
Realism and Simplicity: Disk Simulation
for Instructional OS Performance Evaluation

Peter DeRosa Kai Shen Christopher Stewart Jonathan Pearson
Department of Computer Science, University of Rochester

peter.david.derosa@gmail.com, {kshen, stewart, jpearson}@cs.rochester.edu

ABSTRACT
Operating system laboratory assignments based on bare hard-
ware or detailed machine simulators can be excessively chal-
lenging for many students. In the most often used approach,
students develop kernels on virtual machines with a much
simplified hardware interface. Traditionally this simplifica-
tion goes so far as to make realistic performance measure-
ment impossible. We propose Vesper, an instructional disk
drive simulator with a high degree of performance realism.
Vesper retains simplicity while providing timing statistics
close to that of real disk drives. The key to our approach
is to provide hardware abstractions that are simple but yet
capable of capturing device interactions with major perfor-
mance impacts. Vesper laboratory assignments allow stu-
dents to realistically explore the performance consequences
of various system designs without the cumbersome aspects of
the real hardware interface. This paper describes the design
and implementation of the Vesper disk drive simulator. We
evaluate the effectiveness of Vesper-based laboratory assign-
ments in terms of operating system performance evaluation.
Student experience and feedback are also reported.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education; D.4.7 [Operating Systems]:
Organization and Design

General Terms
Measurement, Performance, Experimentation

Keywords
Operating systems, virtual machine, disk simulation, per-
formance evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’06, March 3–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003 ...$5.00.

1. INTRODUCTION
For undergraduate operating system courses, student ker-

nel development upon real machines [11, 12] requires im-
mense time and dedicated hardware. The more often used
approach for OS laboratory assignments is based on virtual
machines, such as Nachos [2]. Traditional instructional VMs
oversimplify the hardware model such that they cannot pro-
vide realistic performance statistics. Therefore assignments
based on such platforms can only examine students’ abil-
ity to produce correct system designs and implementations.
While the efficiency of various OS designs are often discussed
in class, students typically do not have the opportunity to
realistically explore performance issues in practice. The use
of detailed machine simulation to study computer system
performance has been investigated in the operating systems
research community [8], however, such simulations expose
the raw and uninviting interface of the real hardware. This
approach is prone to create time-consuming assignments in
which students fixate on details rather than concepts. As a
result, existing student assignments based on detailed ma-
chine simulators (e.g., VMware [13] and bochs [1]) are often
limited to small modifications to an existing OS such as
Linux.

In this paper, we argue for an instructional virtual envi-
ronment that simulates hardware devices with a very sim-
ple abstraction and yet maintains realistic timing statistics.
While this design concept can be applied to a plethora of
hardware devices, our discussion in this paper focuses on
the disk I/O subsystem. We choose disks since they are the
performance-determining factor for many real-world appli-
cations, and appear likely to remain so in the foreseeable
future. Our disk simulator, called Vesper, is profile-driven.
The Vesper profiler automatically observes the I/O perfor-
mance at a large number of sampled input parameters. This
information is then fed into the simulator which mimics the
performance characteristics of the profiled drive. The accu-
rate disk-timing model in Vesper is presented to student OS
programmers through a simple interface (similar to the disk
drive interface in Nachos).

Detailed disk simulators with accurate timing models have
been produced in the past [7, 9, 10, 14]. Some (e.g., DiskSim [3])
also support automated disk characteristic analysis. How-
ever, these efforts have often focused on the minutiae of disk
simulation and even emulation with the exact hardware in-
terface [4]. The accuracy and detail afforded by such sim-
ulators is admirable, but the cost is the simplicity which is
paramount to any instructional platform. Vesper seeks to
fill the void between overly simplified systems like Nachos,

and overly complex systems such as DiskSim, by balancing
the needs for simplicity and realism. In particular, Vesper
focuses on capturing the aggregate timing of a sequence of
requests, rather than that of each individual request. This
relaxation allows us to significantly reduce the simulation
complexity without losing much overall performance real-
ism.

Previous simulated instructional platforms were not de-
signed for performance realism. The disk simulators for Na-
chos [2] and System/161 [5] employ a seek time model that
is proportional to the disk seek distance. This model does
not reflect the fixed initiation cost of disk seeks (such as
the head positioning overhead) on real drives. Additionally,
they typically employ arbitrarily chosen disk parameters and
ignore the seek and transfer timing variation due to disk zon-
ing and other disk characteristics. The recent GeekOS [6]
runs on the detailed machine simulator bochs [1]. However,
bochs concerns itself mostly with fast simulation speed, and
it does not offer realistic timing statistics. As far as we know,
no existing instructional platform is suitable for our goal of
providing a high degree of performance realism through a
simple simulated hardware abstraction.

The rest of this paper is organized as follows. Section 2
presents the design and implementation of the Vesper disk
drive simulator. Section 3 describes Vesper-based laboratory
assignments that explore the performance of various disk
I/O scheduling algorithms and examine the benefit of I/O
prefetching. Section 4 concludes the paper.

2. VESPER DISK SIMULATOR
Unlike detailed disk simulators such as DiskSim, Vesper

does not differentiate the effects which the controller, bus,
and drive have upon the aggregate timing of the whole sub-
system. Instead, Vesper views the controller, bus, and drive
as a black box which accepts a simple set of commands. The
Vesper profiler accumulates timing statistics for these com-
mands with varying input parameters and records them into
a profile. All the characteristics and quirks of the profiled
drive can then be incorporated into the Vesper disk simula-
tor. Ideally, instructors will profile a variety of drives and
distribute the profiles with student assignments. This vari-
ety is a key advantage of Vesper over previous instructional
platforms, because it allows students to examine seek and
transfer timing characteristics of different disks as well as
experience the effects that drives and controllers of varying
quality can have on real-world performance.

The rest of this section describes the Vesper disk drive
simulation model in detail. We also illustrate the realism of
its timing statistics and the simplicity of its device interface.

2.1 Vesper Disk Drive Simulation Model
The main objective of the disk profiling is to acquire the

functional mapping between parameters of an I/O command
with its estimated runtime. The total time of a disk oper-
ation mainly includes the seek time, rotational delay, and
data transfer time:

Ttotal = Tseek + Trotation + Ttransfer (1)

Many factors affect the individual component times, but in
each case it is not hard to establish what the major fac-
tors are. Seek time depends almost entirely on the number
of cylinders (we approximate it with the number of blocks)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Seek distance (in proportion to the total disk size)

S
ee

k
tim

e
(in

 m
ill

is
ec

on
d)

(A) Disk seek time

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Starting logical block number (in proportion to the max block number)

R
ea

d
th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(B) Sequential read throughput

IBM "DTN036C1UCDY10"
Seagate "ST336607LW"

IBM "DTN036C1UCDY10"
Seagate "ST336607LW"

Figure 1: Sequential seek time and read throughput
profiling results for two SCSI drives.

being traversed. Data transfer time depends on the start-
ing cylinder1 (again we approximate it using the starting
block number) and the number of blocks which are to be
read. Rotational delay depends on the disk head location
after seeking and the location of desired data on the track,
which requires accurate disk geometry information. It may
be further complicated by out-of-order transfer intended for
reducing the rotational delay on modern disks. Since our
objective is to capture the aggregate timing of a sequence
of requests, rather than that of each individual request, our
model simply uses the average rotational delay between two
random track locations (i.e., the time it takes the disk to
spin half a revolution).

We take a large number of measurement samples for seek
and transfer times at different input parameters (i.e., the
seek distance for seek time modeling and the starting lo-
cation for transfer time modeling). We conduct the mea-
surements by issuing direct SCSI commands through the
Linux generic SCSI interface, which allows us to bypass the
OS memory cache and selectively disable the disk controller
cache. The number of measurement samples can be adjusted
for the Vesper profiler. Results in this paper represent 256
samples evenly distributed across each profiled disk. Each

1The data transfer speed on modern disks is not constant
due to disk zoning, under which tracks on different cylinders
may contain different amount of data.

Disks random seek random transfer

IBM 10.1% 1.1%
Seagate 8.9% 2.6%

Table 1: Validation error for the Vesper disk simula-
tion model (on two SCSI drives using two synthetic
workloads).

sampled seek time is determined as the average time of seek-
ing from the very beginning of the disk to a particular sam-
pling location. The transfer time is measured by reading
16 MB at each sampling location, as a large amount of data
is needed to determine the maximum disk throughput.

Figure 1 illustrates the seek time and sequential read through-
put for two 36 GB SCSI drives that we profiled during the
development of Vesper. The two drives have similar seek
time curve. We note that the seek time is not proportional
to the seek distance. Even very short distance seeks must in-
duce significant seek initiation cost (around 2 ms). As for the
sequential read throughput, the IBM drive supports higher
throughput for data at outer disk cylinders (those with small
block numbers) due to zoning on modern disk drives. The
Seagate drive also supports zoning, however, we observe a
flat curve for the Seagate drive sequential read throughput
in Figure 1(B). We attribute this to speed constraint of the
disk controller, although other causes are also possible. De-
spite this oddity and the difference between the two drives,
Vesper’s sampling-based model was able to capture their
characteristics quite well as demonstrated in the next sec-
tion.

2.2 Realism of Timing Statistics
The accuracy of the Vesper disk simulation model has

been validated using two synthetic workloads: random seek

and random transfer. Random seek consists of 1000 seeks
both starting and ending at random blocks. Random trans-
fer consists of 1000 reads starting at random blocks, with
random read sizes between 512 bytes (1 block) and 16 megabytes.
Before each transfer is timed the disk head is positioned
at the starting block to eliminate any seeking time, which
might cause error. For each workload, we compare the pre-
dicted runtime of the Vesper model with the measured result
on the real system. The difference, divided by the measured
result, is considered as the validation error. The complete
validation results are shown in Table 1. Results demonstrate
the performance realism of the Vesper disk simulator. The
validation error is around 10% for the random seek workload
while the error is below 3% for the random transfer work-
load. Such level of accuracy makes it a realistic platform
for students to explore performance issues of OS design and
implementation.

2.3 Simplicity of Device Interface
Student OSes interact with Vesper’s simulated drive by

means of only three functions (shown in Figure 2). The
initialization routine takes the disk profile and an interrupt
handler function as parameters. The interrupt handler is in-
voked upon the completion of each I/O request. For the I/O
read and write functions, the only addition to the Nachos
disk interface is an extension to support multi-block opera-
tions — the second parameter of each function specifies the

/* Disk initialization with a specified profile

and an interrupt handler function */

void Init(char *profile, FuncPtr interrupt hdr);

/* Multi-block disk read request */

void Read(int start block, int len, char *data);

/* Multi-block disk write request */

void Write(int start block, int len, char *data);

Figure 2: Vesper disk driver simulator APIs.

number of blocks in the I/O operation.
Student assignments often use very small simulated disks

for simplicity. A small simulated disk also makes it easy to
explore issues such as the disk geometry and space alloca-
tion. For example, the simulated disk drive in Nachos is
128 KB. We scale the disk properties in the Vesper profile
such that timing information obtained for large real drives
still applies to small simulated drives. Specifically, we scale
the seek distance for the seek time model and the starting
location for data transfer time model according to the ra-
tio between the real disk size and the simulated disk size.
We also scale the disk rotation speed such that it takes the
same amount of time to rotate one revolution for both the
real disk and the simulated disk. Finally, we scale the se-
quential read throughput so that it takes similar amount of
time for sequentially reading one track of data on both the
real disk and the simulated disk. Particularly for a simu-
lated disk with 4 KB track size and a typical real disk track
size of 400 KB, we use 1/100 as the scaling ratio for the se-
quential read throughput. These scaling parameters can be
adjusted by the instructor if necessary but students do not
need to be aware of them.

3. ASSIGNMENTS AND EVALUATION

3.1 Vesper-based OS Assignments
We augment the Nachos virtual machine (version 3.4) by

replacing its original disk simulator with Vesper. Note that
the Vesper disk simulator can also be used with other in-
structional platforms. We choose Nachos because many
instructors are already comfortable with it, and both pre-
existing public and home-brew Nachos assignments may eas-
ily take advantage of Vesper’s features in this context.

We enhance the Nachos file system assignments with the
emphasis on realistic performance evaluation. In the first as-
signment, we ask students to implement several disk schedul-
ing algorithms (First-Come-First-Serve, Shortest-Seek-Time-
First, and Cyclic-Look) into the operating system and com-
pare their performance on simple user programs. Students
are required to experiment with multiple disk drives (or
multiple Vesper disk profiles, to be more precise) and ex-
plain the disk characteristics that affect the performance.
Students are aware of the key characteristics of the experi-
mented drives but they do not need to understand how the
profiles are acquired or how they are incorporated into the
instructional virtual machine.

In the second assignment, we ask students to implement
I/O caching and prefetching in the file system and measure
their performance impact. As for prefetching, we also ask

SSTF Cyclic−Look
0%

5%

10%

15%

20%

25%

30%

Instructional virtual machine

R
un

ni
ng

 ti
m

e
re

du
ct

io
n

ov
er

 F
C

F
S

Nachos
Vesper−IBM
Vesper−Seagate

Figure 3: Performance enhancement of seek-
reduction disk I/O schedulers under different in-
structional virtual machines. “Vesper-IBM” repre-
sents the Vesper disk simulator running on the IBM
drive profile on Section 2.1. “Vesper-Seagate” rep-
resents the Vesper disk simulator running on the
Seagate drive profile.

students to quantify the performance when using different
prefetching sizes. Similar to the first assignment, students
are required to experiment with multiple disk drives and
identify the disk characteristics that affect the performance
of disk scheduling algorithms.

For both assignments, we provide a concurrent read user
program for performance evaluation. The program initial-
izes the empty disk with 10 files of 10 KB each (so the 10 files
would occupy most of the space on the 128 KB simulated
drive). It then launches 10 concurrent threads to read these
10 files. Each thread reads 10 bytes at a time until it finishes
reading the file it is assigned to. The program reports the
elapsed time for all concurrent read threads to complete. In
addition to the given program, we also encourage students
to design more test programs to identify the impact of disk
drive characteristics on file system performance.

3.2 Evaluation Results
Using a typical student implementation, we show the per-

formance evaluation results of the I/O prefetching and schedul-
ing assignments. We show the results when using the origi-
nal Nachos disk simulator and Vesper with two disk profiles
(for the IBM and Seagate drives described in Section 2.1).
Our purpose is to demonstrate Vesper’s ability in supporting
realistic performance evaluation and uncovering the perfor-
mance impact of varying drive characteristics found on real
disks.

Seek reduction I/O scheduling algorithms such as SSTF
and C-Look (or the elevator scheduler) outperform FCFS
by reordering disk I/O requests to reduce the disk seek
overhead. Figure 3 shows the performance improvement of
seek reduction schedulers under different instructional vir-
tual machines. We observe that the original Nachos disk
simulator exhibits much higher performance improvement.
This is because Nachos’s proportional seek time model does
not consider the seek initiation overhead such as the head
positioning cost. Such fixed seek cost makes seek-reduction
schedulers less effective in practice. The two disks used in
the Vesper simulator exhibit similar performance character-

1 2 4 8 16 32 64
0

2

4

6

8

10

I/O prefetching size (in block)

S
pe

ed
up

 o
ve

r
no

 p
re

fe
tc

hi
ng

Nachos
Vesper−IBM
Vesper−Seagate

Figure 4: Benchmark speedup due to I/O prefetch-
ing. The base performance is that of “no prefetch-
ing” or a prefetching size of 1 block.

istics in this test because they have very similar seek time
curve. The sequential read throughput does not have much
impact on the performance differentiation of I/O scheduling
algorithms.

I/O prefetching can improve the performance of concur-
rent reads by amortizing the cost of disk seeks over large
granularity read operations. In other words, the disk trans-
fers more data between consecutive seeks due to I/O prefetch-
ing. More aggressive prefetching (i.e., larger prefetching
size) tends to improve the performance further. Figure 4
shows the benchmark speedup due to I/O prefetching. We
observe that the Vesper simulator with the IBM drive profile
exhibits higher performance improvement at large prefetch-
ing sizes. This is because it has much higher sequential read
throughput than the Seagate drive and the original Nachos
disk simulator.

In summary, the original Nachos disk drive simulator is
oversimplified such that its performance results can differ
significantly from those of realistic disk drives. Further,
different real disk drives also have varying characteristics
that may affect system performance. Under such context,
Vesper-based laboratory assignments allow students to real-
istically explore operating system performance issues at no
cost of abstraction complexity.

3.3 Experience and Student Feedback
We describe our experience with 9 student groups (each

comprised of two or three students) working on the Vesper-
based assignment in an operating systems course. Figure 5
illustrates the grade distributions of the Vesper-based as-
signment (on file system and I/O) and a traditional Na-
chos assignment (on process management). Despite the en-
hanced performance realism, the Vesper-based assignment is
not substantially more challenging and we attribute this to
the Vesper disk drive’s simple interface. Informal interviews
with students revealed their interests in performance-based
assignments. Students were especially surprised by the per-
formance impact of prefetching and disk scheduling algo-
rithms, and were motivated to evaluate the performance of
other disk-bound operating system components (i.e., virtual
memory). Some students recommended a class-wide perfor-
mance contest, which would not be meaningful without a
realistic performance measurement platform.

D C B− B A− A
0%

5%

10%

15%

20%

25%

30%

Grades

P
ro

po
rt

io
n

of
 s

tu
de

nt
s

Vesper File Sys. Performance
Nachos Process Management

Figure 5: Grade distribution for the Vesper-based
assignment and a traditional Nachos assignment.

4. CONCLUSION
In this paper, we propose Vesper, an instructional disk

simulator with a high degree of performance realism. Vesper
balances the need for simplicity in an instructional platform
with the objective of offering students the opportunity of
realistic performance measurements. The Vesper disk simu-
lation model is based on observing the I/O performance at a
large number of sampled input parameters. Validated with
two synthetic workloads, we show that the Vesper model has
a worst-case error of around 10%.

We also describe Vesper-based file system assignments and
compare the student performance evaluation results of Ves-
per with those of the original Nachos disk simulator. Our
study shows that Nachos can provide quantitatively inaccu-
rate performance results on seek-reduction disk scheduling
algorithms. In comparison, Vesper lets students realistically
explore operating system performance issues with minimal
changes to the convenient and popular Nachos interface.
With Vesper it is possible to introduce performance-centric
assignments into the OS classroom and to provide students
with an outlook about how different hardware character-
istics can affect the performance. Tuning an OS to meet
the needs of different hardware devices is very important in
practice, but it is often ignored in operating systems instruc-
tions.

The philosophy of binding realistic timing to simplified
interfaces can be extended to other devices in the future.
For example, combining a realistic system memory simula-
tor with the existing disk work will result in a comprehen-
sive testbed for students to experiment with virtual mem-
ory and cache-replacement policies. We expect that similar
observation-based modeling techniques can be devised for
other hardware devices in our future work.

Acknowledgment
This work was supported in part by an NSF CAREER
Award CCF-0448413.

Resources on the Web
The Vesper disk profiler and Vesper-enhanced Nachos sim-
ulator can be acquired by visiting www.cs.rochester.edu

/u/kshen/research/vesper. The performance-oriented file
system assignment described in this paper (as used at the
University of Rochester) can also be found there.

5. REFERENCES
[1] bochs: The Open Source IA-32 Emulation Project.

http://bochs.sourceforge.net.

[2] W. A. Christopher, S. J. Procter, and T. E. Anderson.
The Nachos Instructional Operating System. In Proc.

of the USENIX Winter Conference, San Diego, CA,
January 1993.

[3] The DiskSim Simulation Environment.
http://www.pdl.cmu.edu/DiskSim.

[4] J. L. Griffin, J. Schindler, S. W. Schlosser, J. S. Bucy,
and G. R. Ganger. Timing-accurate Storage
Emulation. In Proc. of the First USENIX Conference

on File and Storage Technologies, Monterey, CA,
January 2002.

[5] D. A. Holland, A. T. Lim, and M. I. Seltzer. A New
Instructional Operating System. In Proc. of the 33rd

ACM Symposium on Computer Science Education,
pages 111–115, Cincinnati, KY, February 2002.

[6] D. Hovemeyer, J. K. Hollingsworth, and
B. Bhattacharjee. Running on the Bare Metal with
GeekOS. In Proc. of the 35th ACM Symposium on

Computer Science Education, pages 315–319, Norfolk,
VA, March 2004.

[7] D. Kotz, S. B. Toh, and S. Radhakrishnan. A Detailed
Simulation Model of the HP 97560 Disk Drive.
Technical Report PCS-TR94-220, Department of
Computer Science, Dartmouth College, July 1994.

[8] M. Rosenblum, E. Bugnion, S. Devine, and S. A.
Herrod. Using the SimOS Machine Simulator to Study
Complex Computer Systems. ACM Transactions on

Modeling and Computer Simulation, 7(1):78–103,
January 1997.

[9] C. Ruemmler and J. Wilkes. An Introduction to Disk
Drive Modeling. IEEE Computer, 27(3):17–28, March
1994.

[10] E. Shriver, A. Merchant, and J. Wilkes. An Analytical
Behavior Model for Disk Drives with Readahead
Caches and Request Reordering. In Proc. of the ACM

SIGMETRICS, pages 182–192, Madison, WI, June
1998.

[11] A. S. Tanenbaum and A. S. Woodhull. Operating

Systems: Design and Implementation. Prentice Hall,
second edition, 1997.

[12] C. Vaill and J. Nieh. Experiences Teaching Operating
Systems Using Virtual Platforms and Linux. In Proc.

of the 36th ACM Symposium on Computer Science

Education, pages 520–524, St. Louis, MO, February
2005.

[13] VMware. http://www.vmware.com.

[14] B. L. Worthington, G. R. Ganger, and Y. N. Patt.
Scheduling Algorithms for Modern Disk Drives. In
Proc. of the ACM SIGMETRICS, pages 241–251,
Santa Clara, CA, May 1994.

