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Abstract. Internet overlay services must adapt to the substrate network topology
and link properties to achieve high performance. A common overlay structure
management layer is desirable for enhancing the architectural modularity of ser-
vice design and deployment. A shared substrate-aware overlay structure can also
save redundant per-service link-selection probing when overlay nodes participate
in multiple services. Despite the benefits, the concept of building services on a
common structure management layer does not work well with recently proposed
scalable distributed hashtable (DHT) protocols that employ protocol-specific over-
lay structures. In this paper, we present the design of a self-organizing DHT pro-
tocol based on the Landmark Hierarchy. Coupled with a simple low-latency over-
lay structure management protocol, this approach can support low-latency DHT
lookup without any service-specific requirement on the overlay structure. Using
simulations and experimentation on 51 PlanetLab sites, we measure the perfor-
mance of the proposed scheme in terms of lookup latency, load balance, and
stability during node churns.

1 Introduction

Internet overlay services may suffer poor performance when they ignore the topology
and link properties of the substrate network. Various service-specific techniques have
been proposed to adapt to Internet properties by selecting overlay routes with low latency
or high bandwidth. Notable examples include the unicast overlay path selection [1] and
measurement-based end-system multicast protocols [5]. The employment of a common
software layer that maintains overlay connectivity structure can greatly ease the design
and deployment of overlay services. For instance, a more effective link probing tech-
nique or a new partition repair protocol can be incorporated into the common structure
layer such that a large number of overlay services can benefit transparently. Furthermore,
a common substrate-aware overlay structure layer can reduce redundant service-specific
link-selection probing when overlay nodes participate in multiple services. Early expe-
rience on PlanetLab [2] indicates that link-selection probing can consume significant
network resources. With a common structure management layer, upper-level services
built on top of it can share the cost of structure maintenance.
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The key for overlay services to take advantage of a common structure management
layer is that they must be able to function on pre-structured overlay networks. In other
words, these services must not dictate how overlay links are structured in any service-
specific way. This requirement fits well with services such as unstructured peer-to-peer
search (e.g., Gnutella and random walks [12]). This layer can also benefit unicast or
multicast overlay path selection services (e.g., RON [1] and Narada [5]). For instance,
Narada employs a DVMRP-style multicast routing protocol running on top of a low-
latency pre-structured overlay network. It achieves high performance without additional
link-selection probing beyond the structure management layer.

Despite these benefits, it is unclear how a given substrate-aware overlay structure
can assist the construction of the distributed hashtable (DHT) service. A DHT is a self-
organizing overlay network of hosts that supports insertion, deletion, and lookup with
hash keys. The heart of a DHT protocol is a distributed lookup scheme that maps each
hash key into a deterministic location with well balanced object placement and runtime
overhead. Recently proposed scalable DHT protocols such as Chord [21], CAN [16], and
Pastry [19] are all strongly structured, i.e., they place protocol-specific requirements on
overlay connectivity structures.As a result, substrate-aware link-selection enhancements
designed for specific DHT protocols [3,17,26,27] cannot benefit other services.

This paper examines the construction of a scalable DHT service on top of a service-
independent structure management layer. The rest of this paper is organized as follows.
Section 2 describes a low-latency structure management layer that our DHT construction
can rely on. We then present the design of a hierarchical DHT protocol that operates
on pre-structured overlays in section 3. Section 4 describes evaluation results based
on simulations. Our implementation and experimentation on the PlanetLab testbed is
reported in section 5. Section 6 discusses related work and section 7 concludes the
paper.

2 Service-Independent Overlay Structure Management

The proposed DHT construction is based on our earlier design of a common structure
management layer, called Saxons [20]. The Saxons overlay structure management layer
contains six components, as illustrated in Figure 1. The bootstrap process determines
how new nodes join the overlay structure. The structure quality maintenance compo-
nent maintains a high quality overlay mesh while the connectivity support component
actively detects and repairs overlay partitions. They run periodically to accommodate
dynamic changes in the system. The above Saxons components are all supported by the
membership management component that tracks a random subset of overlay members.
The structure quality maintenance is further supported by two other components respon-
sible for acquiring performance measurement data for overlay links and finding nearby
overlay hosts. Below we briefly describe the low-latency structure quality maintenance
component that is most related to our DHT construction in this paper. A more complete
description of the Saxons structure management layer can be found in [20].

The quality maintenance component runs at a certain link density, specified by a
node degree range <da − dt>. Each node makes da active overlay links and it can also
accept a number of passive links as long as the total degree does not exceed dt. The
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Fig. 1. Saxons components.

degree upper-bound is maintained to control the stress on each node’s physical access
links and limit the impact of a node failure on the Saxons structure. The heart of the
Saxons structure quality maintenance is a periodic routine that continuously adjusts for
potentially better structure quality. Specifically, it checks the distance to hosts in the
local random membership subset and replaces the longest existing links if new hosts
are closer. In addition to quality-oriented link adjustments, each node also periodically
pings its Saxons neighbors. A neighbor link will be replaced when several consecutive
pings fail.

The overlay structure stability is important for the performance of overlay services
that maintain link-related state, including the DHT service we describe in the next section.
To avoid frequent structure changes, we require that a link adjustment occurs only when
a new link is shorter than the existing one for more than a specified threshold. It is also
possible to disable the quality-oriented structure changes after a node bootstrap to further
enhance the structure stability. It should be noted that runtime structure changes cannot
be completely avoided at the presence of overlay membership changes.

A critical problem for latency-oriented structure optimization is to efficiently ac-
quire the latency performance data. Previous studies have proposed various techniques
for estimating Internet host distances [7,13] or locating nearby hosts [17]; Saxons can
utilize any of them for latency estimation. In particular, we point out a landmark-based
Cartesian distance approach for its simplicity. This approach requires a set of l well-
known landmark hosts spread across the network and each landmark defines an axis in
an l-dimensional Cartesian space. Each group member measures its latencies to these
landmarks and the l-element latency vector represents its coordinates in the Cartesian
space. For nearby host selection, a node chooses the one to which its Cartesian distance
is minimum. This approach has been shown to be competitive to a number of other
landmark-based schemes [17]. Using landmark-based latency estimation for structure
quality maintenance, link probing is only necessary at node startup to measure latency
to a few designated landmark nodes. No additional runtime network overhead would
be needed for the structure quality maintenance. Other Saxons components incur a low
per-node runtime network overhead of around 1.3Kbps [20].

3 DHT on Pre-structured Overlay Networks

A common structure management layer, such as Saxons, can greatly ease the construc-
tion of overlay services with better design modularity and shared structure maintenance
cost. In this section, we investigate how distributed hashtable can be constructed based
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on this layer. Our design considers common DHT service objectives as in other DHT
protocols [16,19,21]: self-organization and automatic adaptation; scalability in support-
ing large overlay groups; high-performance DHT lookup; balanced key placement and
lookup routing overhead. Note that our key contribution is that the proposed DHT
can function on pre-structured overlay networks while the previous solutions require
protocol-specific structures.

Distributed hashtable on pre-structured networks resembles network routing in subtle
ways. A DHT lookup can be considered as a network routing request with its destination
labeled with a hash key instead of a host ID. Our DHT design can draw upon earlier
efforts in designing scalable network routing protocols. In particular, we choose to base
our design on the Landmark Hierarchy [22]1, due to its potential of self-organization
and automatic adaptation to overlay membership changes. Under this context, the load
balance objective is especially difficult to achieve because of the hierarchical nature of
such scheme.

3.1 Landmark Hierarchy on Overlay Networks

Our concept of Landmark Hierarchy mostly follows that of the original Landmark Hi-
erarchy [22], with necessary changes to support the DHT service. A Landmark is a
node whose neighbors within a certain number of hops (called routing radius) contain
a routing entry for it. This is usually achieved by having each landmark periodically
flood a route advertisement message along the overlay structure for up to a hop-count
bound of its routing radius. For our DHT protocol, all overlay nodes form a hierarchy
of landmarks, with level 0 being the lowest level, and level H being the highest level.
Every overlay node is at least a level 0 landmark. All landmarks in the same level have
the same routing radius. A higher-level routing radius is always larger than a lower-level
one and the level H landmarks flood their route advertisements to the complete overlay.
Let rrl be the level l routing radius. Therefore we have rrl+1 > rrl for each 0 ≤ l < H;
and rrH = ∞.

We call a child-parent relationship exists between nodes A and B when A is one-
level lower than B in the Landmark Hierarchy and they are within each other’s routing
radii, i.e., they have routing entries for each other. We require that all nodes except
those at the top level have at least a parent. Note that a node may have multiple parents
in the hierarchy. We also require each node carry IDs of all its children in its route
advertisements and subsequently they are stored as part of the routing entry at nodes
within the routing radius. This information is critical for our DHT construction, though
it is not needed for network routing in the original Landmark Hierarchy [22]. Figure 2
illustrates an example of our Landmark Hierarchy and its routing table layout.

Having small routing tables is a key benefit for hierarchical routing schemes. Klein-
rock and Kamoun found that the average number of routing table entries in an H-level
hierarchy with a single top-level node is at best H × N

1
H , where N is the total number

of nodes in the hierarchy [10]. This may only be achieved when every landmark (except
level 0 nodes) has the same number of children and no landmark has more than one

1 Do not confuse the Landmark Hierarchy with the landmark-based Cartesian distance approach
we use for latency estimation.
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Fig. 2. An exemplar Landmark Hierarchy and its routing table. Nodes A, B, and C are level 0, 1,
and 2 landmarks respectively.

parent. In practice, the routing table sizes are larger and we will examine this in the
performance evaluation in section 4.3.

3.2 Hierarchy Construction and Adaptation

We now describe an automatic hierarchy construction and adaption scheme. The goal is
to dynamically maintain a balanced hierarchy with exponentially smaller population at
higher levels.All overlay nodes start at level0with a routing radius of rr0 hops. Each node
sends out periodic routing advertisements at interval tint to other nodes within its routing
radius. Routing entries are kept as soft state and are refreshed upon the reception of these
advertisements; they expire after not being refreshed for several rounds. Periodically,
every node checks the existence of an unexpired routing entry for a parent. If a parent
routing entry does not exist and the hierarchy level-bound has not be reached, it schedules
a promotional procedure at a random delay and increases its landmark level by one. This
random delay is chosen uniformly from [tint + tdelay , (1 + αNpeer)tint + tdelay],
where tdelay is the estimated message propagation delay upper-bound in the overlay
network, α is a constant, and Npeer is the number of same-level peers in the local
routing table. The linear back-off component on Npeer is employed to prevent many
nodes in a densely connected area to promote themselves simultaneously. The scheduled
promotional procedure is canceled when a routing advertisement from a parent is later
received.

When the hierarchy level-bound is large, it is desirable to stop the hierarchy buildup
when there is only a single top-level landmark node. Following an idea presented in [11], a
node without any same-level peer in its routing table never promotes itself. This scheme
works when each node sees at least one same-level peer if any exists, which can be
ensured by having rrl+1 > 2 × rrl for all l ≥ 0. However, one drawback with this
approach is that the routing radii increase too fast for high levels, resulting in large
number of children nodes at high levels. We attempt to avoid this problem by introducing
a peer notification radius (denoted by prl at level l) independent of the routing radius.
Each level l landmark floods the overlay network with a peer notification announcement
for up to prl hops. We require prl+1 > 2 ∗ rrl such that each node sees at least one
same-level peer if any exists.
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A node may want to lower its hierarchy level after some other nodes depart from the
overlay or an earlier promotion has been pre-mature. We employ two demotion rules in
the automatic hierarchy adaptation.

Rule 1: Each node periodically checks the existence of an unexpired routing entry
for a child. When discovering no child is present, it schedules a demotional procedure
at the delay of tint + tdelay . We use a constant scheduling delay because no back-off is
necessary in this case.

Rule 2: Each node also checks its routing table for whether a hierarchy peer can
serve as a parent if it demotes itself. This is the case when the hop-count distance to
one of the peers is within the routing radius of the hierarchy level after the demotion.
If so, a demotional procedure is scheduled at a random delay between [tint + tdelay ,
(1 + βNpeer)tint + tdelay]. The linear back-off component on Npeer is employed to
prevent all peers to demote themselves simultaneously. This demotion rule ensures that
no two level l landmarks are within the distance of rrl−1 from each other.

3.3 DHT on Landmark Hierarchy

Based on the constructed landmark hierarchy, we present the design of the proposed
DHT protocol in this section. We first describe the mapping scheme between each hash
key and a deterministic host in our DHT protocol. We then present a distributed algorithm
for any node to find such location with a given hash key.

One of the building blocks in our DHT mapping is the Chord identifier circle [21].
In Chord, each overlay node and key is assigned an identifier in <0 − IDmax> using
an ID assignment function such as SHA-1 or MD5. A node’s identifier is chosen by
hashing the node’s IP address, while a key identifier is generated by hashing the key.
All identifiers are ordered in an identifier circle modulo IDmax + 1. Key k is assigned
to the first node whose identifier is equal to or follows k’s in the identifier space, called
owner(k.id). If identifiers are represented as a circle of numbers from 0 to IDmax, then
owner(k.id) is the first node clockwise from k.

Instead of a single identifier circle, our protocol employs a hierarchy of identifier
circles to map hash keys to overlay nodes. First, all top level (e.g., level H) landmarks
form a level H identifier circle (denoted by idcH ). In addition to the top level identifier
circle, all children of each level l + 1 landmark X (0 ≤ l < H) form a level l identifier
circle (denoted by idcl(X)). Note that there are typically multiple identifier circles in
each level below level H . Each hash key k is first mapped to a level H landmark node
(denoted by nH(k)) in the top level identifier circle. It is then subsequently mapped to a
level H − 1 landmark in nH(k)’s children identifier circle. This process continues until
the hash key is eventually hashed into a level 0 landmark n0(k), which is considered as the
key’s final owner. A disadvantage of this scheme is that hash keys mapped to a particular
landmark are close to each other in the identifier circle. Therefore these keys would
always map into the same region in subsequent lower-lever identifier circles, resulting
in unbalanced key placement. To avoid this problem, we use different key-identifier
assignment functions at each level such that keys with close identifiers in one level are
spread out in the identifier circles for all other levels. We use MD5l() to denote the ID
assignment function at level l. Equation (1) and Figure 3 illustrate our DHT mapping
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scheme at each level. Note again that the level 0 DHT owner n0(k) is considered as k’s
final owner.

nl(k) =
{

idcH .owner(MD5H(k)) if l = H,

idcl(nl+1(k)).owner(MD5l(k)) if 0 ≤ l < H.
(1)

nH(k)

idcH

idcH-1(nH(k))

nH-1(k)

… … ...

idc0(n1(k))

n0(k):

final DHT owner of k.

Level H identifier

circle

Level H-1

identifier circles

… …

Level 0 identifier

circles

…

Fig. 3. Illustration of the proposed DHT mapping scheme.

We now describe a distributed lookup algorithm to implement the DHT mapping
described above. For each given hash key k, the lookup initiator node A first finds k’s
level H owner nH(k) in the top level identifier circle. This can be performed locally at
every node since the identifiers of top level landmarks are known to all through their route
advertisements. Because all children identifiers are carried in each route advertisement,
A is also able to locally find k’s level H − 1 owner nH−1(k) in nH ’s children identifier
circle. If A has a routing entry for nH−1(k) (and therefore the identifiers of all its
children), A would continue to perform lookup for lower-level DHT owners. When A’s
local lookup stops because it does not have the routing entry for k’s level l − 1 DHT
owner nl−1(k), A forwards the lookup query to its next hop node toward nl(k), which it
has a routing entry for. This process continues until n0(k) is located. Figure 4 illustrates
this algorithm in recursive form. This algorithm is invoked at the lookup initiator node
with DHT Lookup(key, H , nH(key)).

Note that lookup queries normally do not go through high-level DHT owners before
finding the final level 0 owner. This is because a lookup query aiming at the level l
DHT owner shifts toward the level l − 1 owner as soon as it moves within its routing
radius. This is more so when rri is much larger than rri−1. This behavior is essential
for offloading higher-level landmarks in terms of lookup routing overhead.

4 Simulation Results

Our performance evaluation consists of simulations and Internet experiments. The goal
of simulation studies is to assess the effectiveness of proposed techniques for large-scale
overlays while Internet experiments illustrate the system performance under a small but
practical real-world environment. In this section, we evaluate the performance of our
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Algorithm 3.1: DHT Lookup(key, l, nl)

Input: key: the hash key. l: the current lookup level. nl: the DHT owner at level l.

// Local lookup for lower-level DHT owners.
while l > 0 do

nl−1 ← idcl−1(nl).owner(MD5l−1(key));
if nl−1is not in the local routing table then break;
l← l − 1;

enddo;

if l = 0 then return (n0); // Finding n0 − global termination.

// Proceed to the next hop and perform recursive lookup.
m← the next hop node toward nl;
return (m.DHT Lookup(key, l, nl));

Fig. 4. The distributed lookup algorithm in recursive form.

Table 1. Backbone networks.

Backbone Node count Link latency

ASmap 3,104 1− 40ms
Inet 3,050 1− 40ms

TransitStub 3,040 1− 20ms for stub links; 1− 40ms for other links
AMP-all 118 measurement
AMP-US 108 measurement

Saxons-based DHT protocol using simulations. Section 5 presents experimental results
on 51 PlanetLab sites.

4.1 Simulation Methodology and Setup

We use a locally-developed discrete-event simulator that simulates all packet-level events
at overlay nodes in our evaluations. We do not simulate the packet routing at the substrate
network routers. Instead, we assume shortest-path routing in the substrate network and
use that to determine overlay link latency. This model does not capture packet queuing
delays or packet losses at routers and physical links. However, such a tradeoff is important
to allow us achieve reasonable simulation speed for large networks.

The substrate networks we use in the simulations are based on four sets of backbone
networks listed in Table 1. First, we use Internet Autonomous Systems maps extracted
from BGP routing table dumps, available at NLANR [14] and at the University of
Oregon Route Views Archive [18]. Second, we include topologies generated by the
Michigan Inet-3.0 [24]. We also use some transit-stub topologies generated using the
GT-ITM toolkit [25]. For ASmap and Inet topologies, we assign a random link latency of
1 − 40ms. For TransitStub topologies, we assign a random link latency of 1 − 20ms for
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Fig. 5. Structure quality at various overlay sizes.

stub links and 1−40ms for other links. The last set of backbone network is based on end-
to-end latency measurement data among 118 Internet nodes, reported by the NLANR
Active Measurement Project (AMP) [15]. The AMP-US network excludes 10 non-U.S.
hosts from the full AMP dataset. These 10 hosts have substantially larger latencies to
other hosts than others. We use both AMP-all and AMP-US in the evaluation. With a
given backbone network, each overlay node in our simulations is randomly attached to
a backbone node through an edge link. We assign a random latency of 1 − 4ms for all
edge links.

In all simulations, the Saxons overlay structure is configured with a node degree
range of <4 − 16> and the periodic structure quality maintenance routine runs at 30-
second intervals. Except explicitly evaluating the impact of different backbone networks,
most results shown here are based on the ASmap network. Each data point represents
the average value of five runs.

4.2 Overlay Structure Quality

This set of simulations examine the quality of overlay structure constructed using Saxons,
upon which our proposed DHT protocol is built. We show the overlay structure quality in
two metrics: 1) overlay path latency, defined as the end-to-end latency along the shortest
overlay path for each pair of nodes; and 2) relative delay penalty (or RDP), defined as the
ratio of the overlay path latency to the direct Internet latency. We compare three different
overlay structure construction schemes. First, we consider the Saxons protocol with the
landmark-based Cartesian distance approach for latency estimation (denoted by Saxons
(Landmark)). Second, we examine Saxons with an accurate latency estimation between
any two nodes (denoted by Saxons (Accurate)). Although it might not be practical, the
results for Saxons (Accurate) are useful in indicating the performance potential of a
Saxons-like structure management protocol. We finally consider the degree-bounded
random structure construction (denoted by Random).

Figure 5 illustrates the overlay path latency and RDP at various overlay sizes. For
each overlay size, nodes join the network at the average rate of 10 joins/second with
exponentially distributed inter-arrival time. Node joins stop when the desired overlay size
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is reached and the measurement results are taken after the system stabilizes. For 12800-
node overlays, results show that Saxons (Accurate) achieves 42% lower overlay path
latency and 47% lower RDP compared with Random. The saving for Saxons (Landmark)
is 22% on overlay path latency and 26% on RDP. The performance results of the Saxons
indicate that it can benefit overlay services built on top of it by providing low-latency
overlay structures.
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Fig. 6. Node count at each hierarchy level. Y-axis is on the logarithmic scale.

4.3 Statistics on the Landmark Hierarchy

Our proposed DHT is based on a self-organizing landmark hierarchy. In this set of
simulations, we further explore the statistics on the landmark hierarchy construction over
the Saxons overlay structure. The routing radii (starting from level 0) for the landmark
hierarchy are set as 2, 4, 8, 16, 32, 64, · · · The peer notification radii (starting from
level 0) are 2, 5, 9, 17, 33, 65, · · · Note that we require prl+1 > 2 ∗ rrl such that each
node sees at least one other same-level peer if any exists.

Figure 6 shows the overlay node count at each hierarchy level for up to 12800 overlay
nodes. The results indicate an exponentially larger population at lower hierarchy levels
with around ten times more nodes at each immediate lower level.

Figure 7 illustrates the mean routing table size at each hierarchy level. A level-l
routing entry at a node corresponds to a level-l landmark whose advertisements are
received. We observe that the number of routing entries at each level remains around
or below 80 for up to 12800 overlay nodes. The reason is that the large advertisement
flooding hops of high-level landmarks are compensated by their sparse presence in the
overlay structure. Note that the routing table sizes can be controlled by adjusting the
routing radii in the hierarchy generation. Our adaptive promotion and demotion schemes
result in the automatic construction of balanced hierarchies.

Since the list of children is included in the landmark route advertisement, a large
children population at overlay nodes may result in excessive route advertisement over-
head. Figure 8 shows the average number of children for nodes in each hierarchy level.
There are no level-0 results because level-0 landmarks have no child. We observe that
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the number of children at each node remains around or below 50 for up to 12800 over-
lay nodes. Again, the large advertisement flooding hops of high-level landmarks are
compensated by their sparse presence in the overlay structure.
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Fig. 7. Mean routing table size at each hier-
archy level.
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4.4 DHT Performance

This section investigates the performance of our proposed DHT protocol on the Saxons
structure management layer (denoted by SaxonsDHT). We examine the DHT perfor-
mance in terms of lookup latency, fault tolerance, the balance of key placement and
lookup routing overhead. We assess SaxonsDHT performance in relation to that of
Chord [21], a well-known DHT protocol. A previous study [8] shows that Chord per-
forms competitively against other strongly-structured DHT protocols such as CAN [16]
and Pastry [19] in terms of lookup latency and load balance. We implemented the Sax-
onsDHT and Chord protocols in our simulator and both schemes are configured at the
same link density in our evaluation. For SaxonsDHT, the node degree range of <4−16>
results in an average degree of 8. For Chord, each node maintains an 8-entry finger
table supporting DHT lookups. Higher-level finger entries in Chord point to nodes with
exponentially larger distances in the identifier circle.

It should be noted that the purpose of our evaluation is to assess the performance
of SaxonsDHT. We do not intend to make claim on its performance superiority over
strongly structured DHT protocols. In particular, the comparison between SaxonsDHT
and Chord at the same link density is not strictly fair for at least two reasons. First, Chord
can freely structure the overlay network in order to achieve the best performance while
SaxonsDHT has to function on top of a service-independent structure. On the other hand,
SaxonsDHT requires a fairly large routing table at each node while Chord’s finger table
size is the same as the number of outgoing links. Further, recent enhancements on Chord
have considered the latency of fetching DHT data in addition to the lookup latency [6].
We do not consider the data fetch latency in this paper.
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DHT Lookup Latency. The performance metrics for the DHT lookup include both lookup
latency and hop-counts. Figure 9(A) illustrates the DHT lookup hop-count for Saxons-
DHT and Chord at various overlay sizes. For each configuration, we measure the average
performance of 100,000 DHT lookups on randomly chosen initiator nodes and hash keys.
A quick analysis finds that the mean lookup hop-count for a Chord protocol with d finger
entries is d( d

√
N −1)/2. Results in Figure 9(A) show that SaxonsDHT achieves slightly

better performance (around 12% fewer lookup hops for 12800-node overlays) due to its
hierarchical lookup routing scheme.
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Fig. 9. DHT lookup performance at various overlay sizes.
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Fig. 10. DHT lookup latency over different backbone networks.

Figure 9(B) shows the DHT lookup latency at various overlay sizes. We introduce
variations of the SaxonsDHT and Chord protocols that may have significant impact on
the lookup latency. For SaxonsDHT, we examine two variations: one with the landmark-
based Cartesian distance approach for latency estimation and another with an accurate
latency estimation. As we discussed earlier, accurate latency estimation may not be
practical for large-scale overlays, but it is useful in indicating the performance potential
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of the SaxonsDHT protocol. We also examine variations of the Chord protocol with a
substrate-aware link-selection enhancement, called proximity neighbor selection [6]. In
this enhancement, instead of simply picking the first node in each finger table entry’s
interval in the identifier ring, a few alternative nodes in each interval are probed and
then the closest node is chosen to fill the finger table entry. We use Chord (n alt) to
denote the Chord protocol with n alternative link probings for each finger table entry. In
particular, Chord (0 alt) stands for the basic Chord protocol without the link-selection
enhancement. For 12800-node overlays, results in Figure 9(B) show that SaxonsDHT
(Landmark) achieves 37% less lookup latency than the basic Chord protocol and its per-
formance is close to that of Chord (4 alt). Results also show that SaxonsDHT (Accurate)
outperforms Chord (0 alt) and Chord (4 alt) at 65% and 31% respectively, indicating the
vast performance potential of SaxonsDHT.
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Fig. 11. DHT load balance on key placement.
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Figure 10 shows the DHT lookup latency over different backbone networks. Results
indicate that the performance difference is not significantly affected by the choice of
backbone networks. Savings are smaller for the two measurement-based backbones due
to their small sizes.

DHT Load Balance. Load balance is another essential goal for a distributed hashtable
and it is particularly challenging for hierarchical schemes. In our DHT protocol, we
employ different key-identifier assignment functions at each hierarchy level to achieve
balanced key placement. The balance on lookup routing overhead is supported by the
property that queries often shift toward lower-level DHT owners before actually reaching
any high-level DHT owner.

Figure 11 illustrates the DHT load balance on key placement over various overlay
sizes. 1000 × N (N is the overlay size) random keys are generated and mapped into
overlay nodes. Results show that the balance of key placement for SaxonsDHT is close
to that of Chord. We do not show results for variations of the SaxonsDHT and Chord
protocols because they do not have significant impact on the balance of key placement.
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Figure 12 shows the DHT load balance in terms of the lookup routing overhead.
Note that the results in Figure 12 are normalized to the mean values. We observe that
protocols with lower lookup latency typically exhibit less desirable load balance. For
12800-node overlays, the normalized 99-percentile lookup routing overhead for Chord
(0 alt) is 44% and 61% less than those of SaxonsDHT (Landmark) and SaxonsDHT
(Accurate) respectively. The difference between the substrate-aware Chord (4 alt) and
the two SaxonsDHT schemes is much less. The inferior load balance of substrate-aware
DHT protocols can be explained by their tendency of avoiding nodes that have long
latency to other overlay nodes.

DHT Performance under Unstable Environments. Figure 13 shows the DHT lookup
failure rate of SaxonsDHT and Chord under frequent node joins and departures at var-
ious average node lifetimes. The results are for 3200-node overlays. Individual node
lifetimes are picked following an exponential distribution with the proper mean. In these
experiments, a lookup is considered a success if it reaches the current level 0 DHT
owner of the desired key. In a real system, however, there might be delays in which
the current owner has not yet acquired the data associated with the key from the prior
owner. We do not consider this factor since it is highly dependent on higher-level service
implementation while we are primarily concerned with the DHT protocol. Results in
Figure 13 show that SaxonsDHT and Chord deliver similar lookup success rate during
overlay membership changes. Following an argument in [21], the lookup success rate
under a certain frequency of membership changes mainly depends on the average lookup
hop-counts. The similar success rate between SaxonsDHT and Chord can be explained
by their similar lookup hop-counts.
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A hierarchical scheme like SaxonsDHT may suffer poor performance under targeted
attacks against nodes of high importance. We examine the lookup failure rate when
nodes at higher hierarchy levels have shorter lifetime. To quantify such scenarios, we
introduce the failure bias factor, defined as the ratio of the average node lifetime at each
hierarchy level to that of the immediate higher level. In other words, for a failure bias
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factor of 2, level 1 nodes are twice likely to fail than level 0 nodes while level 4 nodes
are 16 times more likely to fail than level 0 nodes. Figure 14 illustrates the SaxonsDHT
lookup failure rate under biased node failure rates for 3200-node overlays. The results
show that the lookup failure rate increases initially at the increase of the failure bias
factor. However, this increase tapers off quickly and it may even decrease as the failure
bias factor continues to grow. This is because the SaxonsDHT lookups are mainly based
on local routing entries and high-level nodes are often not visited. This result shows
that SaxonsDHT lookups are not particularly susceptible to targeted attacks despite the
nature of its hierarchical design.

Due to its structure-sensitive DHT mapping scheme, SaxonsDHT tends to produce
more key reassignments after overlay membership changes. Figure 15 shows the pro-
portion of key assignment changes of SaxonsDHT and Chord with certain number of
random node joins and leaves in 3200-node overlays. We consider the SaxonsDHT per-
formance with varying failure bias factors to model the impact of targeted failures of
high-level landmarks. Comparing to Chord, SaxonsDHT produces two to three times
key reassignments (186% more in average) after overlay membership changes. Targeted
failures of high-level landmarks may result in more key reassignments. Such a perfor-
mance difference suggests that our DHT design may be better suited for applications that
do not require large data migration after the DHT mapping changes, such as those that
involve time-sensitive information or require repetitive refreshment. We should point
out that the DHT mapping in Chord is based on consistent hashing, a technique with
provable minimal key reassignments after membership changes [9].
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5 Internet Experimentation

The implementation of our proposed DHT design is based on a Saxons prototype [20].
In our DHT implementation, every node maintains a TCP connection with each of its
overlay neighbors. The route advertisements and lookup queries flow through these TCP
connections on the overlay structure. The DHT service periodically queries the Saxons
kernel for up-to-date overlay structure information. Link-related state such as the TCP
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connections to neighbors and routing table entries may have to be adjusted when directly
attached overlay links change. For the purpose of comparison, we also made a prototype
implementation of Chord. Our prototype can correctly form the Chord finger tables at the
absence of node departures. We did not implement the full Chord stabilization protocol
for simplicity. Each node in our Chord prototype maintains a TCP connection with each
of the nodes listed in its finger table and lookup queries flow through these connections.
For both DHT implementations, node IDs are assigned using MD5-hashed IP addresses.

We conducted experiments on the PlanetLab testbed [2] to evaluate the performance
of the proposed DHT service. Our experiments involve 51 PlanetLab nodes, all from
unique wide-area sites. Among them, 43 are in the United States, 5 are in Europe. The
other three sites are in Australia, Brazil, and Taiwan respectively. The round-trip latency
between a U.S. site and a non-U.S. site is often much higher than that between two
U.S. sites. Due to the small number of sites in the experiments, we are able to em-
ploy direct runtime latency measurements for the Saxons structure quality maintenance.
Specifically, a node pings the other 10 times and measure the round-trip time. It then
takes the average of the median 6 measurement results. This scheme is close to Saxons
(Accurate) examined in the simulation studies.
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In order to compensate the small size of our testbed, we use a relatively sparse
overlay structure in our experimentation. For SaxonsDHT, the Saxons overlay structure
is configured with a node degree range of <2 − 8>, and consequently an average node
degree of 4. The settings for routing radii and peer notification radii are the same as those
in the simulation study. A typical run shows that the Landmark Hierarchy contains one
level 3 landmark, three level 2 landmarks, and eight level 1 landmarks. The remaining
nodes are at level 0.

We compare the performance of SaxonsDHT against Chord with a 4-entry finger table
at each node. For the purpose of comparison, we also consider the performance of our
proposed DHT service running on a degree-bounded random overlay structure (denoted
by RandomDHT). In each run of our experiments, 1000 DHT lookups are initiated at
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each participating node with random hash keys. Figure 16 illustrates the cumulative
distribution functions of the 51,000 DHT lookup latency measurements taken out of
a typical test run. We observe that the lookup latency of RandomDHT is close to that
of Chord while SaxonsDHT significantly outperforms them. In average, SaxonsDHT
achieves about 48% latency reduction compared with Chord (335.5ms vs. 643.0ms).

We also examine the DHT load balance on lookup routing overhead for SaxonsDHT
and Chord. Figure 17 shows the number (normalized to the mean value over all nodes)
of routed lookup queries over each node. Results in the figure are increasingly ranked
and larger markers represent 8 non-U.S. sites in the testbed. The results show that Chord
exhibits better load balance than SaxonsDHT. We also observe that SaxonsDHT tends to
avoid the non-U.S. sites in query routing while Chord is oblivious to network distances
between participating sites. Such a behavior helps SaxonsDHT to achieve better lookup
performance at the expense of load balance.

6 Related Work

Previously proposed scalable DHT protocols such as Chord [21], CAN [16], and Pas-
try [19] all function on protocol-specific overlay structures to support DHT lookups. A
recent work [8] suggests that measurement-based overlay structures often have much
lower latency than structures provided by Chord, CAN, or Pastry. However, it did not
explain how a DHT service can be built on top of a low-latency measurement-based
overlay structure. Several studies have proposed substrate-aware techniques to enhance
particular DHT protocols. Zhao et al. proposed to construct a secondary overlay (called
Brocade) on top of existing DHT structures to exploit unique network resources avail-
able at each overlay node [27]. Ratnasamy et al. introduced a distributed binning scheme
for CAN such that the overlay topology resembles the underlying IP network [17]. In
Mithos [23], Waldvogel and Rinaldi proposed an efficient overlay routing scheme based
on an energy-minimizing node ID assignment in a multi-dimensional ID space. Zhang
et al. suggested a random sampling technique is effective for incrementally reducing
lookup latency in DHT systems [26]. These approaches are valuable in improving the
performance of specifically targeted protocols. However, substrate-aware techniques
built for particular DHT structures cannot benefit other services.

Kleinrock and Kamoun proposed hierarchical routing protocols to achieve low rout-
ing latency with small routing table sizes [10]. Landmark Hierarchy was later introduced
by Tsuchiya to allow minimal administration overhead and automatic adaptation to dy-
namic networks [22]. Recent studies (SCOUT [11] and L+ [4]) employed the Landmark
Hierarchy-based routing and location schemes for sensor and wireless networks. Our
design draws upon results and experience of these work. New techniques are introduced
in our design to construct a distributed hashtable service and satisfy its performance
requirements. For instance, balanced key placement is a unique performance objective
for DHT and it has not been addressed in previous studies on hierarchical routing.
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7 Conclusion

This paper presents a distributed hashtable protocol that operates on pre-structured over-
lays, and thus is able to take advantage of a common structure management layer such as
Saxons [20]. Compared with Chord [21] at the same overlay link density2, simulations
and Internet experiments find that the proposed scheme can deliver better lookup perfor-
mance at the cost of less load balance on query routing overhead. Evaluation results also
show that the balance of key placement and fault tolerance for our approach are close
to those of Chord. In addition, we find that the proposed scheme is not particularly sus-
ceptible to targeted attacks despite its hierarchical nature. Due to the structure-sensitive
DHT mapping scheme, however, the proposed approach may produce significantly more
key reassignments at high node churn rates.

Overall, our effort supports the broader goal of providing a common overlay structure
management layer that can benefit the construction of a wide range of overlay services.
While it is well understood that this model works well with services like unstructured
peer-to-peer search and unicast/multicast path selections, our work is the first to examine
its applicability on the distributed hashtable service.
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