may lead to unbounded degrada-
tion on the optimization target. In this section, we formulate
our ranged integer problem and then present our solutions
with bounded approximation ratios.

4.1 Problem Formulation
We inherit all notations in Section 3.1.
Both standard Bloom filters and the real-number prob-

lem of data popularity-conscious Bloom filters (Section 3.2)
suggest that the optimal hash number assignment is reached
when B = 1

2
. Intuitively, this is also when there is an equal

probability for an arbitrary bit of the Bloom filter to be 0 or
1, with which the maximum information entropy is achieved.
We redefine the real-number problem (6) with the restric-
tion of B = 1

2
, which effectively limits the expected total

number of hashes to represent a set. With this restriction,
we focus on deriving an optimal strategy to distribute the
same total number of hashes among individual set elements

in order to minimize the false positive probability:

Minimize

N
X

i=1

q
′(i) ·

„

1

2

«ki

,

subject to
N
X

i=1

p(i) · ki ≤
m

n
· ln 2.

(16)

Note that replacing the “=” with “≤” in the constraint does
not affect the optimality of the solution since larger ki’s tend
to decrease the minimization target.

We add the range constraint to problem (16) to produce
a ranged real-number problem:

Minimize
N
X

i=1

q
′(i) ·

„

1

2

«ki

,

subject to

N
X

i=1

p(i) · ki ≤
m

n
· ln 2, 1 ≤ ki ≤ kmax.

(17)

We further formulate a ranged integer problem:

Minimize
N
X

i=1

q
′(i) ·

„

1

2

«ki

,

subject to
N
X

i=1

p(i) · ki ≤
m

n
· ln 2, ki ∈ {1, 2, · · · , kmax}.

(18)

Our formulation results in a nonlinear integer program-
ming problem, for which no general polynomial-time solu-
tion is known unless problem-specific features are exploited.
Below we first introduce an important metric for our prob-
lem — per-object importance score — that indicates whether
more or fewer hashes should be used for each object. Us-
ing this metric, we propose a 2-approximation solution with
O(Nc) running time (c ≥ 6 in practice) and a (2 + ǫ)-

approximation algorithm with running time O(N2

ǫ
), ǫ > 0.

4.2 Per-Object Importance Scores
Although the real-number solution in (14) is not directly

applicable to configuring Bloom filters in practice, it moti-

vates us to use q′(i)
p(i)

as the importance score for data object

xi — the higher q′(i)
p(i)

is, the more hashes should be used

for xi. Such scores are consistent with our intuition that
an object appearing very often in missed queries but very
rare in sets should use a large number of hashes. On the
other hand, those objects that are popular in sets but un-
popular in queries should use few hashes. The applicability
of the importance scores in our integer programming prob-
lem is derived below in two steps. First, for the ranged
real-number problem (17), Lemma 1 shows that the optimal
solution for the number of per-object hashes must follow
the order of importance scores. Furthermore, for the ranged
integer problem (18), Lemma 2 shows that the best solu-
tion that follows the order of importance scores achieves a
false-positive probability at most 2 times that of the optimal
solution.

Lemma 1. Let k1, k2, · · · , kN be an optimal solution to
the ranged real-number problem (17). Then they must satisfy

∀i, j,
q′(i)
p(i)

>
q′(j)
p(j)

=⇒ ki ≥ kj.



Proof: By contradiction. Assuming q′(i)
p(i)

>
q′(j)
p(j)

and ki <

kj , there are three cases:

Case 1: p(i) = p(j) (hence q′(i) > q′(j)).
In this case, simply exchanging ki, kj generates a bet-

ter solution with a lower false-positive probability, which
contradicts the optimality of the original solution. Specif-
ically, the exchange does not affect the constraint in (17)
since ki · p(i) + kj · p(j) = kj · p(i) + ki · p(j). At the
same time, the exchange reduces the false-positive probabil-

ity since q′(i)·
`

1
2

´ki +q′(j)·
`

1
2

´kj > q′(i)·
`

1
2

´kj +q′(j)·
`

1
2

´ki .

Case 2: p(i) > p(j).
We devise a new solution that achieves a lower false-

positive probability. In the new solution, the number of

hashes for objects xi, xj are changed to: k′
i = p(j)

p(i)
· kj +

“

1 − p(j)
p(i)

”

· ki, and k′
j = ki. We know ki ≤ k′

i, k
′
j ≤ kj

and thus the new solution still satisfies the range constraint
[1, kmax]. Additionally, the new solution also maintains the
other constraint in (17) because: k′

i · p(i) + k′
j · p(j) =

ki · p(i) + kj · p(j).
Finally, the false-positive probability related to objects

xi, xj for the new solution is:

q
′(i) ·

„

1

2

«k′
i

+ q
′(j) ·

„

1

2

«k′
j

=

q
′(i) ·

„

1

2

«

p(j)
p(i)

·kj+
“

1−
p(j)
p(i)

”

·ki

+ q
′(j) ·

„

1

2

«ki

(19)

Here f(x) =
`

1
2

´x
is strictly convex, i.e., for all x, y, 0 < λ <

1: f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y). Hence we have

q
′(i) ·

„

1

2

«k′
i

+ q
′(j) ·

„

1

2

«k′
j

<q
′(i) ·

"

p(j)

p(i)
·

„

1

2

«kj

+

„

1 −
p(j)

p(i)

«

·

„

1

2

«ki

#

+ q
′(j) ·

„

1

2

«ki

=q
′(i) ·

p(j)

p(i)
·

"

„

1

2

«kj

−

„

1

2

«ki

#

+
`

q
′(i) + q

′(j)
´

„

1

2

«ki

≤q
′(j) ·

"

„

1

2

«kj

−

„

1

2

«ki

#

+
`

q
′(i) + q

′(j)
´

·

„

1

2

«ki

=q
′(j) ·

„

1

2

«kj

+ q
′(i) ·

„

1

2

«ki

(20)

Case 3: p(i) < p(j).

Similar to Case 2, we devise a new solution that achieves
a lower false-positive probability. In the new solution, the
number of hashes for objects xi, xj are changed to: k′

i = kj ,

and k′
j = p(i)

p(j)
·ki +

“

1 − p(i)
p(j)

”

·kj . We know ki ≤ k′
i, k

′
j ≤ kj

and thus the new solution still satisfies the range constraint
[1, kmax]. It is easy to see that the other constraint in (17)
also holds here.

Similar to (20), the false-positive probability related to

objects xi, xj for the new solution is:

q
′(i) ·

„

1

2

«k′
i

+ q
′(j) ·

„

1

2

«k′
j

=q
′(i) ·

„

1

2

«kj

+ q
′(j) ·

„

1

2

«

p(i)
p(j)

·ki+
“

1−
p(i)
p(j)

”

·kj

<q
′(i) ·

„

1

2

«kj

+ q
′(j) ·

"

p(i)

p(j)
·

„

1

2

«ki

+

„

1 −
p(i)

p(j)

«

·

„

1

2

«kj

#

=q
′(j) ·

p(i)

p(j)
·

"

„

1

2

«ki

−

„

1

2

«kj

#

+
`

q
′(i) + q

′(j)
´

„

1

2

«kj

≤q
′(i) ·

"

„

1
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Lemma 2. Let k1, k2, · · · , kN be an optimal solution to
the ranged real-number problem (17). Then ⌊k1⌋, ⌊k2⌋, · · · , ⌊kN⌋
is a 2-approximation solution to the ranged integer problem

(18) and it also satisfies q′(i)
p(i)

>
q′(j)
p(j)

=⇒ ⌊ki⌋ ≥ ⌊kj⌋.

Proof: Obviously ⌊k1⌋, ⌊k2⌋, · · · , ⌊kN⌋ fall into [1, kmax]. In

addition, q′(i)
p(i)

>
q′(j)
p(j)

=⇒ ⌊ki⌋ ≥ ⌊kj⌋ holds since ki ≥

kj =⇒ ⌊ki⌋ ≥ ⌊kj⌋. We show below that this rounding
process at most doubles the original optimal false-positive
probability.

Let B,B′ represent the probability that an arbitrary bit of
the Bloom filter is 1 when ki’s, ⌊ki⌋’s are used, respectively.
It is obvious that B′ ≤ B = 1

2
since ⌊ki⌋ ≤ ki — fewer hashes

are used after the rounding. Furthermore, ⌊ki⌋ > ki − 1
always holds. Hence the false-positive probability of the
rounded solution is:

N
X

i=1

q
′(i) · (B′)⌊ki⌋ ≤

N
X

i=1

q
′(i) · Bki−1 = 2 ·

N
X

i=1

q
′(i) · Bki ,

which is twice the false-positive probability of the optimal
ranged real-number solution, and hence is at most twice that
of the optimal ranged integer solution.

4.3 Polynomial-Time 2-Approximation
Based on Lemma 2, we restrict the search space of our

solution to those that assign hash numbers to data objects
in the order of their importance scores — given data objects
x1, x2, · · · , xN sorted in order of their importance scores (xi

precedes xj only if q′(i)
p(i)

≤ q′(j)
p(j)

), an object with a higher

score is always assigned at least as large a number of hashes
than an object with a lower score. Such a monotonic integer
solution are within an approximation factor of two.

Our problem is to determine kmax−1 indices that partition
ordered data objects into kmax groups and use i hashes for
objects in the ith group (i ∈ {1, 2, · · · , kmax}). More specif-
ically, we find integers 0 ≤ l1 ≤ l2 ≤ · · · ≤ lkmax−1 ≤ N

where li represents the order of the highest ordered ob-
ject with i or fewer assigned hashes (we know l0 = 0 and



lkmax = N). In this case, our new optimization goal and
constraint become:

Minimize

kmax
X

i=1

2

4

„

1

2

«i

·

li
X

j=li−1+1

q
′(j)

3

5 ,

subject to

kmax
X

i=1

2

4i ·

li
X

j=li−1+1

p(j)

3

5 ≤
m

n
· ln 2.

(22)

Theorem 1. The problem in (22) is polynomial-time solv-
able and its optimal solution guarantees an approximation
ratio of 2 for the Bloom filter optimization problem (18).

Proof: Compared to the original problem described in
(18), our new problem has a greatly reduced search space.
A brute-force solution can enumerate all possibilities for
l1, l2, · · · , lkmax−1. Since there are less than (N + 1)kmax−1

such possibilities and it takes O(N) time to check the con-
straint and calculate the minimization target for each pos-
sible case, the brute-force solution has a polynomial-time
complexity of O(Nkmax) (when kmax is a constant). In com-
parison, the brute-force solution for the original ranged in-
teger problem described in (18) requires O(kN

max · N) time.
From Lemma 2, it follows that the optimal solution to

(22) achieves an approximation ratio of 2.

4.4 Faster (2 + ǫ)-Approximation
Although brute-force solution of (22) does give a polynomial-

time approximation algorithm, its O(Nkmax ) running time
may not be practical. First, the constant kmax is unlikely to
be smaller than 6, since typically m

n
· ln 2 ≥ 3 and kmax ≥

2· m
n
·ln 2. Further, N can be quite large and even in the mil-

lions (e.g., the number of popular URLs in the distributed
caching application and the number of search keywords in
the distributed search application). Therefore we propose
another algorithm that achieves an approximation ratio of

2 + ǫ within O(N2

ǫ
) time for any ǫ > 0 of our choice.

Let P0, Q0, P1, Q1, · · · , PN , QN denote the reverse cumu-
lative sums of p, q′ for the importance-ordered sequence of
data objects: Pi =

PN

j=i+1 p(j), Qi =
PN

j=i+1 q′(j). It is
obvious that P0 = Q0 = 1 and PN = QN = 0. Then the
lefthand-side of the constraint in (22) can be rewritten as
follows:

kmax
X

i=1

2

4i ·

li
X

j=li−1+1

p(j)

3

5

=kmax · Plkmax−1
+

kmax−1
X

i=1

ˆ

i · (Pli−1 − Pli)
˜

=1 +

kmax−1
X

i=1

Pli

(23)

And the minimization goal in (22) can be rewritten as

kmax
X

i=1

2

4

„

1

2

«i

·

li
X

j=li−1+1

q
′(j)

3

5

=

„

1

2

«kmax

· Qlkmax−1
+

kmax−1
X

i=1

"

„

1

2

«i

· (Qli−1 − Qli)

#

=

„

1

2

«

−

kmax−1
X

i=1

"

„

1

2

«i+1

· Qli

#

(24)

Based on (23) and (24), the optimization problem (22) is
equivalent to finding integers 0 ≤ l1 ≤ l2 ≤ · · · ≤ lkmax−1 ≤
N that (for given P0, Q0, P1, Q1, · · · , PN , QN):

Maximize

kmax−1
X

i=1

"

„

1

2

«i+1

· Qli

#

,

subject to

kmax−1
X

i=1

Pli ≤
m

n
· ln 2 − 1.

(25)

This problem can be viewed as a knapsack problem in
that it selects kmax − 1 objects with maximal total value
(the weighted sum of Q’s) while keeping the total size of
selected objects (the sum of P ’s) below the knapsack ca-
pacity (m

n
· ln 2 − 1). However, the problem differs from

standard knapsack problems in two ways: 1) A fixed num-
ber of objects are chosen. 2) Objects have variable values
dependent on the order by which they are selected, e.g., the
first selected object has value ( 1

2
)2 ·Ql1 ; the second selected

object leads to value ( 1
2
)3 · Ql2 , etc. Our studied variant of

the knapsack problem is reminiscent of the partially ordered
knapsack (POK) problem [10, 12], which requires that cer-
tain objects must be chosen only if others have been selected
before. Although POK is known to be strongly NP-hard
even when the partial order is bipartite [10], our variant
has a fully-polynomial-time approximation scheme because
its objects follow a total precedence order. Dynamic pro-
gramming, a useful technique for solving standard knapsack
problems, is still applicable for our variant (but with some
adjustments).

For our dynamic programming algorithm, we use f(x) =

⌊ x
u
⌋·u to round object values, where u = ǫ

2
· 1

kmax−1
·
`

1
2

´kmax .
After the rounding, each object value is a multiple of u. Let
Li,j,w denote an i-element partial solution l1 ≤ l2 ≤ · · · ≤
li ≤ j whose total value is w and total size is minimized,
where i ∈ {1, 2, · · · , kmax − 1}, j ∈ {1, 2, · · · , N}. We know

w ∈ {0 · u, 1 · u, · · · , ⌊ 2−1

u
⌋ · u} because the maximum to-

tal value (the maximization goal in (25)) never exceeds 2−1

and the unit value is u. Let Si,j,w denote the total size of
Li,j,w and Si,j,w = ∞ if Li,j,w does not exist. It is easy
to directly compute S1,j,w, L1,j,w ’s by a simple scan over
P0, Q0, P1, Q1, · · · , PN , QN . Other Si,j,w’s (i ≥ 2) can be
computed by using dynamic programming, as described be-
low (Li,j,w’s are updated accordingly):

Si,j,w = min
y∈{1,2,··· ,j}

{Py + Si−1,y,w−f(2−(i+1)·Qy)} (26)

After the execution of the above dynamic programming,
the optimal solution to (25) is achieved by choosing Lkmax−1,N,w

with w = max{z|Skmax−1,N,z ≤ m
n
· ln 2 − 1}.



Theorem 2. For ǫ > 0, our dynamic programming al-
gorithm (26) achieves an approximation ratio of 2 + ǫ for

the ranged integer optimization problem (18) within O(N2

ǫ
)

time.

Proof: Given an optimal solution to (25), let OPT repre-
sent its corresponding false-positive probability. Let OPT ′

represent the new false-positive probability when rounded
object values of the original optimal solution are used. Since
the solution chooses kmax − 1 objects and each object has
its value changed by at most u after the rounding, we know:

OPT ′ ≤ OPT + (kmax − 1) · u = OPT + ǫ
2
·
`

1
2

´kmax .
Our dynamic programming (26) finds the optimal solution

on rounded values and hence its corresponding false-positive
probability OPT ′′ should satisfy OPT ′′ ≤ OPT ′ ≤ OPT +
ǫ
2
·
`

1
2

´kmax . We also know that OPT ≥ ( 1
2
)kmax because ev-

ery object uses at most kmax hashes. Hence OPT ′′

OPT
≤ 1 + ǫ

2
.

Furthermore, we know OPT is the optimally achieved false-
positive probability for the importance score-following prob-
lem (25). According to Lemma 2, OPT is at most twice the
minimal false-positive probability achieved by the optimal
solution to the ranged integer problem (18). Consequently,
the solution of our dynamic programming achieves an ap-
proximation ratio of 2 · (1 + ǫ

2
) = 2 + ǫ to problem (18).

The dynamic programming has kmax − 1 rounds (i’s) and
each round examines at most N objects (y’s) on N · 1

2u
table

entries ((j, w)’s). Consequently, the running time of our
dynamic programming is at most (kmax − 1) · N · 1

2u
· N =

O(N2

ǫ
· k2

max · 2kmax) = O(N2

ǫ
), where kmax is typically a

small integer in practice.

5. QUANTITATIVE EVALUATION
Using a synthetic workload and two application case stud-

ies driven by real-life data traces, we quantitatively compare
four Bloom filter approaches:

• Standard Bloom filters, which is oblivious to data ob-
ject popularity distributions.

• Popularity-conscious Bloom filters, real-rounding solu-
tion. This approach uses the rounding results of the
optimal real-number solution of ki’s in (14). We round
each ki into its nearest integer except that ki < 1 is
rounded to 1 and ki > kmax is rounded to kmax.

• Popularity-conscious Bloom filters, integer solution. This
is our dynamic programming-based (2+ǫ)-approximation
ranged integer solution described in Section 4.4.

• Popularity-conscious Bloom filters, optimal+ solution.
The false-positive probability of the optimal real-number
solution in (15) indicates a loose performance upper-
bound for comparison. It is unlikely that any ranged
integer solution can achieve a matching performance
and thus we add the plus symbol after “optimal”.

5.1 Evaluation on Zipf-Like Data Popularity
Distributions

We first use a simple synthetic workload in which the
non-member query popularity distribution q′ is Zipf-like —
q′(i) ∝ i−α, 1 ≤ α ≤ 2; and the membership popularity dis-
tribution p is uniform — p(i) = 1

N
. Under varying skewness

parameter α in the Zipf distribution, Figure 1 shows the
false-positive probability achieved by different Bloom filter
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Figure 1: Comparison of Bloom filter approaches on

synthetic Zipf-distributed data popularities under differ-

ent Zipf skewness. In the experiments, m
n

= 8 (averaging

8 Bloom filter bits per set element) and kstandard = 5 for

standard Bloom filters. We set kmax = 2 · kstandard.

approaches. Results suggest that the simple rounding may
lead to a significant increase (2–400 times depending on α)
in false-positive probability over the optimal real-number
solution. Such rounding-induced error increase is more pro-
nounced with larger difference between p, q′. In compari-
son, our proposed integer solution for popularity-conscious
Bloom filters only leads to a moderate and stable increase
(around two times or less) in the false-positive rate over all
test cases.

5.2 Trace-driven Case Study on Cooperative
Distributed Caching

Web caching is an effective and widely used technique
to reduce web traffic and Internet bandwidth consumption.
The caching efficiency can be further improved by sharing
cached data among distributed web caches [7,25]. In partic-
ular, Fan et al. proposed summary cache to support efficient
cache sharing [7]. In their approach, each cache maintains
a summary of the content at every other cache. Whenever
a local miss occurs, the cache searches all the summaries
for the requested data object and forwards the query to a
cache whose content summary indicates that it possesses
the object. Since cache summaries need to be compact and
they can tolerate some false-positives, Bloom filters are em-
ployed to represent the cache summaries. In this section,
we will present the performance improvement of using our
data popularity-conscious Bloom filters rather than stan-
dard Bloom filters for supporting cooperative distributed
caching.

Data Traces and Evaluation Setup. Our evaluation is
based on data traces from National Lab of Applied Network
Research (NLANR) Web Caching project (www.ircache.net),
which consists of ten cooperative web caches. We use the
traces of 3 weeks (09/15/2005–10/5/2005, 42.7 million web
requests with 15.9 million distinct URLs) as training dataset
to acquire set distribution p and non-member query distribu-
tion q′. Then we use the algorithms proposed in Section 4.4
to compute customized hash schemes for objects (URLs).

The performance comparison between our Bloom filters
and standard Bloom filters are conducted based on the traces
of next 3 weeks (10/06/2005–10/27/2005, 47.7 million web
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Figure 2: Comparison of Bloom filter approaches with varying Bloom filter sizes for the case study of cooperative

distributed caching We show the comparison results using two cache replacement policies. In the experiments, we

set kmax (upper threshold for per-object hash number in popularity-conscious Bloom filters) as twice the number of

per-object hashes in standard Bloom filters.

requests with 17.1 million distinct URLs). In the evalua-
tion phase, we use a discrete event simulator to simulate
distributed web caching system on the testing data traces.
The simulator reads cache requests from the traces at ten
proxies and merges them into one queue (in the time order)
based on the timestamp of each request. For the cache re-
quests in the queue, the simulator processes them in their
time order and updates their corresponding caches accord-
ingly. As suggested by Fan et al., our simulator broadcasts
the content summary of a cache to all other caches whenever
the cache has evicted 1% of its members since last broad-
cast [7]. When a request misses in a cache, the simulator
checks the up-to-date received summaries at that cache to
see if the requested object may be stored in other caches. If
it appears promising, the simulator forwards the request to
the appropriate cache and checks whether it is a false hit or
not.

Throughout the training and evaluation phases, we use
a cache size of 100,000 objects. We consider two common
cache replacement policies in our study:

• In-cache LFU keeps a reference count for each cached
document and replaces the least frequently visited doc-
ument with the incoming document if necessary (LRU
policy is used to break ties). Note that the in-cache
LFU does not maintain reference history for evicted
documents and therefore its reference frequency in-
formation may be incomplete. There exist a variety
of other approaches that employ more complete ref-
erence frequency information, such as LFU-aging and
weighted LFU [21]. However, a simple scheme like in-
cache LFU is sufficient for our illustration purpose.

• LRU organizes cache content as a queue and always
puts the most recently visited object at the tail of the
queue. The object at the head of the LRU queue (the
least recently requested object) will be removed at each
cache replacement.

Simulation Results. We compare the four Bloom filter ap-
proaches defined earlier — standard Bloom filters, popularity-
conscious real-rounding solution, popularity-conscious inte-
ger solution derived by our proposed algorithm, and popularity-

conscious optimal+ solution. Figure 2 shows that our pro-
posed popularity-conscious integer solution significantly out-
performs alternative schemes. Compared to standard Bloom
filters, our approach’s false-positive probability reduction is
at least 24 times under in-cache LFU, and around 3 times un-
der LRU. Compared to popularity-conscious real-rounding
solution, our approach’s false-positive probability reduction
is 1.6–7.5 times under in-cache LFU, and 1.3–2.1 times un-
der LRU. At the same time, the false-positive probability
achieved by our popularity-conscious integer solution is al-
ways within a factor of 2 from the optimal+ solution.

5.3 Trace-driven Case Study on Distributed
Full-text Keyword Search

Most of the current distributed full-text keyword search
systems are based on distributed keyword indices, where
each node maintains the inverted lists of some keywords.
A query with k ≥ 1 keywords needs to contact all nodes
that hold the inverted lists of the k keywords and computes
the intersection of these inverted lists. For large datasets,
the performance of distributed keyword indices is dominated
by the efficiency of set intersection operations.

Given sets A, B with |A| ≤ |B|, we compute A ∩ B as
follows:
1. NA sends the Bloom filter representation of A to NB .
2. Every object in B will be queried to A’s Bloom filter.
NB then sends the set S = {x|x ∈ B∧Answer = Y ES}
to NA.
3. NA computes S ∩ A, which is equal to A ∩ B since
A ∩ B ⊆ S ⊆ B.

Figure 3: Set intersection supported by Bloom filters.

Li et al. [15] and Reynold and Vahdat [23] suggest to use
Bloom filters to reduce the communication overhead of com-
puting the set intersection between sets A, B from different
nodes NA, NB . For |A| ≤ |B|, A ∩ B can be computed
by using Bloom filters as shown in Figure 3. Compared to
the naive way of computing A ∩ B where A is directly sent
over the network, the Bloom filter approach significantly re-
duces the communication overhead by sending the compact
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Figure 4: Comparison of Bloom filter approaches with varying Bloom filter sizes for the case study of distributed

full-text keyword search. We show the comparison results on false-positive probability (A) and on communication

overhead (B). In the experiments, we set kmax (upper threshold for per-object hash number in popularity-conscious

Bloom filters) as twice the number of per-object hashes in standard Bloom filters.

representation of A over the network. Note that this ap-
proach maintains perfect accuracy by resolving the Bloom
filter false-positives in step 3. However, more false-positives
result in more communication overhead in step 2. In this
section, we will present the communication overhead saving
of using our data popularity-conscious Bloom filters rather
than standard Bloom filters in set intersection operations.

Data Traces and Simulation Setup. Our dataset contains
3.7 million web pages and 6.8 million web queries. The web
pages are crawled based on URL listings of the Open Direc-
tory Project (www.dmoz.com). The queries are from a partial
query log at the Ask Jeeves search engine (www.ask.com) over
the week of 01/06/2002–01/12/2002 and there are an aver-
age of 2.54 terms per query. There are 253,334 distinct words
that appear in the query log. In our simulation, we randomly
distribute the 253,334 corresponding inverted lists (one in-
verted list for each word) over 4096 virtual nodes, where
each node is responsible for the inverted lists of some words.
For each incoming query, our simulator computes the inter-
section of the inverted lists of its query terms as follows. For
a query that consists of words w1, w2, · · · , wk with ascending
order of inverted list sizes, the simulator visits their hosts
in the same order and computes S1 ∩ S2, (S1 ∩ S2)∩ S3, ...,
(S1 ∩ S2 ∩ ...Sk−1) ∩ Sk step by step, where S1, S2, · · · , Sk

are the inverted lists for the words w1, w2, · · · , wk and each
intersection is computed in a way as described in Figure 3.

According to Figure 3, if the Bloom filter of A uses a
total of m bits and its false-positive probability is P , then
the total algorithm communication overhead is:

m

8
+ |A ∩ B| · 4 + |B − B ∩ A| · P · 4 (bytes) (27)

where m
8

(bytes) is the overhead for step 1 and |A∩B| · 4 +
|B − B ∩ A| · P · 4 (bytes) is the overhead related to step 2.
Compared to standard Bloom filters, popularity-conscious
Bloom filters have a lower false-positive probability (P ),
which leads to lower overall communication overhead when
the same Bloom filters size is used.

Simulation Results. Figure 4 shows that our proposed
popularity-conscious integer solution significantly outperforms
alternative schemes. In Figure 4(A), our approach reduces

the Bloom filter false-positive probability by around 27 times
compared to standard Bloom filters, and by around 10 times
compared to the popularity-conscious real-rounding solu-
tion. At the same time, the false-positive probability achieved
by our popularity-conscious integer solution is always within
a factor of 2 from the optimal+ solution. In Figure 4(B),
our approach saves the communication overhead by 76–82%
compared to standard Bloom filters, and by 49–56% com-
pared to the popularity-conscious real-rounding solution. At
the same time, our approach incurs <10% more communi-
cation overhead than the optimal+ solution does.

6. CONCLUSION AND DISCUSSION
We discover that standard Bloom filters, which are obliv-

ious to data object popularities, are not optimal unless set
distributions and non-member query distributions are iden-
tical. Motivated by that, this paper studies the problem
of minimizing the false-positive probability of Bloom filters
by adapting the number of hashes used for each object to
its popularities in sets and membership queries. Guided
by a novel object importance metric, we propose the first
polynomial-time integer solution with bounded approxima-
tion ratios. Our results include a 2-approximation algorithm
with O(Nc) running time (c ≥ 6 in practice) and a (2 + ǫ)-

approximation algorithm with running time O(N2

ǫ
), ǫ > 0.

We provide quantitative evaluations using one artificial
workload and two application case studies driven by real-
life data traces. Evaluation results show that our proposed
popularity-conscious Bloom filters can achieve significant
false-positive probability reduction compared to standard
Bloom filters and the simple popularity-conscious solution
that rounds optimal real-number solutions into nearest in-
tegers.

This work is related to our other studies of using known
object popularity information to customize object replica-
tion degrees [27] and object placement for multi-object op-
erations [28]. Together, our results demonstrate substantial
system adaptation benefits by exploiting skewed but stable
data access distributions in real-world data-intensive appli-
cations.



Discussion on Overhead. Consider a practical implemen-
tation of our data popularity-conscious Bloom filters in which
each data object and its number of hashes is stored in a local
lookup table. In such an implementation, the lookup table
size is proportional to the total number of distinct data ob-
jects. Further, Theorem 2 shows that the offline computa-
tion time is quadratic in the total object count. The total
object count can be as high as millions in practice (e.g., the
number of keywords in web pages) and therefore the space
and offline computation overhead may be too expensive. To
control such overhead, one may apply limited optimization
— to only optimize a small number of objects with high-

est and lowest q′(i)
p(i)

. For the remaining objects with median
q′(i)
p(i)

values, we will just use the default number of per-object

hashes as in standard Bloom filters. We believe that the per-
formance improvement of very limited optimization is still
significant in applications with highly skewed popularities.
Specifically, the most popular objects in queries typically

have high q′(i)
p(i)

values while the most popular objects in sets

often have low q′(i)
p(i)

values. With high skewness, a small

number of most popular objects dominate the overall popu-
larity. For example, for a 106-element dataset with its popu-
larity distribution following Zipf’s law (Prob(i) ∝ 1

i
), a lim-

ited optimization to the most popular 103 objects accounts
for half of the combine popularity.
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