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Approximation,” by Lane A. Hemaspaandra, in Complexity and Approximation, eds. Ding-Zhu Du and Jie Wang,

Springer, in preparation, or to serve as the basis for a stand-alone lecture or two-lecture series. A preliminary version

of that chapter appears under the same title as arXiv.org technical report 1902.08299.
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What Will The Year Be About?

It is always hard to know what a year will be about. However, as an example, in February
2019, I looked to see what predictions there were for what that year might be about. And I
found the following predictions.

Future years might differ somewhat, especially regarding the car and house predictions. But
overall, this is probably a pretty typical set of predictions for any year.
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What Will the Year Be About?

⇐=
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What Will the Year Be About?

There seems to some agreement among these varied predictions: “self”!

I can’t predict what “self-” theme this year will be the year of for you.

But I hope to make today be your Day of Self-Reducibility!

And, beyond that, I hope you’ll keep the tool/technique of self-reducibility in mind for the rest
of your year, decade, and lifetime—and on each new challenge will spend at least a few
moments asking, “Can self-reducibility play a helpful role in my study of this problem?” And
with luck, sooner or later, the answer may be, “Yes! Wow... what a surprise!”

So... let us define self-reducibility, and then set you to work, in teams, on using it to solve
some famous, important problems (whose solutions via self-reducibility indeed are already
known... but this will be a workshop-like “talk,” with the goal of each of you becoming
hands-on familiar with using self-reducibility in proofs).
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Overview

1 What Will The Year Be About?

2 Introduction: SAT and Self-Reducibility

3 Challenge 1: Is SAT even Semi-Feasible?

4 Challenge 2: Low Information Content, Part 1: Hard Tally Sets for SAT (and NP)?

5 Challenge 3: Low Information Content, Part 2: Hard Sparse Sets for SAT (and coNP)?

6 Challenge 4: Is #SAT as Hard to Enumeratively Approximate as It Is to Solve Exactly?

7 Conclusions
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Introduction: Sit Back and Relax

Game Plan

For each of a few challenge problems (theorems), I’ll give you definitions and perhaps some
other background, and then the state challenge problem (theorem), and then you in groups
will spend the (verbally) mentioned amount of time trying to prove the challenge problem.
And then we will go over an answer from one of the groups that solved the problem (or if none
did, we’ll together to get to an answer).

Note

You don’t have to take notes on the slides, since during each challenge problem, I’ll leave up a
slide that summarizes the relevant definitions/notions that have been presented up to that
point in the talk, and the challenge question.
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Introduction: SAT and Self-Reducibility

SAT is the set of all satisfiable (propositional) Boolean formulas. For example, x ∧ x 6∈ SAT
but (x1 ∧ x2 ∧ x3) ∨ (x4 ∧ x4) ∈ SAT.

SAT has the following “divide and conquer” property.

Fact (2-disjunctive length-decreasing self-reducibility)

Let k ≥ 1. Let F (x1, x2, . . . , xk) be a Boolean formula (wlog assume that each of the variables
actually occurs in the formula). Then

F (x1, x2, . . . , xk) ∈ SAT⇐⇒
(
F (True, x2, . . . , xk) ∈ SAT ∨ F (False, x2, . . . , xk) ∈ SAT

)
.

The above says that SAT is self-reducible (in particular, in the lingo, it says that SAT is
2-disjunctive length-decreasing self-reducible).

Note

We typically won’t focus on references in this talk. But just to be explicit: none of the
notions/theorems in this talk, other than in Challenge 4, are due to me. FYI, self-reducibility
dates back to, from the 1970s, Schnorr (ICALP) and Meyer & Paterson (an MIT TR).
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Introduction: SAT and Self-Reducibility

Note

We won’t at all focus here on details of the encoding of formulas and other objects.
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Introduction: SAT and Self-Reducibility

F (True, x2) F (False, x2)

F (x1, x2)

F (False,True) F (False,False)F (True,True) F (True,False)

The above is what is called a self-reducibility tree. We know for each nonleaf node that it is
satisfiable iff at least one of its children is satisfiable. (Inductively, the root is iff some leaf is.
And of course that is clear—the leaves are enumerating all possible assignments!) But
wait... the tree can be exponentially large in the number of variables, and so we can’t hope to
build fast algorithms to brute-force explore it.
But rather magically—and this is central to all the challenge problems—one can often find
ways to solve problems via exploring just a very small portion of this tree. Tree-pruning will be
the order of the day during this talk! So please do keep this tree, and the need to prune it,
closely in mind!
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Challenge 1: Is SAT P-Selective (i.e., Is SAT Semi-Feasible)?
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Challenge 1: Definitions

A set is said to be feasible (in the sense of belonging to P) if there is a poly-time algorithm
that decides membership.
A set is said to be semi-feasible (aka P-selective) if there is a poly-time algorithm that
semi-decides membership, i.e., that given any two strings, outputs one that is “more likely”
(to be formally cleaner, since the probabilities are all 0 and 1 and can tie, what is really meant
is “no less likely”) to be in the set.

Definition (Selman)

A set L is P-selective if there exists a poly-time function, f : Σ∗ × Σ∗ → Σ∗ such that,

(∀a, b ∈ Σ∗)[f (a, b) ∈ {a, b} ∧
(
{a, b} ∩ L 6= ∅ =⇒ f (a, b) ∈ L

)
].

Note: P-selective sets can be hard! There exist undecidable sets that are P-selective (e.g., the
set of left cuts of the real number implicit in the characteristic function of the halting problem).
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Challenge 1: Can SAT Be P-Selective?

Challenge Problem

(Prove that) if SAT is P-selective, then SAT ∈ P.

So that you have them easily at hand while working on this, here are some of the definitions
and tools from previous slides:

SAT SAT is the set of all satisfiable (propositional) Boolean formulas.

Self-reducibility Let k ≥ 1. Let F (x1, x2, . . . , xk) be a Boolean formula (wlog assume that
each of the variables occurs in the formula). Then F (x1, x2, . . . , xk) ∈ SAT⇐⇒(
F (True, x2, . . . , xk) ∈ SAT ∨ F (False, x2, . . . , xk) ∈ SAT

)
.

P-selectivity A set L is P-selective if there exists a poly-time function, f : Σ∗ × Σ∗ → Σ∗ such
that, (∀a, b ∈ Σ∗)[f (a, b) ∈ {a, b} ∧

(
{a, b} ∩ L 6= ∅ =⇒ f (a, b) ∈ L

)
].
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Challenge 2: Can SAT Reduce to a Tally Set?
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Challenge 2: Can SAT Reduce to a Tally Set?

Can SAT (or more generally, can any NP-complete set) have low information content? To
answer that, one needs to formalize what notion of low information content one wishes to
study. One such notion is whether a given set can many-one polynomial-time reduce to a tally
set (a set over a 1-letter alphabet).
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Challenge 2: Definitions

ε will denote the empty string. A set T is a tally set if T ⊆ {ε, 0, 00, 000, . . . }.
We say that A ≤p

m B (A many-one polynomial-time reduces to B) if there is a
polynomial-time function g such that,

(∀x ∈ Σ∗)[x ∈ A ⇐⇒ g(x) ∈ B].

(Informally, this says that B is so powerful that each membership query to A can be
efficiently transformed into a membership query to B.)

The complexity class NP is {L | L ≤p
m SAT}. (Note: NP more commonly is defined as

the class of sets accepted by nondeterministic, polynomial-time Turing machines. But
that in fact yields the same class of sets as the alternate definition just given.)

A set H is said to be hard for a class C if for each set L ∈ C it holds that L ≤p
m H. (If in

addition H ∈ C, then we say that H is C-complete.)

Lane A. Hemaspaandra The Power of Self-Reducibility 23 / 38



Challenge 2: Can SAT Reduce to a Tally Set?

Challenge Problem (Berman)

(Prove that) if there exists a tally set T such that SAT ≤p
m T, then SAT ∈ P. (Equivalently,

if there exists an NP-hard tally set, then P = NP).

So that you have them easily at hand while working on this, here are some of the definitions
and tools from previous slides:

SAT SAT is the set of all satisfiable (propositional) Boolean formulas.

Self-reducibility Let k ≥ 1. Let F (x1, x2, . . . , xk) be a Boolean formula (wlog assume that
each of the xi actually occurs in the formula). Then F (x1, x2, . . . , xk) ∈
SAT⇐⇒

(
F (True, x2, . . . , xk) ∈ SAT ∨ F (False, x2, . . . , xk) ∈ SAT

)
.

Tally sets A set T is a tally set if T ⊆ {ε, 0, 00, 000, . . . }.
Many-one reductions We say that A ≤p

m B if there is a polynomial-time function g such that,
(∀x ∈ Σ∗)[x ∈ A ⇐⇒ g(x) ∈ B].
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Challenge 3: Can SAT Reduce to a Sparse Set?
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Challenge 3: Definitions

Let ‖S‖ denote the cardinality of set S , e.g., ‖{ε, 0, 0, 0, 00}‖ = 3.

Let |x | denote the length string x , e.g., |moon| = 4. (Used in Challenge 4: |F | will denote
the length of (the encoding of) formula F .)

A set S is sparse if there exists a polynomial q such that, for each natural number n ∈ N,
it holds that ‖{x | x ∈ S ∧ |x | ≤ n}‖ ≤ q(n). (Informally put, the sparse sets are the sets
whose number of strings up to a given length is at most polynomial.)

Example (Example)

{0, 1}∗ is, for example, not a sparse set; but all tally sets are sparse, indeed all via the
polynomial q(n) = n + 1.

For any set L, let L denote the complement of L.

coNP = {L | L ∈ NP}.
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Challenge 3: Can SAT Reduce to a Sparse Set?

Challenge Problem (Fortune)

(Prove that) if there exists a sparse set S such that SAT ≤p
m S, then SAT ∈ P.

(Equivalently, if there exists a coNP-hard sparse set, then P = NP).

So that you have them easily at hand, here are some of the defs/tools from previous slides:

SAT and Complements SAT is the set of all satisfiable (propositional) Boolean formulas.
SAT denotes the complement of SAT. coNP = {L | L ∈ NP}.

Self-reducibility Let k ≥ 1. Let F (x1, x2, . . . , xk) be a Boolean formula (wlog assume that
each of the xi actually occurs in the formula). Then F (x1, x2, . . . , xk) ∈
SAT⇐⇒

(
F (True, x2, . . . , xk) ∈ SAT ∨ F (False, x2, . . . , xk) ∈ SAT

)
.

Sparse sets A set S is sparse if there exists a polynomial q such that, for each natural
number n ∈ N, it holds that ‖{x | x ∈ S ∧ |x | ≤ n}‖ ≤ q(n).

Many-one reductions We say that A ≤p
m B if there is a polynomial-time function g such that,

(∀x ∈ Σ∗)[x ∈ A ⇐⇒ g(x) ∈ B].
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Challenge 4: Is #SAT as Hard to (Enumeratively) Approximate as It Is to
Solve Exactly?
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Challenge 4: Definitions

This final challenge is harder than the other ones. You’ll in solving it have to have multiple
insights—as to what approach to use, what building blocks to use, and how to use them.

#SAT is the function that given as input a Boolean formula F (x1, x2, . . . , xk)—wlog
assume each of the variables appears in F—outputs the number of satisfying assignments
the formula has (i.e., of the 2k possible assignments of the variables to True/False, the
number of those under which F evaluates to True; so the output will be a natural number
in the interval [0, 2k ]). For example, #SAT(x1 ∨ x2) = 3 and #SAT(x1 ∧ x1) = 0.
We say that #SAT has a polynomial-time 2-enumerator (aka, is p-time 2-enumerably
approximable) if there is a polynomial-time function h such that on each input x , (a) h(x)
outputs a list of two (perhaps identical) natural numbers, and (b) #SAT(x) appears in
the list output by h(x).
(Informally put, such a function h outputs a list of (at most) two candidate values for the
value of #SAT on the given input, and the actual output is always in that list. This
notion generalizes in the natural way to other list cardinalities, e.g.,
max(1,

√
|F |)-enumerators and poly-enumerators.)
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Challenge 4: Food for Thought

You’ll certainly want to use some analogue of the key self-reducibility observation, except
now respun by you to be about the number of solutions of a formula and how it relates or
is determined by the number of solutions of its two “children” formulas.

But doing that is just the first step of your quest. So... please play around together with
your groupmates with ideas and approaches. Don’t be afraid to be bold and ambitious.
For example, your group might say “Hmmmm, if we could do/build XYZ (where perhaps
XYZ might be some particular insight about combining formulas), that would be a
powerful tool in solving this, and I suspect we can do/build XYZ.” And then your group
might want to have half its members work on building XYZ, while the other half worked
on showing in detail how, if you did have tool XYZ in hand, you can use it to show the
theorem.

Lane A. Hemaspaandra The Power of Self-Reducibility 30 / 38



Challenge 4: Is #SAT as Hard to (Enumeratively) Approximate as It Is to
Solve Exactly?

Challenge Problem (Cai & Hemachandra)

(Prove that) If #SAT is has a polynomial-time 2-enumerator, then there is a polynomial-time
algorithm for #SAT.

So that you have them easily at hand, here are some of the defs/tools from previous slides:

#SAT #SAT is the function that given as input a Boolean formula F (x1, x2, . . . , xk)—wlog assume
each of the variables appears in F—outputs the number of satisfying assignments the formula
has (i.e., of the 2k possible assignments of the variables to True/False, the number of those
under which F evaluates to True; so the output will be a natural number in the interval [0, 2k ]).
For example, #SAT(x1 ∨ x2) = 3 and #SAT(x1 ∧ x1) = 0.

Enumerative approximation We say that #SAT has a polynomial-time 2-enumerator (aka, is p-time
2-enumerably approximable) if there is a polynomial-time function h such that on each input x ,
(a) h(x) outputs a list of two (perhaps identical) natural numbers, and (b) #SAT(x) appears in
the list output by h(x).
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Challenge 4: Why One Natural Approach Is Hopeless

One natural approach would be to run the hypothetical 2-enumerator h on the input
formula F and both of its x1-assigned subformulas, and to argue that purely based on the
2 options that h gives for each of those three (i.e., viewing the formulas for a moment as
black boxes) (side comment: wlog, we may assume that each of the 3 has two distinct
outputs; the other cases are even easier), we can either output ‖F‖ or can identify at least
one of the subformulas such that we can show a particular 1-to-1 linkage between which
of the two predicted numbers of solutions it has and which of the two predicted numbers
of solutions F has. And then we would iteratively walk down the tree, doing that.

But the following example, based on one suggested by Gerhard Woeginger, shows that
that is impossible. Suppose h predicts outputs {0, 1} for F , {0, 1} for the left subformula,
and {0, 1} for the right subformula. The values of the root can’t be based purely on the
numbers being linked 1-to-1 to those of the left subformula, since 0 for the left
subformula can be linked to either root value, 0 (0 + 0 = 0) or 1 (0 + 1 = 1). The same
holds for the right subformula. The three separate number-pairs just don’t have enough
information to make the desired link! But don’t despair: we can make h help us far more!
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Challenge 4: XYZ Idea/Statement

In particular, we can trick the enumerator into giving us linked/coordinated guesses! Let us
explore that! What I was thinking of, when I mentioned XYZ in the food-for-thought hint, is
the fact that we can efficiently combine two Boolean formulas into a new one such that from
the number of satisfying assignments of the new formula we can easily “read off” the number
of satisfying assignments of both of the original formulas. In particular, we can just do this in
such a way that if we concatenate the (appropriately padded as needed) bitstrings capturing
the numbers of solutions of the two formulas, we get the (appropriately padded as needed)
bitstring capturing the number of solutions of the new “combined” formula. (Notation: ‖F‖ is
the number of satisfying assignments of F .) The following lemma of Cai and Hemachandra
captures this.

Lemma

There are polynomial-time functions combiner and decoder such that for any Boolean
formulas F and G, combiner(F , G ) is a Boolean formula and
decoder(F ,G , ‖combiner(F ,G )‖) prints ‖F‖, ‖G‖.

Lane A. Hemaspaandra The Power of Self-Reducibility 33 / 38



Challenge 4: XYZ Proof

Lemma

There are polynomial-time functions combiner and decoder such that for any Boolean
formulas F and G, combiner(F , G ) is a Boolean formula and
decoder(F ,G , ‖combiner(F ,G )‖) prints ‖F‖, ‖G‖.

Proof Let F = F (x1, . . . , xn) and G = G (y1, . . . , ym), where x1, . . . , xn, y1, . . . , ym are
distinct. Let z and z ′ be two new Boolean variables. Then

H = (F ∧ z) ∨ (z̄ ∧ x1 ∧ · · · ∧ xn ∧ G ∧ z ′)

is the desired combination, since ‖h‖ = ‖f ‖2m+1 + ‖g‖ and ‖g‖ ≤ 2m.

We can easily extend this technique to combine three, four, or even polynomially many
formulas.
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Challenge 4: Proof Sketch of the Theorem

Challenge Problem (Cai & Hemachandra)

(Prove that) If #SAT is has a polynomial-time 2-enumerator, then there is a polynomial-time
algorithm for #SAT.

And, in case time ran out, here is the quick proof sketch. Start with our input formula, F ,
whose number of solutions we wish to compute in polynomial time.
Self-reduce the formula on its first variable. Using the XYZ trick (twice), combine the original
formula and the two subformulas into a single formula, H, whose number of solutions gives the
number of solutions of all three. Run the 2-enumerator on H. If either of its output’s two
decoded guesses are inconsistent (a 6= b + c) ignore that line and the other one is the truth. If
both are consistent and agree on ‖F‖, then we’re also done. Otherwise, the lines must differ in
their claims about at least one of the two subformulas. Thus if we know the number of
solutions of that one, shorter formula, we know the number of solutions of ‖F‖.
Repeat the above on that formula, and so on, and then at the end ripple all the way back up.
The entire process is a polynomial number of polynomial-cost steps.
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Challenge 4: Proof Sketch of the Theorem

Challenge Problem (Cai & Hemachandra)

(Prove that) If #SAT is has a polynomial-time 2-enumerator, then there is a polynomial-time
algorithm for #SAT.

Example of the key step from the proof sketch:

Which of the Guesses ‖F (x1, x2, x3, . . . )‖ ‖F (True, x2, x3, . . . )‖ ‖F (False, x2, x3, . . . )‖
First 100 83 17

Second 101 85 16

In this example, note that we can conclude that ‖F (x1, x2, x3, . . . )‖ = 100 if
‖F (False, x2, x3, . . . )‖ = 17, and ‖F (x1, x2, x3, . . . )‖ = 101 if ‖F (False, x2, x3, . . . )‖ = 16; and
we know that ‖F (False, x2, x3, . . . )‖ ∈ {16, 17}.
So we have in polynomial time completely linked ‖F (x1, x2, x3, . . . )‖ to the issue of the
number of satisfying assignments of the (after simplifying) shorter formula
F (False, x2, x3, . . . ). This completes our example of the key linking step.
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Challenge 4: Extensions

Challenge Problem (Cai & Hemachandra)

(Prove that) If #SAT is has a polynomial-time 2-enumerator, then there is a polynomial-time
algorithm for #SAT.

Extensions (Cai & Hemachandra)

The above theorem holds, by the same flavor of approach (but doing more aggressively broad
groupings), even if one looks at k-enumerators... or even

√
|F |-enumerators... or even, for any

ε > 0, to O(|F |1−ε)-enumerators. Indeed, one can even show that the result holds for
polynomial-time enumerators that have no limit on their number of allowed elements in the list.
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Conclusions

Self-reducibility is a powerful tool across a broad range of settings.

Myself, I have found it to be useful many times. (For example: Search versus Decision for Election Manipulation
Problems; The Opacity of Backbones; Existence versus Exploitation: The Opacity of Backbones and Backdoors Under a Weak Assumption Easily Checked
Generalized Self-Reducibility; Space-Efficient Recognition of Sparse Self-Reducible Languages; Strong Self-Reducibility Precludes Strong Immunity;
P-Immune Sets with Holes Lack Self-Reducibility Properties.)

My guess/hope is that perhaps you may too! That is, please, if it is not already there,
consider adding this tool to your personal research toolkit: When you face a problem,
think (if only for a moment) whether the problem happens to be one where the concept
of self-reducibility will help you gain insight. Who knows?—One of these years, you might
be happily surprised in finding that your answer to such a question is “Yes”!

Thank you for your time!
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