
Compile�Run�time Support for Threaded MPI Execution

on Multiprogrammed Shared Memory Machines

Hong Tang� Kai Shen� and Tao Yang
Department of Computer Science

University of California
Santa Barbara� CA �����

fhtang� kshen� tyangg�cs�ucsb�edu
http�		www�cs�ucsb�edu	research	tmpi

Abstract

MPI is a message�passing standard widely used for de�
veloping high�performance parallel applications� Be�
cause of the restriction in the MPI computation model�
conventional implementations on shared memory ma�
chines map each MPI node to an OS process� which suf�
fers serious performance degradation in the presence of
multiprogramming� especially when a space�time shar�
ing policy is employed in OS job scheduling� In this
paper� we study compile�time and run�time support for
MPI by using threads and demonstrate our optimiza�
tion techniques for executing a large class of MPI pro�
grams written in C� The compile�time transformation
adopts thread�speci�c data structures to eliminate the
use of global and static variables in C code� The run�
time support includes an e�cient point�to�point com�
munication protocol based on a novel lock�free queue
management scheme� Our experiments on an SGI Ori�
gin ���� show that our MPI prototype called TMPI us�
ing the proposed techniques is competitive with SGI�s
native MPI implementation in a dedicated environment�
and it has signi�cant performance advantages with up
to a �	�fold improvement in a multiprogrammed envi�
ronment�

� Introduction

MPI is a message�passing standard
	� widely used for
developing high�performance parallel applications� There
are a number of reasons that people use MPI on shared
memory machines �SMMs� First� new applications may
be required to integrate with existing MPI programs�
Second� code using MPI is portable to any parallel ma�
chine without platform restriction� This is especially
important for future computing infrastructures such as

To appear in the Proceedings of �th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro�
gramming �PPoPP����

information power grids
�� �	�� where resource avail�
ability� including platforms� dynamically changes for
running submitted jobs� Third� even though shared
memory programming is easier for developing a pro�
totype of parallel applications� it is hard to fully ex�
ploit the underlying architecture without careful con�
sideration of data placement and synchronization pro�
tocols� On the other hand� performance tuning for
SPMD�based MPI code on large SMMs is normally eas�
ier since partitioned code and data exhibit good data
locality�

MPICH
��� is a portable implementation of MPI
that delivers good performance across a wide range of
architectures� For SMMs� either a vendor has its own
implementation or uses MPICH� E�cient execution of
MPI code on an SMM is not easy since the MPI pro�
gramming model does not take advantages of the under�
lying architecture� MPI uses the process concept and
global variables in an MPI program are non�sharable
among MPI nodes� As a result� a conventional MPI
implementation has to use heavy�weight processes for
code execution and synchronization� There are two
reasons that process�based MPI implementations su�er
severe performance degradation on multiprogrammed
SMMs� First� it has been widely acknowledged in the
OS community that space�time sharing which dynami�
cally partitions processors among applications is prefer�
able
��� ��� 	�� 	��� The modern operating systems
such as Solaris ��� and IRIX ��� have adopted such a
policy in parallel job scheduling� Therefore� the num�
ber of processors allocated to an MPI job can be smaller
than requested� In some cases� the number of assigned
processors may change dynamically� Thus� multipro�
gramming imposes great disadvantages for MPI jobs
because process context switch and synchronization are
expensive� Secondly� without sharing space among pro�
cesses� message passing between twoMPI nodes must go
through the system bu�er and bu�er copying degrades
the communication e�ciency of MPI code ��

�An earlier version of SGI MPI enforced that the address space of
each MPI process is shared with every other� However� SGI eventually

�

In this paper� we propose compile�time and run�time
techniques that allow a large class of MPI C code to be
executed as threads on SMMs� The compile�time code
preprocessing eliminates global and static variables us�
ing thread�speci�c data structures� which results in safe
execution of MPI code� The run�time techniques pro�
posed in this paper are focused on e�cient lock�free
point�to�point communication�

We assume that readers are familiar with the MPI
standard and will not present its de�nitions� Section �
describes our current assumptions and related work�
Section 	 discusses compile�time preprocessing that pro�
duces thread�safe MPI code� Section � discusses the
run�time support for multi�threaded execution� Sec�
tion � presents our lock�free management for point�to�
point communication� Section � presents the experi�
mental results on the SGI Origin ����� Section � con�
cludes the paper�

� Assumptions and Related Work

Our �rst goal is to convert an MPI program �called
source program later on to be �thread�safe� so that
the new program �called target program later on will
yield the same result as the source program when it is
executed by multiple threads� To avoid confusion� the
term �MPI node� is used to refer to an MPI running
unit and the term �MPI process� is only used when
we want to emphasize that an MPI node is actually
a process� In the current work� we have made several
assumptions� � The total memory used by all the nodes
can �t in the address space of a process� � The total
number of �les opened by all the nodes can �t in one
process�s open �le table� 	 The source program does
not involve low�level system calls which are not thread�
safe such as signals� � Each MPI node does not spawn
new threads� Most programs written in MPI� however�
should meet our assumptions and we found no exception
in any of the MPI test programs we collected�

We assume that basic synchronization primitives such
as read�modify�write and compare�and�swap
��� are avail�
able and we use them for lock�free synchronization man�
agement� Actually� all modern microprocessors either
directly support these primitives or provide LL�SC
���
for software implementation�

The importance of integrating multi�threading and
communication on distributed memory systems has been
identi�ed in previous work such as the Nexus project
����
Earlier attempts to run message�passing code on shared�
memory machines include the LPVM
	�� and TPVM
���
projects� Both projects do not address how a PVM pro�
gram can be executed in a multi�threaded environment
without changing the programming interface� Most of

gave up this design due to insu�cient address space and software
incompatibility �����

previous MPI research is focused on distributed mem�
ory machines or workstation clusters� e�g�
��� The MPI�
SIM project
�� �� has used multi�threading to simulate
MPI execution on distributed memory machines as we
will discuss in Section 	��� Thread safety is addressed
in
	� ��� ���� However� their concern is how multiple
threads can be invoked in each MPI node� but not how
to execute each MPI node as a thread� These studies
are useful for us to relax our assumptions in the future�

Previous work has also illustrated the importance
of lock�free management for reducing synchronization
contention and unnecessary delay due to locks
�� �� ���
��� ���� Lock�free synchronization has also been used in
the process�based SGI implementation
���� Theoreti�
cally speaking� some concepts of SGI�s design could be
applied to our case after considerations for thread�based
execution� However� as a proprietary implementation�
SGI�s MPI design is not documented and its source code
is not available to public� The SGI design uses undoc�
umented low�level functions and hardware support spe�
ci�c to the SGI architecture� which may not be general
or suitable for other machines� Also� their design uses
busy�waiting when a process is waiting for events
����
which is not desirable for multiprogrammed environ�
ments
��� ���� Lock�free studies in
�� �� ��� ��� ���
either restrict their queue model to be FIFO or FILO�
which are not su�cient for MPI point�to�point commu�
nication� or are too general with unnecessary overhead
for MPI� A lock�free study for MPICH is conducted in
a version for the NEC shared�memory vector machines
and Cray T	D
��� �� ��� using single�slotted bu�ers
for the ADI�layer communication� Their studies are
still process�based and use the layered communication
management which is a portable solution with overhead
higher than our scheme� In terms of lock�free manage�
ment� our scheme is more sophisticated with greater
concurrency and better e�ciency since our queues can
be of arbitrary lengths and allow concurrent access by
a sender and a receiver�

Our study is leveraged by previous research in OS job
scheduling on multiprogrammed SMMs
��� ��� 	�� 	��
		�� These studies show that multiprogramming makes
e�cient use of system resources and space�time shar�
ing is the most viable solution� outperforming other al�
ternatives such as time sharing and co�scheduling
����
for achieving high throughputs� The current version
of OS in both SGI and SUN multiprocessors support
space�time sharing policies�

� Compile�time Support

The basic transformation needed to make the execution
thread�safe for MPI C code is elimination of global and
static variables� In an MPI program� each node can
keep a copy of its own permanent variables � variables

�

allocated statically in a heap� such as global variables
and local static variables� If such a program is exe�
cuted by multiple threads without any transformation�
then all threads will access the same copy of permanent
variables� To preserve the semantics of a source MPI
program� it is necessary to make a �private� copy of
each permanent variable for each thread�

��� Possible Solutions

Below we discuss three possible solutions and exam�
ples for each of them are illustrated in Figure �� The
main�� routine of a source program listed in Column � is
converted into a new routine called usrMain�� and an�
other routine called thr main�� is created� which does
certain initialization work and then calls userMain���
This routine thr main�� is used by the run�time system
to spawn threads based on the number of MPI nodes
requested by the user� We discuss and compare these
solutions in details as follows�

The �rst solution illustrated in the second column
of Figure � is called parameter passing� The basic idea
is that all permanent variables in the source program
are dynamically allocated and initialized by each thread
before it executes the user�s main program� Pointers
to those variables are passed to functions that need to
access them� There is no overhead other than parameter
passing� which can usually be done quite e�ciently� The
problem is that such an approach is not general and the
transformation could fail for some cases�

The second solution� which is used in
��� is called ar�
ray replication� The preprocessor re�declares each per�
manent variable with an additional dimension� whose
size is equal to the total number of threads� There are
several problems with this approach� First� the number
of threads cannot be determined in advance at compile
time� MPI�SIM
�� uses an upper limit to allocate space
and thus the space cost may be excessive� Second� even
though the space of global variables could be allocated
dynamically� the initialization of static and global vari�
ables must be conducted before thread spawning� As
a result� function� or block�speci�c static variables and
related type de�nitions must be moved out from their
original lexical scopes� which violates the C program�
ming semantics� It is possible to provide a complicated
renaming scheme to eliminate type and variable name
con�icts� but the target program would be very di�cult
to read� Finally� false sharing may occur in this scheme
when the size of a permanent variable is small or not
aligned to cache line size
��� ����

Because of the above considerations� we have used
the third approach based on thread�speci�c data �TDS��
a mechanism available in POSIX threads
�	�� Brie�y
speaking� TSD allows each thread to associate a pri�
vate value with a common key which is a small integer�
Given the same key value� TSD can store�retrieve a

thread�s own copy of data� In our scheme� each perma�
nent variable is replaced with a permanent key of the
same lexical scope� Each thread dynamically allocates
space for all permanent variables� initializes those vari�
ables for only once� and associates the reference of those
variables with their corresponding keys� For each func�
tion that refers a permanent variable� this reference is
changed to a call that retrieves the value of this variable
using the corresponding key� Such a transformation is
general and its correctness not di�cult to prove� There
will be no false sharing problem even for keys� because
keys are never altered after initialization� Notice that
certain thread systems such as SGI�s SPROC thread li�
brary do not provide the TSD capability� however� it
is still relatively easy to implement such a mechanism�
In fact� we wrote TSD functions for the SGI�s SPROC
library� In the example of Figure �� two TSD functions
are used� Function setval�int key� void �val� as�
sociates value �val� to a key marked as �key� and func�
tion void �getval�int key� gets the value associated
with �key�� In this example� a key is allocated stati�
cally� In our implementation� keys are dynamically al�
located�

��� TSD�based Transformation

We have implemented a preprocessor for ANSI C �����
to perform the TSD�based transformation� The actual
transformation uses dynamic key allocation and is more
complex than the example in Figure � since interaction
among multiple �les needs to be considered and type
de�nitions and permanent variable de�nitions could ap�
pear in any place including the body of functions and
loops� We brie�y discuss three cases in handling trans�
formation�

� Case �� Global permanent variables� If a
variable is de�ned�declared as a global variable
�not within any function� then it will be replaced
by a corresponding key declaration� The key is
seen by all threads and is used to access the mem�
ory associated with the key� This key is initialized
before threads are spawned� In the thr main��

routine� a proper amount of space for this variable
is allocated� initialized and then attached to this
thread�speci�c key� Notice that thr main�� is the
entry function spawned by the run�time system in
creating multiple MPI threads� thus the space al�
located for this variable is thread�speci�c�

� Case �� Static variables local to a control

block� A control block in C is a sequence of code
delimited by �f� and �g�� Static variables must be
initialized �if speci�ed at the �rst time when the
corresponding control block is invoked and the lex�
ical scope of those static variables should be within

	

Source Program Parameter passing Array Replication TSD
typedef int KEY�

static int i��� static int Vi�Nproc�� static KEY key�i���

int thr�main�� int thr�main�int tid� int thr�main��
� � �

			 			 			
int
pi�malloc�sizeof�int��� int
pi�malloc�sizeof�int���

pi��� Vi�tid����
pi���

setval�key�i� pi��
			 			 			
usrMain�pi�� usrMain�tid�� usrMain���

� � �

int main�� int usrMain�int
pi� int usrMain�int myid� int usrMain��
� � � �

int
pi�getval�key�i��

i� �
pi�� Vi�myid�� �
pi��
return i� return �
pi�� return Vi�myid�� return �
pi��

� � � �

Figure �� An example of code transformation� Column � is the original code� Columns � to � are target code
generated by three preprocessing techniques� respectively�

if �key�V���� �

int new�key�key�create���

compare�and�swap�	key�V� �� new�key��

if �getval�key�V���NULL� �

T tmp�I�

void �m�malloc�sizeof�tmp���

memcpy�m� 	tmp� sizeof�tmp���

setval�key�V� m��

Figure �� Target code generated for a static variable
de�nition �static T V � I���

this block� The procedure of key initialization and
space allocation is similar to Case �� however� the
key has to be initialized by the �rst thread that ex�
ecutes the control block� The corresponding space
has to be allocated and initialized by each thread
when they reach the control block for the �rst
time� Multiple threads may access the same con�
trol block during key creation and space initializa�
tion� so an atomic operation compare and swap is
needed� More speci�cally� consider a statement for
de�ning a static variable� static T V � I� where
T is a type� V is the variable name� and I is an
initialization phrase� This statement is replaced
with �static int key V���� and Figure � lists
pseudo�code inserted at the beginning of a control
block where this static variable is e�ective� Note
that in the code� function key create�� generates
a new key and the initial value associated with a
new key is always NULL�

� Case �� Locally�declared permanent vari�

ables� For a global variable declared locally within
a control block using extern� the mapping is rather

easy� The corresponding key is declared as extern
in the same location�

For all three cases� the reference to a permanent vari�
able in source MPI code is transformed in the same
way� First� a pointer of proper type is declared and dy�
namically initialized to the reference of the permanent
variable at the beginning of the control block where the
variable is in e�ect� Then the reference to this variable
in an expression is replaced with the dereference expres�
sion of that pointer� as illustrated in Figure �� Column
�� The overhead of such indirect permanent variable
access is insigni�cant in practice� For the experiments
described in Section �� the overhead of such indirection
is no more than ���� of total execution time�

� Run�time Support for Threaded Execution

The intrinsic di�erence between the thread model and
the process model has a big impact on the design of run�
time support� An obvious advantage of multi�threaded
execution is the low context switch cost� Besides� inter�
thread communication can be made faster by directly
accessing threads� bu�ers between a sender and a re�
ceiver� Memory sharing among processes is usually re�
stricted to a small address space� which is not �exible or
cost�e�ective to satisfy MPI communication semantics�
Advanced OS features may be used to force sharing of
a large address space among processes� however� such
an implementation becomes problematic� especially be�
cause it may not be portable even after OS or architec�
ture upgrading
���� As a result� process�based imple�
mentation requires that inter�process communication go
through an intermediate system bu�er as illustrated in
Figure 	�a� Thus a thread�based run�time system can
potentially reduce the number of some memory copy
operations�

�

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

buffer

sender receiver

by sender by receiversystem

(a) Inter-process data copying

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
���� �����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

sender receiver

buffer
by sender by receiversystem

(b) Inter-process data copying (system buffer overflow)

Figure 	� Illustration of inter�process message passing�

Notice that in our implementation� if message send is
posted earlier than the receive operation� we choose not
to let the sender block and wait for the receiver� in or�
der to yield more concurrency� This choice a�ects when
memory copying can be saved� We list three typical sit�
uations in which copy saving can take e�ect� � Mes�

sage send is posted later than message receive�

In this case� a thread�based system can directly copy
data from the sender�s user bu�er to the receiver�s user
bu�er� � Bu�ered send operations� MPI allows a
program to specify a piece of user memory as the mes�
sage bu�er� In bu�ered send operation �MPI Bsend���
if send is posted earlier than receive� the sender�s mes�
sage will be temporarily copied to the user�allocated
bu�er area before it is �nally copied to the destina�
tion�s bu�er� For process�based execution� since the
user�allocated message bu�er is not accessible to other
processes� an intermediate copy from the user�allocated
bu�er to the shared system bu�er is still necessary� 	
System bu�er over�ow� If the message size exceeds
the size of free space in system bu�er� then the send
operation must block and wait for the corresponding
receive operation� In thread�based execution� a receiver
can directly copy data from a sender�s bu�er� But in
the process�based environment� the source bu�er has to
be copied in fragments to �t in the system bu�er and
then to the destination bu�er� Figure 	�b illustrates
that copying needs to be done twice because the size of
a message is twice as large as the bu�er size�

The thread model also allows us the �exibility in
design of a lock�free communication protocol to fur�
ther expedite message passing� A key design goal is to
minimize the use of atomic compare�and�swap or read�
modify�write instructions in achieving lock�free synchro�
nization� This is because those operations are much
more expensive than plain memory operations� espe�
cially on RISC machines in which memory bus is stalled
during an atomic operation� For example� on the Origin
���� our measurement shows that plain memory access
is �� times faster than compare�and�swap and �� times
faster than read�modify�write� Our broadcasting queue
management is based on previous lock�free FIFO queue

studies
��� ����
Finally� in our design and implementation� we adopt

a spin�block strategy
��� ��� when a thread needs to
wait for certain events�

In next section� we will discuss our point�to�point
communication protocol which is speci�cally designed
for threaded MPI execution�

� Lock�free Management for Point�to�point Com�

munication

Previous lock�free techniques
�� ��� ��� ��� are normally
designed for FIFO or FILO queues� which are too re�
strictive to be applied for MPI point�to�point commu�
nication� MPI provides a very rich set of functions for
message passing� An MPI node can select messages to
receive by specifying a tag� For messages of the same
tag� they must be received in a FIFO order� A receive
operation can also specify a wildcard tag MPI ANY TAG

or source node MPI ANY SOURCE in message matching�
All send and receive primitives have both blocked and
non�blocked versions� For a send operation� there are
four send modes� standard� bu�ered� synchronized and
ready� A detailed speci�cation of these primitives can
be found in
	� 	��� Such a speci�cation calls for a more
generic queue model� On the other hand� as will be
shown later� by keeping the lock free queue model spe�
ci�c to MPI� a simple� e�cient but correct implemen�
tation is still possible�

1P

iP

NP

S
en

de
rs

S
en

d
Q

ue
ue

R
eceive Q

ueue

Channel (i , j)

2D Channels

1P jP NP

Receivers

1P jP NP

Receivers

Any-Source Queues

Figure �� The communication architecture�

Let N be the number of MPI nodes� Our point�to�
point communication layer consists of N �N channels�
Each channel is designated for one sender�receiver pair
and the channel from node Pi to Pj is di�erent from
the channel from Pj to Pi� Each channel contains a
send queue and a receive queue� There are also ad�
ditional N queues for handling receive requests with
MPI ANY SOURCE as source nodes because those requests
do not belong to any channel� We call these queues
Any�Source queues �ASqueue�� The entire communica�
tion architecture is depicted in Figure ��

We de�ne a send request issued by node s to be
matchable with a receive request issued by node r if� �
the destination node in the send request is r� and � the
source node in the receive request is s or MPI ANY SOURCE�
and 	 the tag in the send request matches the tag in

�

the receive request or the tag in the receive request is
MPI ANY TAG� In the simplest case of a send�receive op�
eration� if the sender comes �rst� it will post the request
handle� in the send queue� and later the receiver will
match the request� If a receive request is posted �rst�
the corresponding receive handle is inserted in a proper
receive queue�

Our design is quite di�erent from the layered design
in MPICH� For the shared memory implementation of
MPICH
��� ���� N �N single�slotted bu�ers are used
for message passing in a lower layer� In a high layer�
each process has three queues� one for send� one for re�
ceive� and one for unexpected messages� Thus messages
from a sender with di�erent destinations are placed in
one send queue� similarly receive handles for obtain�
ing messages from di�erent sources are posted in the
same receive queue� This design is portable for both
SMMs and distributed memory machines� However� it
may su�er high multiplexing cost when there are many
queued messages with di�erent destinations or sources�

The rest of this section is organized as follows� Sec�
tion ��� presents the underlying lock�free queue model�
Section ��� gives the protocol itself� Section ��	 dis�
cusses the correctness of this protocol�

��� A Lock�free Queue Model

As we mentioned above� our point�to�point communica�
tion design contains �N��N queues� Each queue is rep�
resented by a doubly�linked list� There are three types
of operations performed on each queue� � put a handle
into the end of a queue� � remove a handle from a queue
�the position can be in any place�� 	 search �probe a
handle for matching a message� Previous lock�free re�
search
��� ��� ��� usually assumes multiple�writers and
multiple�readers for a queue� which complicates lock�
free management� We have simpli�ed the access model
in our case to one�writer and multiple�readers� which
gives us �exibility in queue management for better e��
ciency�

In our design� each queue has a master �or owner
and the structure of a queue can only be modi�ed by
its master� Thus a master performs the �rst two types
of operations mentioned above� A thread other than
the owner� when visiting a queue� is called a slave of
this queue� A slave can only perform the third type
of the operations �probe� In a channel from Pi to Pj �
the send queue is owned by Pi and the receive queue is
owned by Pj � Each ASqueue is owned by the MPI node
which bu�ers its receive requests with the any�source
wildcard�

Read�write contention can still occur when a master
is trying to remove a handle while a slave is travers�
ing the queue� Removing an interior handle by a mas�

�A handle is a small data structure carrying the description of the
send�receive request such as message tag and size�

ter needs careful design because some slaves may still
hold a reference and can result in invalid memory refer�
ences� Herlihy
��� proposed a solution to such a prob�
lem by using accurate reference counting for each han�
dle� Namely� each handle in a queue keeps the number
of slaves that hold references to this handle� A handle
will not be unlinked from the queue if its reference count
is not zero� Then when a slave scans through a queue�
it needs to decrease or increase the reference count of a
handle using an atomic operation� Such an atomic oper�
ation requires at least one two�word compare�and�swap
and two atomic additions
���� which is apparently too
expensive� Another solution is to use a two�pass algo�
rithm
��� which marks a handle as dead in the �rst pass
and then removes it in the second pass� This approach
is still not e�cient because of multiple passes� We intro�
duce the conservative reference counting �CRC�method
that uses the total number of slaves which are travers�
ing the queue to approximate the number of live refer�
ences to each handle� Using such a conservative approx�
imation� we only need to maintain one global reference
counter and perform one atomic operation when a slave
starts or �nishes a probe operation� This conservative
approximation works well with small overhead if the
contention is not very intensive� which is actually true
for most computation�intensive MPI applications�

Another optimization strategy called semi�removal
is used in our scheme during handle deletion� Its goal
is to minimize the chance of visiting a deleted handle
by future traversers and thus reduce searching cost� If
a handle to be removed is still referenced by some tra�
verser� this handle has to be �garbage�collected� at a
later time� which means other traversers may still visit
this handle� To eliminate such false visits� we introduce
three states for a handle� alive when it is linked in the
queue� dead when it is not� and semi�alive when a handle
is referenced by some traverser but will not be visited
for future traversers� While the CRC of a queue is not
zero� a handle to be removed is marked as semi�alive
by only updating links from its neighboring handles� In
this way� this handle is bypassed in the doubly�link list
and is not visible to the future traversers� Note that this
handle still keeps its link �elds to its neighboring han�
dles in the queue� All semi�alive items will eventually
be declared as dead once the master �nds that the CRC
drops to zero� This method is called �semi�removal� in
contrast to �safe�removal� in which the removal of a
handle is deferred until removing is completely safe�

Figure � illustrates steps of our CRC method with
semi�removal �Column � and those of the accurate ref�
erence counting method with safe�removal �Column 	�
In this example� initially the queue contains four han�
dles a� b� c� and d� and the master wants to remove b

and c while at the same time a slave comes to probe the
queue� Note that the reference counting in column 	 is

�

b semi-removed

Step 1:
M: Removing b
S: Start traverse,
stationed at a

1) Operation

Step 2:
M: Removing c
S: Go from a to c

Step 3:
M: No-op
S: Go from c to d

Step 4:
M: No-op
S: Finish traverse

a, 1 c, 0b, 0 d, 0

Queue Header Queue Tail

a, 0 d, 0c, 1

Queue Header Queue Tail

b
b removed

c is a garbage handle but
could not be removed

3) Queue operation with accurate RC and safe removal

a, 0

c

d, 0

Queue Header Queue Tail

b

a, 0 d, 1c*, 0

Queue Header Queue Tail

b

c reclaimed

a cb d

Queue Header Queue Tail

a dc

Queue Header Queue Tail

b

a

c

d

Queue Header Queue Tail

b

CRC=1

CRC=1

CRC=1

c semi-removed

2) Queue operation with conservative RC and semi-removal

a

c

d

Queue Header Queue Tail

b

CRC=0

b, c reclaimed

Figure �� An example of conservative reference counting with semi�removal �column � compared to accurate refer�
ence counting with safe�removal �column 	� Column � lists actions taken by the master �marked as �M� and the
salve �marked as �S�� Handles in shade are station points of the slave at each step� For accurate reference counting�
the reference count is also shown within each handle�

marked within each handle� next to the handle name�
For this �gure� we can see that the average queue length
�over all steps in Column � is smaller than Column 	�
which demonstrates the advantages of our method�

We have examined the e�ectiveness of our method by
using several micro�benchmarks which involve intensive
queue operations� Our method outperforms the accu�
rate reference counting with safe removal by ������ in
terms of average queue access times�

��� A Lock�free Point�to�point Communication Pro�

tocol

Our point�to�point communication protocol is best de�
scribed as �enqueue�and�probe�� The execution �ow of
a send or receive operation is described in Figure �� For
each operation with request R�� it enqueues R� into an
appropriate queue� Then it probes the corresponding
queues for a matchable request� If it �nds a matchable
request R�� it marks R� as MATCHED and then proceeds
with the message passing� Notice that a �ag is set by
atomic subroutine compare and swap� to ensure that
only one request operation can succeed in matching the
same handle� For systems that do not support sequen�
tial consistency� a memory barrier is needed between
enqueuing and probing to make sure that enqueuing
completes execution before probing� Otherwise� out�of�
order memory access and weak memory consistency in
a modern multiprocessor system can cause a problem
and the basic properties of our protocol studied in Sec�
tion ��	 may not be valid�

send or receive request R1

enqueue(R1)

match(R2)

probe
find nothingfind matching request R2

memory barrier
(if necessary)

Figure �� Execution �ow of a send or receive operation�

Both send and receive operations have the same ex�
ecution �ow depicted in Figure � and their enqueue and
probe procedures are described as follows�

� Enqueue in receive operation� If a receive re�
quest has a speci�c source node� the receiver adds
the receive handle to the end of the receive queue�
If the receive request uses the any�source wildcard�
the receiver adds this handle to the ASqueue it
owns� Notice that an enqueued handle is attached
with a timestamp which is used to ensure the FIFO
receive order�

� Probe in receive operation� If the receive re�

�

quest speci�es a source node� the receiver probes
the send queue in the corresponding channel to
�nd the �rst matchable handle in that queue� If
the receive request uses the any�source wildcard�
the receiver probes all N send queues destined to
this receiver in a random order �to ensure fair�
ness� Notice that probing succeeds when the �rst
matchable handle is found because no order is de�
�ned in MPI for send requests issued from di�erent
senders�

� Enqueue in send operation� The sender adds
a send handle to the end of the send queue in the
corresponding channel�

� Probe in send operation� The sender probes
the receive queue in the corresponding channel and
the ASqueue owned by the receiver to �nd the �rst
matchable receive handle� If it succeeds in only
one of those two queues� it returns the request han�
dle it �nds� If it �nds matchable requests in both
queues� it will use their timestamps to select the
earlier request�

Since a �ag is used to ensure that concurrent prob�
ings to the same handle cannot succeed simultaneously�
it is impossible that several sender�probe operations
match the same receive handle in a queue� It is however
possible that when probing of a send operation �nds a
matchable receive handle in a queue� the probing of
this receive request has found another send handle� To
avoid this mismatch� the probing of a send operation
must check the probing result of this matchable receive
request and it may give up this receive handle if there is
a con�ict� Similarly� a con�ict can arise when a receiver�
probe operation �nds a send handle while the probing
of this send handle �nds another receive handle� Thus
the probing of a receive operation must wait until this
matchable send request completes its probing and check
the consistency� We call the above strategy mismatch
detection� Finally� there is another case which needs
special handling� If both the sender and the receiver
�nd each other matchable at the same time� we only
allow the receiver to proceed with message passing and
make the sender yield as if it did not �nd the matchable
receive request�

��� Correctness Studies

Our point�to�point message passing primitives such as
blocking or non�blocking communication are built on
the top of the above protocol� In
	��� we have proven
that our protocol satis�es the following three basic prop�
erties� One can use these properties to ensure the cor�
rectness of higher level communication primitives�

� No double matching� One send �receive re�
quest can only successfully match one receive �send

request�

� No message loss� There exists no case such that
two matchable send�receive requests are pending
in their queues forever�

� No message reordering� There exists no case
such that the execution order of send requests is�
sued in one MPI node is di�erent from the execu�
tion order of receive operations that are issued in
another MPI node and match these messages�

� Experimental Studies

The purpose of the experiments is to study if the thread�
based execution can gain great performance advantages
in non�dedicated environments and be competitive with
the process�based MPI execution in dedicated environ�
ments� By �dedicated�� we mean that the load of a
machine is light and an MPI job can run on a requested
number of processors without preemption� Being com�
petitive in dedicated situations is important since a ma�
chine may swing dynamically between non�dedicated
and dedicated states� Another purpose of our experi�
ments is to examine the e�ectiveness of address�sharing
through multi�threading for reducing memory copy and
the lock�free communication management� All the ex�
periments are conducted on an SGI Origin ���� at UCSB
with 	� ���MHz MIPS R����� processors and �GB
memory�

We have implemented a prototype called TMPI on
SGI machines to demonstrate the e�ectiveness of our
techniques� The architecture of the run�time system is
shown in Figure �� It contains three layers� The lowest
layer provides support for several common facilities such
as bu�er and synchronization management� the middle
layer is the implementation of various basic communi�
cation primitives and the top layer translates the MPI
interface to the internal format�

Message Passing Inter face

Point-to-point
Operat ions

Collective
Operat ions

Communicator
Management

Message
Queues

System Buffer
Management

Synchronizat ion
Management

Figure �� Run�time system architecture of TMPI�

We use the IRIX SPROC library because the perfor�
mance of IRIX Pthreads is not competitive with SPROC�

�

The current prototype includes �� MPI functions �MPI
��� Standard for point�to�point and collective commu�
nications� which are listed in the appendix of this paper�
We have focused on optimization and performance tun�
ing for the point�to�point communication� Currently
the broadcast and reduction functions are implemented
using lock�free central data structures� and the bar�
rier function is implemented directly using a lower�level
IRIX barrier function� We have not fully optimized
those collective functions� This should not a�ect the
results we obtained through the experiments� We com�
pare the performance of our prototype with the SGI�s
native implementation and the MPICH� Note that both
SGI MPI and MPICH have implemented all MPI ���
functions� however those additional functions are inde�
pendent and integrating them into TMPI should not
e�ect our experimental results�

��� A Performance Comparison in Dedicated Envi�

ronments

The characteristics of the four test benchmarks we have
used are listed in Table �� Two of them are kernel
benchmarks written in C for dense matrix multiplica�
tion using Canon�s method and a linear equation solver
using Gaussian Elimination� Two of them �Sweep	D
and Heat are from the ASCI application benchmark
collection at Lawrence Livermore and Los Alamos Na�
tional Labs� HEAT is written in Fortran and we use
utility f�c to produce a C version for our test� Sweep	D
also uses Fortran� However� f�c cannot convert it be�
cause it uses an automatic array feature� We have man�
ually modi�ed its communication layer to call C MPI
functions and eliminated one global variable used in its
Fortran code� Thus� our code transformation is applied
only to the C portion of this code�

Figure � depicts the overall performance of TMPI�
SGI and MPICH in a dedicated environment measured
by the wall clock time� We run the experiments multi�
ple times and report the average� when every MPI node
has exclusive access to a physical processor without in�
terfered by other users� We do not have experimental
results for 	� nodes because the Origin ���� machine at
UCSB has always been busy� For MM� GE and HEAT�
we list mega�op numbers achieved since this informa�
tion is reported by the programs� For Sweep	D� we
list the parallel time speedup compared to single�node
performance�

From the result shown in Figure �� we can see that
TMPI is competitive with SGI MPI� The reason is that
a process�based implementation does not su�er process
context switching overhead if each MPI node has ex�
clusive access to its physical processor� For the MM
benchmark� TMPI outperforms SGI by around �����
We use the SGI SpeedShop tool to study the execution
time breakdown of MM and the results are listed in

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

Number of processors

M
F

LO
P

 r
at

e

*: TMPI

o: SGI MPI

+: MPICH

(A) Matrix Multiplication

0 5 10 15 20
0

500

1000

1500

2000

Number of processors

M
F

LO
P

 r
at

e

*: TMPI

o: SGI MPI

+: MPICH

(B) Gaussian Elimination

0 5 10 15 20
0

2

4

6

8

10

12

Number of processors

S
pe

ed
up

*: TMPI

o: SGI MPI

+: MPICH

(C) Sweep3D

0 5 10 15 20
0

100

200

300

400

Number of processors

M
F

LO
P

 r
at

e

*: TMPI

o: SGI MPI

+: MPICH

(D) Heat simulation

Figure �� Overall performance in dedicated environ�
ments�

Table �� We can see that TMPI spends half as much
memory copy time as SGI MPI because most of the
communication operations in MM are bu�ered send and
fewer copying is needed in TMPI as explained in Sec�
tion �� Memory copying alone still cannot explain the
large performance di�erence and so we have further iso�
lated the synchronization cost� which is the time spent
waiting for matching messages� We observe a large
di�erence in synchronization cost between TMPI and
MPICH� Synchronization cost for SGI MPI is unavail�
able due to lack of access to its source code� One rea�
son for such a large di�erence is the message multiplex�
ing�demultiplexing overhead in MPICH as explained in
Section �� The other reason is that communication vol�
ume in MM is large and system bu�er can over�ow dur�
ing computation� For a process based implementation�
data has to be fragmented to �t into the system bu�er
and copied to the receiver several times� while in TMPI�
a sender blocks until a receiver copies the entire mes�
sage� For the HEAT benchmark� SGI can outperform
TMPI by around ��� when the number of processors
becomes large� This is because the SGI version is highly
optimized and can take advantages of more low�level
OS�hardware support for which we do not have access�
For the GE and Sweep	D� SGI and TMPI are about
the same�

��� A Performance Comparison in Non�dedicated

Environments

In a non�dedicated environment� the number of proces�
sors allocated to an MPI job can be smaller than the re�
quested amount and can vary from time to time� Since
we do not have control over the OS scheduler� we can�
not fairly compare di�erent MPI systems without �xing
processor resources� Our evaluation methodology is to

�

Benchmark Function Code size �permanent variables MPI operations
GE Gaussian Elimination ��� lines �� mostly MPI Bcast
MM Matrix multiplication ��� lines �� mostly MPI Bsend
Sweep�D �D Neutron transport ���� lines � mixed� mostly recv�send
HEAT �D Di�usion PDE solver ��	
 lines ��� mixed� mostly recv�send

Table �� Characteristics of the tested benchmarks�

Kernel computation Memory copy Other cost Synchronization
�including synchronization�

TMPI ���� sec �	� sec ��� sec ��
 sec
SGI MPI ���
 sec ��
 sec ��� sec �
MPICH ���� sec ��� sec ��� sec �
� sec

Table �� Execution time breakdown for ���������Matrix Multiplication on � processors� ��� means data unavailable
due to lack of access to SGI MPI source code�

create a repeatable non�dedicated setting on dedicated
processors so that the MPICH and SGI versions can be
compared with TMPI� What we did was to manually as�
sign a �xed number of MPI nodes to each idle physical
processor	� then vary this number to check performance
sensitivity�

0 1 2 3 4
0

200

400

600

800

1000

1200

1400

(# of MPI nodes) / (# of processors)

M
F

LO
P

 r
at

e

o: 2 processors
x: 4 processors
+: 6 processors
*: 8 processors

(A) Gaussian Elimination

0 1 2 3 4
0

2

4

6

8

(# of MPI nodes) / (# of processors)

S
pe

ed
up

o: 2 processors
x: 4 processors
+: 6 processors
*: 8 processors

(B) Sweep3D

Figure �� Performance degradation of TMPI in non�
dedicated environments�

Figure � shows the performance degradation of TMPI
when the number of MPI nodes on each processor in�
creases� We can see that the degradation is fairly small
when running no more than � processors� When the
number of physical processors is increased to �� TMPI
can still sustain reasonable performance even though
more communication is needed with more MPI nodes�
MPICH and SGI MPI however� exhibit fairly poor per�
formance when multiple MPI nodes share one processor�
Tables 	 lists the performance ratio of TMPI to SGI
MPI� which is the mega�op or speedup number of the
TMPI code divided by that of the SGI MPI� Tables �
lists the performance ratio of TMPI to MPICH� We do
not report the data for MM and HEAT because the
performance of MPICH and SGI deteriorates too fast
when the number of MPI nodes per processor exceeds
�� which makes the comparison meaningless�

We can see that the performance ratios stay around

one when
 of MPI nodes

 of processors

� �� which indicates that

all three implementations have similar performance in

�IRIX allows an SPROC thread be bound to a processor�

Benchmarks GE Sweep�D
�ofMPInodes
�ofprocessors

� � � � � �

� processors �
� ��� ��� �
� �	� ���
� processors ��� ��� ��
� �
� ��� ��

� processors ��� �
� ��
� �

 ��	 �
�
	 processors ��� ��� ���� �

 �

 	��

Table 	� Performance ratio of TMPI to SGI MPI in a
non�dedicated environment�

Benchmarks GE Sweep�D
�ofMPInodes
�ofprocessors

� � � � � �

� processors �

 ��� ��� �
	 ��� ��	
� processors ��� ��� �
� �

 ��� ��

� processors ��� ���
�� ��� ��� �
�
	 processors ��� ��� ���� ��� ��� ���

Table �� Performance ratios of TMPI to MPICH in a
non�dedicated environment�

dedicated execution environments� When this node�
per�processor ratio is increased to � or 	� TMPI can be
���fold faster than MPICH and �	�fold faster than SGI
MPI� This great performance gain is due to threads� low
context switch cost and our less aggressive spin�block
synchronization strategy� The SGI MPI has the poorest
performance� It seems that the busy�waiting synchro�
nization strategy in SGI MPI is more aggressive than
MPICH� which leads to more contention when there are
multiple nodes running on the same processor� Busy
waiting� however� can deliver favorable performance in
a dedicated environment�

��� Bene�ts of Address�sharing and Lock�free Man�

agement

Impact of data copying on point�to�point com�

munication� We compare TMPI with SGI MPI and
MPICH for point�to�point communication and exam�
ine the bene�ts of data copying due to address�sharing
in TMPI� To isolate the performance gain due to the

��

reduction in memory copying� we also compare TMPI
with another version of TMPI �called TMPI mem which
emulates the process�based communication strategy� i�e��
double copying between user bu�ers and the system
bu�er� The micro�benchmark program we use does the
�ping�pong� communication �MPI SEND��� which sends
the same data �using the same user data bu�er between
two processors for over ���� times� In order to avoid
favoring our TMPI� we use standard send operations
instead of bu�ered send�

0 200 400 600 800 1000
0

10

20

30

40

Message size (byte)

S
in

gl
e

tr
ip

 ti
m

e
(u

s)

__: TMPI
−.−: TMPI_mem
−−: SGI MPI
.....: MPICH

(A) Short message performance

0 20 40 60 80 100
0

20

40

60

80

100

120

Message size (Kbyte)

R
at

e
(M

by
te

/s
ec

)

__: TMPI
−.−: TMPI_mem
−−: SGI MPI
.....: MPICH

(B) Long message performance

Figure ��� Communication performance of a ping�pong
test program�

Figure �� depicts the results for short and long mes�
sages� We use the single�trip operation time to measure
short message performance and data transfer rate to
measure long message performance because the message
size does not play a dominant role in the overall perfor�
mance for short messages� It is easy to observe that
TMPI mem shares a very similar performance curve
with SGI MPI and the di�erence between them is rela�
tively small� which reveals that the major performance
di�erence between TMPI and SGI MPI is caused by
saving on memory copy� And on average� TMPI is ���
faster than SGI MPI� TMPI is also ��� faster than
MPICH� which is due to both saving on memory copy
and our lock�free communication management� SGI
MPI is slightly better than TMPI mem� which shows
that communication performance of SGI MPI is good
in general if the advantage of address space sharing is
taken away� Another interesting point in Figure ���B
is that all three implementations except TMPI have a
similar surge when message size is around ��K� This is
because they have similar caching behavior� TMPI has
a di�erent memory access pattern since some memory
copy operations are eliminated�

E�ectiveness of the lock�free communication

management� We assess the gain due to the introduc�
tion of lock�free message queue management by compar�
ing it with a lock�based message queue implementation�
called TMPI lock� In the lock�based implementation�
each channel has its own lock� The message sender �rst
acquires the lock� then checks the corresponding receive
queue� If it �nds the matching handle� it releases the
lock and processes the message passing� otherwise it en�
queues itself into the send queue and then releases the

lock� The receiver proceeds in a similar way� We use
the same �ping�pong� benchmark in this experiment�

0 200 400 600 800 1000
0

10

20

30

40

Message size (byte)

S
in

gl
e

tr
ip

 ti
m

e
(u

s)

__: TMPI
.....: TMPI_lock

(A) Short message performance

0 20 40 60 80 100
0

20

40

60

80

100

120

Message size (Kbyte)

R
at

e
(M

by
te

/s
ec

)

__: TMPI
.....: TMPI_lock

(B) Long message performance

Figure ��� E�ectiveness of lock�free management in
point�to�point communication�

Figure �� shows the experimental results for short
and long messages� We can see that TMPI cost is con�
stantly smaller than TMPI lock by � � ��s for short
messages� which is a 	�� overhead reduction� For long
messages� its impact on data transfer rate will become
smaller as the message size becomes very large� This is
expected because the memory copy operations count for
most of the overhead for long messages in this micro�
benchmark�

	 Concluding Remarks

The main contribution of our work is the development
of compile�time and run�time techniques for optimiz�
ing the execution of MPI code using threads� These
include TSD�based transformation and an e�cient and
provably�correct� point�to�point communication proto�
col with a novel lock�free queuing scheme� These tech�
niques are applicable to most of MPI applications� con�
sidering that MPI is mainly used in the scienti�c com�
puting and engineering community�

The experiments indicate that our thread�based im�
plementation TMPI using the proposed techniques can
obtain large performance gains in a multiprogrammed
environment with up to a �	�fold improvement com�
pared to SGI MPI for the tested cases� TMPI is also
competitive with SGI MPI in a dedicated environment�
even though SGI MPI is highly optimized and takes ad�
vantage of SGI�speci�c low�level support
���� The lock�
free management is critical for minimizing communica�
tion overhead and it would be interesting to compare
our design with the SGI�s lock�free design� had it be
documented�

The atomic operations used in our design should also
be available in other SMMs such as SUN Enterprise� We
plan to investigate this issue� We also plan to extend
our compile�time support for C���Fortran and exam�
ine the usefulness of our techniques for irregular com�
putation with chaotic communication patterns
��� ����
TMPI is a proof�of�concept system to demonstrate the

��

e�ectiveness of our techniques� and we plan to add more
MPI functions to TMPI�

Acknowledgment

This work was supported in part by NSF CCR�
������ and by

DARPA through UMD �ONR Contract Number N�����
�C	����

We would like to thank Anurag Acharya� Rajive Bagrodia� Bobby

Blumofe� Ewa Deelman� Bill Gropp� Eric Salo� and Ben Smith for

their helpful comments� and Claus Jeppesen for his help in using

Origin ���� at UCSB

References

��� Information Power Grid http���ipgarcnasagov�

��� MPI for NEC Supercomputers http���wwwccrl�necetech
noparkgmdde��mpich�

��� MPI Forum http���wwwmpi�forumorg

��� TE Anderson The Performance of Spin Lock Alternatives
for Shared�memory Multiprocessors IEEE Transactions on
Parallel and Distributed Systems� ���������� January �

�

��� N S Arora� R D Blumofe� and C G Plaxton Thread
Scheduling for Multiprogrammed Multiprocessors In Pro�
ceedings of the ��th ACM Symposium on Parallel Algo�
rithms and Architectures� June �

	

��� R Bagrodia� S Docy� and A Kahn Parallel Simulation of
Parallel File Systems and I�O Programs In Proc� of Super�
Computing���

��� R Bagrodia and S Prakash MPI�SIM� Using Parallel Sim�
ulation to Evaluate MPI Programs In Proc� of Winter Sim�
ulation Conference� �

	

�	� R Brightwell and A Skjellum MPICH on the T�D� A
Case Study of High Performance Message Passing Technical
report� Computer Sci Dept� Mississippi State Univ� �

�

�
� J Bruck� D Dolev� C T Ho� M C Rosu� and R Strong
E�cient Message Passing Interface �MPI� for Parallel Com�
puting on Clusters of Workstations In Proc� of �th ACM
Symp� on Parallel Algorithms and Architectures �SPAA��
pages ������ �

�

���� M Crovella� P Das� C Dubnicki� T LeBlanc� and
E Markatos Multiprogramming on Multiprocessors In
Proceedings of the Third IEEE Symposium on Parallel and
Distributed Processing� pages �
���
�� December �

�

���� D E Culler� J P Singh� and A Gupta Parallel Computer
Architecture A Hardware	Software Approach Morgan Kauf�
mann Publishers� � edition� �

���� A Ferrari and V Sunderam TPVM� Distributed Concurrent
Computing with Lightweight Processes In Proc� of IEEE
High Performance Distributed Computing� pages ������	�
August �

�

���� I Foster and C Kesselman �Eds� The Grid
 Blueprint for
a New Computing Infrastructure Morgan Kaufmann� �

���� I Foster� C Kesselman� and S Tuecke The Nexus Approach
to Integrating Multithreading and Communication J� Par�
allel and Distributed Computring� ��������	�� �

�

���� C Fu and T Yang Space and Time E�cient Execution
of Parallel Irregular Computations In Proceedings of ACM
Symposium on Principles � Practice of Parallel Program�
ming� pages ����	� June �

�

���� W Gropp and E Lusk A high�performance MPI implemen�
tation on a shared�memory vector supercomputer Parallel
Computing� ����������������� January �

�

���� W Gropp� E Lusk� N Doss� and A Skjellum A High�
performance� Portable Implementation of The MPI Message
Passing Interface Standard Parallel Computing� �������	
�
	�	� September �

�

��	� M Herlihy Wait�Free Synchronization ACM Transac�
tions on Programming Languages and Systems� ����������
��
� January �

�

��
� L I Kontothanassis� R W Wisniewski� and M L Scott
Scheduler�Conscious Synchronization ACM Transactions
on Computer Systems� �

�

���� S T Leutenegger and M K Vernon Performance of Mul�
tiprogrammed Multiprocessor Scheduling Algorithms In
Proc� of ACM SIGMETRICS���� May �

�

���� S S Lumetta and D E Culler Managing Concurrent Access
for Shared Memory Active Messages In Proceedings of the
International Parallel Processing Symposium� April �

	

���� H Massalin and C Pu A Lock�Free Multiprocessor OS
Kernel Technical Report CUCS�����
�� Computer Science
Department� Columbia University� June �

�

���� B Nichols� D Buttlar� and J P Farrell Pthread Program�
ming O�Reilly � Associates� � edition� �

�

���� J Ousterhout Scheduling Techniques for Concurrent Sys�
tems In Proceedings of the Distributed Computing Systems
Conf�� pages ������ �
	�

���� D A Patterson and J L Hennessy Computer Organization
� Design Morgan Kaufmann Publishers� � edition� �

	

���� B Protopopov and A Skjellum A Multi�threaded Message
Passing Interface�MPI� Architecture� Performance and Pro�
gram Issues Technical report� Computer Science Depart�
ment� Mississippi State Univ� �

	

���� E Salo Personal Communication� �

	

��	� K Shen� X Jiao� and T Yang Elimination Forest Guided
�D Sparse LU Factorization In Proceedings of the ��th
ACM Symposium on Parallel Algorithms and Architectures
�SPAA�� pages ����� June �

	

��
� A Skjellum� B Protopopov� and S Hebert A Thread Tax�
onomy for MPI MPIDC� �

�

���� M Snir� S Otto� S Huss�Lederman� D Walker� and J Don�
garra MPI
 The Complete Reference MIT Press� �

�

���� H Tang� K Shen� and T Yang Compile�Run�time Support
for Threaded MPI Execution on Multiprogrammed Shared
Memory Machines Technical Report TRCS
	���� Computer
Science Dept� UCSB� December �

	

���� A Tucker and A Gupta Process Control and Scheduling Is�
sues for Multiprogrammed Shared�memory Multiprocessors
In the ��th ACM Symposium on Operating System Princi�
ples� December �
	

���� K K Yue and D J Lilja Dynamic Processor Allocation
with the Solaris Operating System In Proceedings of the
International Parallel Processing Symposium� April �

	

���� J Zahorjan and C McCann Processor Scheduling in Shared
Memory Multiprocessors In Proceedings of the ACM SIG�
METRICS International Conference on Measurement and
Modeling of Computer Systems� pages �������� May �

�

���� H Zhou and A Geist LPVM� A Step Towards Multithread
PVM Concurrency � Practice and Experience� �

�

A A List of MPI Functions Implemented in TMPI

MPI Send��
MPI Bsend��
MPI Ssend��
MPI Rsend��
MPI Isend��
MPI Ibsend��
MPI Issend��
MPI Irsend��
MPI Send init��
MPI Bsend init��
MPI Ssend init��
MPI Rsend init��
MPI Recv��
MPI Irecv��

MPI Recv init��
MPI Sendrecv��
MPI Sendrecv replace��
MPI Wait��
MPI Waitall��
MPI Request free��
MPI Comm size��
MPI Comm rank��
MPI Bcast��
MPI Reduce��
MPI Allreduce��
MPI Wtime��
MPI Barrier��

��

